Министерство образования Республики Беларусь Учреждение образования Белорусский государственный университет информатики и радиоэлектроники

УДК

Степаненко Антон Сергеевич

Термическая нестабильность МОП транзисторов

АВТОРЕФЕРАТ

на соискание степени магистра технических наук по специальности 1-41 80 01 «Твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника, приборы на квантовых эффектах»

Научный руководитель Колосницын Борис Сергеевич кандидат технических наук профессор

ВВЕДЕНИЕ

В современной силовой полупроводниковой электронике широко используются интеллектуальные силовые интегральные схемы (ИСИС), содержащие на одном кристалле, как мощные элементы, так и схемы управления и защиты силовых приборов. Интеллектуальные ИС находят широкое применение в системах автоматики и управления индустриальной и бытовой электроникой, в системах сотовой связи.

При создании таких ИС возникает ряд проблем, в частности проблема совместимости технологий изготовления мощных и низковольтных элементов схемы, а также необходимость обеспечения изоляции между ними.

Одним из способов решения этих проблем является создание ИС на основе тонкопленочной технологии кремний на изоляторе (КНИ), которая помимо полной диэлектрической изоляции и простой КМОП-совместимой технологии для низковольтной и мощной частей схемы обеспечивает также высокое быстродействие и повышенную радиационную стойкость схем.

Однако, при создании мощного элемента на основе данной технологии возникают проблемы, связанные с плавающим потенциалом подложки, а также с саморазогревом мощного элемента.

Эффекты плавающей подложки, связанные с особенностями реализации контакта к подложке и высоким сопротивлением слаболегированной области канала, проявляются в виде скачка выходного тока при увеличении выходного напряжения «кинк-эффекта» и в виде включения паразитного биполярного п-р-п-транзистора, базой которого является р-подложка, а эмиттером и коллектором – исток и сток МОП-транзистора.

Саморазогрев, связанный c наличием скрытого теплопроводность которого на несколько порядков ниже, чем у кремния, может приводить как к снижению выходного тока, так и к тепловому пробою в кремнии и выгоранию алюминиевых контактов на границе с кремнием. Проблема саморазогрева особенно актуальна для мощных КНИ- транзисторов, напряжения которых большие токи приводят И К саморазогреву.

Эти факторы сильно ограничивают область безопасной работы (ОБР) мощных транзисторов и, тем самым, ограничивают диапазон применения интеллектуальной схемы.

Для расширения ОБР необходимо провести анализ влияния различных конструктивно-технологических факторов на характеристики типового мощного МОП-транзистора в составе интеллектуальной силовой ИС, реализованной на основе тонкопленочной КНИ-технологии, и разработать

технические решения, позволяющие расширить границы ОБР без существенного ухудшения основных параметров прибора.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы магистерской диссертации. В современной полупроводниковой силовой электронике широко используются интеллектуальные силовые интегральные схемы (ИСИС), содержащие на одном кристалле, как мощные элементы, так и схемы ИСИС управления мощных приборов. находят защиты широкое применение В системах автоматики И управления промышленной бытовой электроники, в системах сотовой связи.

ИС ряд проблем, При создании таких возникает В частности проблема изготовления технологий совместимости мощных элементов низковольтных интеллектуальных схемы, a также необходимость обеспечения изоляции между ними.

Одним из способов решения этих проблем является создание ИС тонкопленочной кремний-на-изоляторе основе технологии (КНИ), на диэлектрической простой которая помимо полной изоляции КМОПсовместимой технологии для низковольтной и мощной частей схемы обеспечивает высокое быстродействие также И повышенную радиационную стойкость схем.

Однако при создании мощного элемента данной на основе возникают специфические проблемы, технологии связанные плавающим потенциалом подложки, а также с термической нестабильностью элемента. Эти факторы ограничивают мощного сильно область (OBP)безопасной работы мощных транзисторов И, самым, ИСИС. ограничивают диапазон применения Поэтому разработка конструктивно-технологических решений, ОБР позволяющих расширить ИСИС, мощных элементов является актуальной задачей современной силовой интегральной электроники.

Цель и задачи исследования заключаются в исследовании термической нестабильности мощных МОП-транзиторов, в разработке конструктивнотехнологических решений по расширению области безопасной работы мощных КНИ МОП-транзисторов интеллектуальных силовых интегральных схем на основе методов приборно-технологического моделирования.

Для достижения поставленной цели решались следующие задачи:

1. Анализ структуры мощного КНИ МОП-транзистора с целью выявления факторов, ограничивающих его ОБР, и параметров прибора, влияющих на эти факторы.

- 2. Разработка методики приборно-технологического моделирования применительно к расчету граничных режимов работы мощных КНИ МОП-транзисторов.
- 3. Исследование зависимости факторов, ограничивающих ОБР, от термической нестабильности МОП-транзистора.

Объект и предмет исследования. Объектом исследования является процесс моделирования мощного моп транзистора. Предметом исследования являются факторы ограничивающие область безопасной работы мощного моп транзистора.

Основные положения диссертации, выносимые на защиту. На защиту выносятся следующие основные результаты:

- 1. Методика приборно-технологического моделирования, позволяющая исследовать возможность расширения ОБР мощных КНИ МОП-транзисторов.
- 2. Полученные с помощью системы приборно-технологического моделирования закономерности, связывающие параметры ОБР с конструктивно-технологическими параметрами прибора.

Личный вклад соискателя

Bce И выводы получены основные результаты соискателем самостоятельно. Во время работы над диссертацией соискателем были термической нестабильности $MO\Pi$ исследованы зависимости мошных ОБР транзисторов закономерности, связывающие параметры конструктивно-технологическими параметрами прибора.

Апробация результатов диссертации. Основные теоретические результаты и законченные этапы диссертационной работы, а также результаты прикладных исследований и разработок были доложены на 51-й научной конференции студентов, магистрантов, аспирантов БГУИР, 2015.

Публикации.Основные положения работы и результаты диссертации изложены в 2 опубликованных работах, представленных в материалах международных научно-практических и научно-технических конференций (см. список опубликованных работ).

Структура и объем диссертации. Диссертационная работа состоит из введения, общей характеристики работы, четырёх глав, заключения и списка использованных источников, включающего 63 наименований. Общий объем диссертации составляет 72 страницы.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы, определены цели и задачи исследования, изложены научная новизна и практическая значимость работы.

В первой главе был проведен анализ различных способов изоляции элементов интеллектуальных силовых схем и показано, что изоляция на основе кремний-на-изоляторе тонкопленочной технологии (КНИ) полную диэлектрическую изоляцию элементов ИСИС, и технологический процесс формирования мощного элемента является КМОП-совместимым. ИС. Кроме того, интеллектуальные силовые созданные тонкопленочной КНИ-технологии высокое быстродействие имеют повышенную радиационную стойкость.

Однако при создании мощного элемента на основе данной технологии возникают проблемы, связанные с плавающим потенциалом подложки, а также с саморазогревом мощного элемента.

Проведен анализ существующих конструктивно-технологических вариантов создания мощных КНИ-транзисторов, направленных на преодоление проблем плавающей подложки и саморазогрева. Однако, все варианты существенно отличаются от традиционной КНИ КМОПтехнологии и используются лишь для узкого круга задач.

Во второй главе проводится анализ структуры мощного КНИ МОПтранзистора с целью выявления факторов, ограничивающих его ОБР, и параметров прибора, влияющих на эти факторы.

Степень саморазогрева зависит от длины канала, длины пинч-резистора, а также от параметров, отвечающих за эффективность теплоотвода, а именно: от толщин скрытого окисла и объемной подложки.

На основании анализа типовой конструкции мощного КНИ МОПтранзистора разработана параметризированная модель прибора для исследования

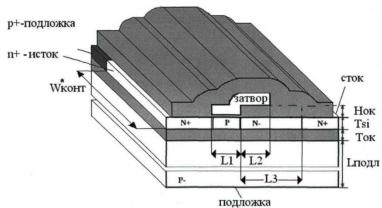


Рисунок 1 - Параметризированная структура планарного мощного КНИ МОПтранзистора.

В третьей главе показано, что традиционный подход к приборнотехнологическому моделированию на основе двухмерного сечения не подходит для планарных мощных КНИ МОП-транзисторов, так как он не позволяет корректно учесть влияние контакта к тонкой подложке на электрические характеристики, а тепловые свойства прибора существенно зависят от конструкции не только самого транзистора, но и окружающих его элементов.

Ha упрощенной трехмерной основании модели, учитывающей конструкцию транзистора И окружающих его элементов, проводится моделирование распределения тепловых потоков в схеме и рассчитывается предельная граница ОБР по току, связанная с тепловыми свойствами и эффектом саморазогрева. сравниваются границы ОБР

В четвёртой главе с помощью программ приборно-технологического моделирования ISE TCAD и SYNOPSYS TCAD и методики, изложенной в главе 3, проводится исследование закономерностей, связывающих границы области безопасной работы с конструктивно-технологическими параметрами прибора. Расчет электрических характеристик проводился для параметризованной структуры прибора, разработанной в главе 2.

были получены зависимости предельных значений выходного тока, ограниченного включением паразитного биполярного транзистора, от расстояния между контактами к тонкой подложке в закрытом состоянии МОП-транзистора (рисунок 2(a)). Точки включения паразитного биполярного транзистора показаны на выходных ВАХ МОП-прибора, приведенных на рисунке 2(6).

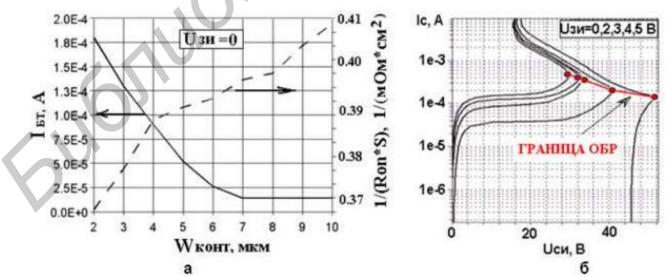


Рисунок 2 – а - зависимость тока стока, при котором включается паразитный биполярный транзистор, от расстояния до контакта к тонкой подложке при Uзu=0, б - выходные ВАХ МОП-транзистора и точки включения паразитного биполярного транзистора при Uзu=0, 2, 3, 4 и 5 В и Wконт=1 мкм.

В выводах кратко изложены основные результаты магистерской диссертации, приведены результаты моделирования мощного МОП-транзитора.

ЗАКЛЮЧЕНИЕ

- 1. Проведен обзор существующих технологий создания интеллектуальных силовых интегральных схем. Показаны преимущества тонкопленочной КНИ-технологии для создания интеллектуальных силовых ИС. Указаны слабые места мощного МОП-транзистора, созданного на основе тонкопленочной КНИ-технологии. Показано, что эти недостатки сильно граничивают область безопасной работы мощного прибора. Определены исследований для решения основной задачи основные направления расширения диапазонов безопасной работы мощного МОП транзистора в составе интеллектуальной силовой ИС на основе тонкопленочной КНИтехнологии.
- 2. Проведенный анализ типовой конструкции мощного КНИ МОПтранзистора позволил выявить факторы, ограничивающие область безопасной работы транзистора, и определить параметры областей прибора, влияющие на них. В результате проведенного анализа была разработана параметризованная модель мощного прибора для проведения исследования.
- 3. Разработана методика приборно-технологического моделирования для исследования граничных режимов работы мощных КНИ МОП-транзисторов. Указаны основные программы необходимые для проведения моделирования. Предложен простой метод оценки тепловых свойств кристалла и температурной области безопасной работы мощного прибора.
- 4. С помощью программ приборно-технологического моделирования установлены и объяснены зависимости факторов, ограничивающих ОБР, от конструктивно-технологических параметров мощного прибора, а именно: длины и дозы легирования пинч-резистора, величины перекрытия затвором области пинч-резистора, расстояния между контактами к тонкой подложке, толщины подэлектродного и скрытого окисла, толщины пленки кремния и объемной подложки. В частности установлено, что:
- выходной ток мощного транзистора малой площади ограничен включением паразитного биполярного транзистора и увеличивается, в основном, за счет уменьшения расстояния между контактами к тонкой подложке;
- при больших площадях мощного транзистора предельный ток ограничен саморазогревом и увеличивается, в основном, при уменьшении толщины объемной кремниевой подложки.

Таким образом, в диссертационной работе была разработана методика приборно-технологического моделирования, позволяющая исследовать

термическую нестабильность мощного МОП-транзитора, а следовательно определить граничные режимы работы мощных КНИ МОП-транзисторов и объяснить закономерности, связывающие границы области безопасной работы с конструктивно-технологическими параметрами исследуемого прибора;

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

- 1. Б. С. Колосницын, А. С. Степаненко, Термическая нестабильность МОП транзисторов/ XIII Белорусско-российская научно-техническая конференция «Технические средства защиты информации». Минск: БГУИР, 2015.
- 2. Б. С. Колосницын, А. С. Степаненко Моделирование мощных МОПтразисторов / 51-я научная конференция студентов, аспирантов, магистрантов, Минск: БГУИР, 2015.