- Скиба, А.Н. Кратно ω-локальные формации и классы Фиттинга конечных групп / А.Н. Скиба, Л.А. Шеметков // Математические труды. – 1999. – Т. 2, № 2. – С. 114–147.
- 11. **Залесская, Е.Н.** О нелокальных классах Локетта / Е.Н. Залесская // Веснік ВДУ. 2002. № 1 (23). С. 84–88.
- 12. *Коуровская тетрады.* Нерешенные вопросы теории групп // Институт математики. СОРАН. 1999. № 14. С. 134.

SUMMARY

A Lockett conjecture about a structure of a Fitting class for ω -local Fitting classes with given characteristic is affirmed. The negative answer for the Lockett conjecture in the case of ω -local Fitting classes is obtained.

Поступила в редакцию 8.10.2006

УДК 517.977+621.07.064

А.А. Агранович, Е.А. Барабанов, В.В. Жарский, С.Е. Карпович

Об одной задаче адаптивного управления мехатронной системой

При исследовании динамических процессов, описывающих поведение прецизионных электроприводов, используемых в автоматизированном оборудовании производства изделий микроэлектроники, возникает необходимость решения следующей задачи управления [1–3].

Система управления описывается линейным неоднородным дифференциальным уравнением второго порядка

$$\ddot{x} + \beta \dot{x} + \alpha x = u, \quad t \ge 0, \tag{1}$$

где коэффициенты α и β — заданные вещественные постоянные, а управление $u(\cdot)\colon [0,+\infty)\to \mathbb{R}$ — кусочно-постоянная функция с постоянным и заданным шагом T участков постоянства (т.е. $u(t)\equiv u_k$ при $t\in [kT,(k+1)T),$ $k\in Z_+$, $u_k\in \mathbb{R}$). Задано также положительное число δ (так называемый шаг нарезки). Требуется найти необходимые и достаточные условия на постоянные α и β , при которых можно так выбрать последовательность $(u_k)_{k\in Z_+}$, $k\in Z_+$, значений функции управления $u(\cdot)$ на участках ее постоянства, чтобы для решения $x(\cdot)$ задачи Коши уравнения (1) с нулевыми при t=0 начальными данными (т.е. удовлетворяющей уравнению (1) дифференцируемой при всех $t\geq 0$ функции x(t) , для которой $x(0)=\dot{x}(0)=0$) выполнялись следующие условия: $x(kT)=k\delta$, $k\in \mathbb{N}$, и модуль производной $|\dot{x}(kT)|$ был достаточно «мал» при всех $k\in \mathbb{N}$.

Дадим вначале полное решение этой задачи без учета последнего требования. Полученные формулы дадут возможность решить и общую задачу при любом понимании «малости» модуля производной $|\dot{x}(kT)|$. Обозначим: $x_k(t) \equiv x(t)$ при $kT \le t \le (k+1)T, \ k \in Z_+$. Легко видеть, что поставленная за-

дача формализуется следующим равносильным образом: найти необходимые и достаточные условия на постоянные α и β , при которых существует последовательность $(u_k)_{k\in\mathbb{Z}_+}$ вещественных чисел, такая, что разрешима следующая последовательность переопределенных начально-краевых задач:

$$\begin{cases} \ddot{x}_{k} + \beta \dot{x}_{k} + \alpha x_{k} = u_{k}, & kT \le t \le (k+1)T, \\ x_{k}(kT) = k\delta, & x_{k}((k+1)T) = (k+1)\delta, & \dot{x}_{k}(kT) = \dot{x}_{k-1}(kT), \end{cases}$$
(2_k)

где $k\in Z_+$, и для единообразия записи положено $\dot{x}_{-1}(0)=0$. Как видим, начальные и краевое условия каждой, начиная со второй, следующей из задач (2_k) определяются по решению предыдущей задачи (2_{k-1}) . Существование при каждом $k\in Z_+$ такого $u_k\in R$, что последовательно при $k=0,1,2,\ldots$ разрешима каждая из задач (2_k) , является необходимым и достаточным условием существования указанного выше решения $x(\cdot)$ уравнения (1), и тогда это решение $x(t)\equiv x_k(t)$ при $t\in [kT,(k+1)T),\ k\in Z_+$. Определенную так функцию $x(\cdot)$ назовем решением последовательности задач (2_k) .

Решение поставленной задачи дает

Теорема. Пусть $D = \beta^2 - 4\alpha$ — дискриминант характеристического уравнения $z^2 + \beta z + \alpha = 0$ для дифференциального уравнения (1).

Последовательности $(u_k)_{k\in\mathbb{Z}_+}$, доставляющей решение последовательности задач (2_k) , не существует, если и только если выполнено одно из условий:

$$\alpha = 0$$
 или $D < 0$, a $4e^{-\beta T/2}\sqrt{\alpha}\cos(T\sqrt{-D}/2 + \arccos(2^{-1}\sqrt{-D/\alpha})) = \sqrt{-D}$.

Если же ни одно из этих двух условий не выполнено, то последовательность $(u_k)_{k\in\mathbb{Z}_+}$ существует, единственна и задается формулой: $u_k=\alpha\delta k+c+db(a-1)^{-1}(a^k-1)$, $k\in\mathbb{Z}_+$, где не зависящие от k постоянные $a,\ b,\ c$ и d в зависимости от корней $\lambda_{1,2}$ характеристического уравнения равны:

1) өсли
$$D > 0$$
, то $\lambda_{1,2} = (-\beta \pm \sqrt{D})/2$, а $a = -(\lambda_1 e^{\lambda_1 T} (e^{\lambda_2 T} - 1) - \lambda_2 e^{\lambda_2 T} (e^{\lambda_1 T} - 1))/\Delta$, $b = \delta \lambda_1 \lambda_2 (e^{\lambda_1 T} - e^{\lambda_2 T})/\Delta$, $c = -\alpha \delta (\lambda_2 - \lambda_1)/\Delta$, $d = -\alpha (e^{\lambda_1 T} - e^{\lambda_2 T})/\Delta$,

ede $\Delta = \lambda_2(e^{\lambda_1 T} - 1) - \lambda_1(e^{\lambda_2 T} - 1);$

2) если
$$D<0$$
, то $\lambda_{1,2}=\mu\pm i\omega$, где $\mu=-\beta/2$, $\omega=\sqrt{-D}/2$, а $a=-e^{\mu T}(\omega\cos(\omega T)+\mu\sin(\omega T)-\omega e^{\mu T})/\Lambda$, $b=\delta(\mu^2+\omega^2)e^{\mu T}\sin(\omega T)/\Delta$, $c=-\alpha\delta\omega/\Delta$, $d=\alpha e^{\mu T}\sin(\omega T)/\Delta$,

ede
$$\Delta = e^{\mu T} (\omega \cos(\omega T) - \mu \sin(\omega T)) - \omega;$$

3) если
$$D=0$$
, то $\lambda_{1,2}=\lambda=-\beta/2$, а

$$a = -e^{\lambda T} (\lambda T + e^{\lambda T} - 1) / \Delta$$
, $b = -\lambda^2 \delta T e^{\lambda T} / \Delta$, $c = -\alpha \delta / \Delta$, $d = \alpha e^{\lambda T} T / \Delta$,

где $\Delta = e^{\lambda T} (1 - \lambda T) - 1$.

При этом величина скорости в моменты kT, $k \in \mathbb{Z}_+$, решения $x(\cdot)$ последовательности задач (2_k) равна $\dot{x}(kT) = b(a-1)^{-1}(a^k-1), \quad k \in \mathbb{Z}_+$, где величины a и b (в зависимости от корней характеристического уравнения) определены выше в формулировке теоремы.

Д о к а з а т е л ь с т в о. Для доказательства теоремы рассмотрим отдельно случаи вещественных различных, комплексно-сопряженных и вещественных совпадающих корней характеристического уравнения $z^2+\beta z+\alpha=0$. Поскольку эти рассмотрения идентичны, рассмотрим подробно только случай вещественных различных корней. Решим отдельно каждую задачу (т.е. при каждом $k\in Z_+$) последовательности (2_k) в общем виде, обозначив для удобства $\dot{x}(kT)$ через v_k ; позже из этих решений «склеим» решение $x(\cdot)$ всей последовательности задач (2_k) , $k\in Z_+$.

Пусть $\lambda_1, \lambda_2 \in \mathbb{R}$, $\lambda_1 \neq \lambda_2$, – корни характеристического уравнения ($D = \beta^2 - 4\alpha > 0$). Тогда общее решение дифференциального уравнения задачи (2_k) дается формулой:

$$x_k(t) = C_1^k e^{\lambda_1 t} + C_2^k e^{\lambda_2 t} + \alpha^{-1} u_k.$$
 (3)

Поэтому в этом случае начально-краевые условия задачи (2_k) примут вид:

$$\begin{cases} C_1^k e^{\lambda_1 kT} + C_2^k e^{\lambda_2 kT} + \alpha^{-1} u_k = k\delta, \\ C_1^k e^{\lambda_1 (k+1)T} + C_2^k e^{\lambda_2 (k+1)T} + \alpha^{-1} u_k = (k+1)\delta, \\ C_1^k \lambda_1 e^{\lambda_1 kT} + C_2^k \lambda_2 e^{\lambda_2 kT} = v_k. \end{cases}$$

Почленно вычитая из второго уравнения этой системы ее первое уравнение, учитывая третье уравнение и обозначив для упрощения $D_1^k=C_1^ke^{\lambda_1kT}$ и $D_2^k=C_2^ke^{\lambda_2kT}$, придем к системе:

$$\begin{cases}
D_1^k (e^{\lambda_1 T} - 1) + D_2^k (e^{\lambda_2 T} - 1) = \delta, \\
D_1^k \lambda_1 + D_2^k \lambda_2 = \nu_k.
\end{cases}$$
(4)

Найдем решение этой линейной относительно $D_1^{\,k}$ и $D_2^{\,k}$ алгебраической системы. Ее определители равны:

$$\Delta = \begin{vmatrix} e^{\lambda_1 T} - 1 & e^{\lambda_2 T} - 1 \\ \lambda_1 & \lambda_2 \end{vmatrix} = \lambda_2 (e^{\lambda_1 T} - 1) - \lambda_1 (e^{\lambda_2 T} - 1),$$

$$\Delta_1 = \begin{vmatrix} \delta & e^{\lambda_2 T} - 1 \\ v_k & \lambda_2 \end{vmatrix} =$$

$$=\delta\lambda_2-v_k(e^{\lambda_2T}-1),\quad \Delta_2=\left|\begin{array}{cc}e^{\lambda_1T}-1&\delta\\\lambda_1&v_k\end{array}\right|=v_k(e^{\lambda_1T}-1)-\delta\lambda_1.$$

Прежде чем продолжить вычисления, выясним, при каких $\lambda_1,\ \lambda_2\in \mathbb{R}$ система (4) разрешима. Если эта система неразрешима, то необходимо, чтобы $\Delta=0$. Из формулы для Δ видно, что если хотя бы один из корней λ_1 или λ_2 нулевой, то $\Delta=0$. Пусть для определенности $\lambda_1=0$. Тогда система (4) не имеет решений уже при k=0. Действительно, при k=0 (тогда $v_0=0$) из второго уравнения этой системы следует, что либо $D_2^k=0$, либо $\lambda_2=0$. В любом случае, если $\lambda_1=0$, левая часть первого уравнения системы (4) при k=0 равна 0, в то время как его правая часть, равная δ , отлична от нуля. Стало быть, если хотя бы один из корней $\lambda_1,\ \lambda_2$ характеристического уравнения равен 0 (а это равносильно тому, что $\alpha=0$), то система (4), а тогда и последовательность задач (2_k), $k\in Z_+$, неразрешимы.

Стандартными рассуждениями несложно показать, что если ни один из корней λ_1 , λ_2 характеристического уравнения не равен 0, то $\Delta \neq 0$, а значит, система (4) разрешима. Это условие ($\lambda_1 \neq 0$, $\lambda_2 \neq 0$) считаем в дальнейшем выполненным. Тогда решением системы (4) являются $D_1^k = \Delta^{-1}\Delta_1$ и $D_2^k = \Delta^{-1}\Delta_2$, и, значит, согласно (3), решением $x_k(\cdot)$ задачи (2_k) будет:

$$x_k(t) = \Delta^{-1} \Delta_1 e^{\lambda_1 (t - kT)} + \Delta^{-1} \Delta_2 e^{\lambda_2 (t - kT)} + \alpha^{-1} u_k, \quad t \in [kT, (k+1)T).$$
 (5)

Из формулы (5) находим, во-первых, значение скорости $\dot{x}((k+1)T)$ и, вовторых, значение управления u_k . Вычислим $v_{k+1}=\dot{x}_k((k+1)T)$. Вследствие представления (5) имеем: $\dot{x}_k((k+1)T)=\Delta^{-1}\Delta_1\lambda_1e^{\lambda_1T}+\Delta^{-1}\Delta_2\lambda_2e^{\lambda_2T}$. Подставляя в это равенство выражения для Δ_1 , Δ_2 и Δ , получаем:

$$v_{k+1} = \frac{\delta \lambda_1 \lambda_2 (e^{\lambda_1 T} - e^{\lambda_2 T})}{\lambda_2 (e^{\lambda_1 T} - 1) - \lambda_1 (e^{\lambda_2 T} - 1)} - \frac{\lambda_1 e^{\lambda_1 T} (e^{\lambda_2 T} - 1) - \lambda_2 e^{\lambda_2 T} (e^{\lambda_1 T} - 1)}{\lambda_2 (e^{\lambda_1 T} - 1) - \lambda_1 (e^{\lambda_2 T} - 1)} \cdot v_k. (6)$$

Поэтому если обозначить не зависящие от k величины:

$$a = \frac{\lambda_1 e^{\lambda_1 T} (e^{\lambda_2 T} - 1) - \lambda_2 e^{\lambda_2 T} (e^{\lambda_1 T} - 1)}{\lambda_2 (e^{\lambda_1 T} - 1) - \lambda_1 (e^{\lambda_2 T} - 1)} \quad \text{w} \quad b = \frac{\delta \lambda_1 \lambda_2 (e^{\lambda_1 T} - e^{\lambda_2 T})}{\lambda_2 (e^{\lambda_1 T} - 1) - \lambda_1 (e^{\lambda_2 T} - 1)},$$

то согласно (6) $v_{k+1}=av_k+b$, $k\in Z_+$. Заметим, что $a\neq 1$, поскольку в противном случае имели бы $\lambda_1=\lambda_2$, а это не так в рассматриваемом случае. Поэтому из предыдущей рекуррентной формулы для v_{k+1} легко находим, что $v_{k+1}=a^{k+1}v_0+b(a^k+a^{k-1}+...+1)=a^{k+1}v_0+b(a-1)^{-1}(a^{k+1}-1)$, а так как в силу постановки задачи $v_0=0$, то $v_{k+1}=\dot{x}((k+1)T)=b(a-1)^{-1}(a^{k+1}-1)$.

Вычислим теперь значение u_k управления. Из формулы (5) находим: $k\delta = x_k(kT) = \Delta^{-1}\Delta_1 + \Delta^{-1}\Delta_2 + \alpha^{-1}u_k$, откуда следует $u_k = \alpha \cdot (k\delta - \Delta^{-1}(\Delta_1 + \Delta_2))$, или, подставляя в это равенство выражения для Δ_1 , Δ_2 и Δ , получаем:

$$u_{k} = \alpha \delta k - \frac{\alpha \delta(\lambda_{2} - \lambda_{1})}{\lambda_{2}(e^{\lambda_{1}T} - 1) - \lambda_{1}(e^{\lambda_{2}T} - 1)} - \frac{\alpha(e^{\lambda_{1}T} - e^{\lambda_{2}T})}{\lambda_{2}(e^{\lambda_{1}T} - 1) - \lambda_{1}(e^{\lambda_{2}T} - 1)} \cdot v_{k}. \tag{7}$$

Поэтому если обозначить не зависящие от k величины:

$$c = -\frac{\alpha \delta(\lambda_2 - \lambda_1)}{\lambda_2(e^{\lambda_1 T} - 1) - \lambda_1(e^{\lambda_2 T} - 1)} \quad \text{if} \quad d = -\frac{\alpha (e^{\lambda_1 T} - e^{\lambda_2 T})}{\lambda_2(e^{\lambda_1 T} - 1) - \lambda_1(e^{\lambda_2 T} - 1)},$$

то $u_k = \alpha \delta k + c + dv_k$, и поэтому вследствие найденного выше выражения для v_k находим $u_k = \alpha \delta k + c + db(a-1)^{-1}(a^k-1)$, т.е. u_k — сумма линейной $\alpha \delta k + c - db(a-1)^{-1}$ и показательной $db(a-1)^{-1}a^k$ функций, $k \in \mathbb{Z}_+$.

Теорема в случае вещественных различных корней характеристического уравнения доказана. Случай вещественных совпадающих корней рассматривается точно так же. Случай же комплексно-сопряженных корней сводится к рассмотренному случаю вещественных различных корней с помощью следующего рассуждения. В случае комплексно-сопряженных корней общее комплекснозначное решение $x_k(\cdot)$ имеет тот же вид (3) с тем лишь отличием, что корни $\lambda_{1,2}$ – комплексные. Поэтому если $r_k(t)+iw_k(t)=x_k(t)$ – разложение на комплексную и мнимую части решения задачи Коши: $x_k(kT) = k\delta$, $\dot{x}_k(kT) = v_k$, – то поскольку $k\delta_1$, v_k и $\alpha^{-1}u_k$ – вещественные, мнимая часть $w_k(\cdot)$ является решением однородного уравнения $\ddot{w} + \beta \dot{w} + \alpha w = 0$ с нулевыми начальными условиями: $w(kT) = \dot{w}(kT) = 0$. Поэтому в силу единственности решения такой задачи $w(t)\equiv 0$ при $t\in [kT,(k+1)T)$. Следовательно, все вычисления, проведенные в случае вещественных различных корней, не только справедливы в случае комплексно-сопряженных корней, но и формула (5) дает вещественнозначное решение начально-краевой задачи (2_k) (хотя коэффициенты при экспонентах и сами экспоненты мнимые). В частности, формулы (6) и (7) дают значения скорости v_{k+1} и управления u_k (и они, вычисленные по этим формулам, будут вещественными). Нужно лишь найти, при каких μ и ω справедливо неравенство $\Delta \neq 0$, и переписать эти формулы в явном (через μ и ω) виде. Теорема доказана.

Используя доказанную теорему, легко получить решение полной задачи. Так как $\dot{x}(kT)=b(a-1)^{-1}(a^k-1)$, $k\in Z_+$, то малость скорости $|\dot{x}(kT)|$ можно обеспечить лишь в случае, если |a|<1, а |b| достаточно (в нужном смысле) мал. На практике временной интервал движения $x(\cdot)$ всегда ограничен некоторым моментом времени t=mT, $m\in \mathbb{N}$; при этом необходимо, чтобы скорость $\dot{x}(mT)$ в этот момент была нулевой. Из формулы для скорости следует, что это возможно только, если b=0 (и тогда в каждый момент вре-

мени kT, $k \le m$, то скорость будет нулевой). В свою очередь, из формул для b вытекает, что равенство b=0 возможно только в случае комплексносопряженных корней характеристического уравнения и равносильно условию: $\omega=\pi l T^{-1}$, где $l\in \mathbb{Z}\backslash\!\!\backslash\{0\}$, а μ – любое, если $l\equiv 1\pmod{2}$, и μ – любое ненулевое, если $l\equiv 0\pmod{2}$. Отметим также, что только в случае b=0 функция управления имеет постоянный шаг и по оси u.

ЛИТЕРАТУРА

- 1. *Луценко, В.Е.* Электропривод и автоматизация промышленных установок / В.Е. Луценко, В.П. Рубцов // Итоги науки и техники: Электропривод с шаговым двигателем. М.: ВИНИТИ, 1978. 6 т.
- 2. **Аналитическая механика и мехатронные системы перемещений** С.Е. Карпович [и др.]. Мн.: Технопринт, 2004. 187 с.
- 3. **Следящие приводы:** в 3 т. / под ред. Б.К. Чемоданова. М.: Изд-во МГТУ имени Н.Э. Баумана, 1999. Т. 1: Теория и проектирование следящих приводов / Е.С. Блейз [и др.]. 1999. 904 с.

The solution to the problem, appearing with synchronous stepper motor simulation, is described in the article.

Поступила в редакцию 07.02.2007

УЛК 512.542

В.Н. Семенчук

Об одной проблеме в теории формаций конечных групп

В теории конечных групп понятие субнормальной подгруппы играет большую роль. Построенная Виландтом теория субнормальных подгрупп оказала огромное влияние на развитие всей теории конечных групп.

В теории формации обобщением понятия субнормальности является понятие %-субнормальности.

Определение 1. Пусть \S — непустая формация. Подгруппа K группы G называется \S -субнормальной, если либо K = G, либо существует максимальная цепь

$$G = K_0 \supset K_1 \supset ... \supset K_n = K$$

такая, что $(K_{i-1})^{\bar{3}} \subseteq K_i$ для всех i = 1, 2, ..., n.

В монографии Л.А. Шеметкова [1] была поставлена задача о построении теории §-субнормальных подгупп аналогичной теории субнормальных подгрупп.

Им, в частности, в Коуровской тетради [2] была поставлена следующая проблема.

Проблема (Шеметков Л.А. [2]) классифицировать наследственные сверхрадикальные формации.

Напомним определение сверхрадикальной формации.