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1 Introduction 

Necessary optimality conditions were studied in 

numerous works [1, 2, 4-18, 23, 24, 26]. They may 

be first-order or second-order, according to the use 

of derivatives in its formulation. First-order 

necessary optimality condition at a given feasible 

point are usually formulated as the Kuhn-Tucker 

necessary condition which requires the existence of 

Lagrange multipliers at a local minimizer. The 

second-order conditions in addition to the existence 

of Lagrange multipliers at a given point (such point 

is called by a stationary point) require the positive 

semidefiniteness of the Hessian of the Lagrangian 

function on some cone of critical directions.  

Second-order necessary optimality conditions 

play an important role in the optimization theory. 

This is explained with that the most part of 

numerical optimization algorithms  reduce to 

finding stationary points satisfying first-order 

necessary optimality conditions.  As a rule the 

optimization problems, especially the high 

dimension problems,  have a lot of stationary points  

and it is necessary to  involve second-order 

necessary optimality conditions to delete not 

optimal points. The given problem is closely related 

with the existence of constraint qualifications which 

provide the validity of second-order necessary 

optimality conditions.  

We consider a mathematical programming  

problem (NLP):    

inf( )f y   ,
 

0}

{ | ( ) 0, ,

( ) 0,

m
i

i

y C y R h y i I

h y i I

    

 
, 

where {1,..., }I s , 0 { 1,..., }I s p  , and all 

functions ( ), ( ) 1,...,if y h y i p  are twice 

continuously differentiable.  

Denote by ( ) { | ( ) 0}iI y i I h y     the set of all 

active indices of inequality type constraints at a 

point y C  and introduce the Lagrange function 

( , ) ( ) , ( )L y f y h y     , where 1( ,..., )p   , 

1 )( ,..., ph h h , and the set of Lagrange multipliers 

at a point y C  

( ) { R | ( , ) 0, 0p
y iy L y          

and ( ) 0, }h y i I
i i
   . 

At a point y C   
introduce also the set of 

abnormal Lagrange multipliers  
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the linearized tangent cone 
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and the cones of critical directions  

( ) { ( ) | ( ), 0}C CD y y y f y y     , 

0( ) { ( ), 0, ( )}.m
C iS y y R h y y i I I y          

 

 

2 Problem Formulation 

There are three basic types of second-order 

necessary optimality conditions for the problem  

(NLP), see, e.g. [15].  
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Definition 1. Let 0y C  and  0( )y  .  

1)  We say that the refined second-order necessary 

optimality condition (RSONC) holds at  a point 0y  

iff, for every vector 0( )Cy D y   there exists 

0( )y  such that
2 0, ( , ) 0yyy L y y    . 

2) We say that the weak second-order necessary 

optimality condition (WSONC) holds at  a point 0y   

iff, there exists 0( )y  such that  

2 0, ( , ) 0yyy L y y      for all  vectors 

0( )Cy S y . 

3) We say that the strong second- order necessary 

optimality condition (SSONC) holds at  a point 0y   

iff, for every 0( )y , there holds 

2 0, ( , ) 0yyy L y y     for all 0( )Cy D y . 

The definitions of the strong second-order 

optimality condition is classical; see, e.g., 

[11, 12, 26]. Later this condition was studied in 

[2, 6, 24]. The refined second-order optimality 

condition was introduced in [17], and subsequently 

studied in [8, 21] and in other works. The weak 

second-order optimality condition was studied from 

theoretical and practical points of view in 

[1, 6, 14, 15, 23]. 

However, the necessary optimality conditions are 

valid only under some additional requirements to 

the structure of the set C which are called constraint 

qualifications. The most known constraint 

qualification for the problem (NLP) at a point 
0y C is the linear independence of the gradients 

of active constraints 0 0
0( ), ( )ih y i I y I      

(LICQ). A weaker constraint qualification (MFCQ) 

was introduced by Mangasarian and Fromovitz [22].  

MFCQ   requires that   at a given point 0y C   the 

vectors 0
0( ),ih y i I    are linearly independent 

and there exists a vector 0y  such that 

0 0
0( ), 0, ,ih y y i I      

0 0 0( ), 0, ( ).ih y y i I y     
 

It is known that MFCQ is equivalent to the 

requirement 0
0( ) {0}y  . 

The LICQ and MFCQ conditions are the first-

order constraint qualifications which guarantee the 

validity of the Kuhn-Tucker condition at local 

minimizers in the problem (NLP).  At the same time 

LICQ is also a second-order constraint qualification. 

Since the set of Lagrange multipliers consists of one 

multiplier  ,  the conditions SSONC, RSONC  and 

WSONC coincide in this case. The attraction of 

weaker constraint qualifications lead to not uniquely 

defined situation. It is known that the RSONC 

validity is provided with MFCQ. On the other hand, 

the counterexamples by Arutyunov [5], Anitescu 

[4],  Baccari and Trad [6] show that MFCQ is not a 

second-order constraint qualification and can not 

guarantee the validity of SSONC and WSONC. At 

the same time, different additional conditions to 

MFCQ were introduced in [1, 6, 15] to provide the 

validity of SSONC and WSONC.   

The goal of our paper is to generalize the results 

[2, 24] about strong second-order necessary 

optimality conditions.   

 

 

3 Problem Solution  

Set  0 0
0( ) { | ( ), 0, ,C

m
iK y y R h y y i I        

0 0 0 0( ), 0, ( ), ( ), 0, ( )},i ih y y i I y h y y i I y 
       

where 

0 0 0 0( ) { ( ) | 0}, ( ) { ( ) | 0}.i iI y i I y I y i I y        

    Note that the cone 0( )CK y  depends of a 

multiplier   and, therefore, depends of the goal 

function f .   

Let 0 0
0( ) { ( ) | ( ), 0}C CD y y y f y y     . 

Lemma 1. Let 0( )y  . Then 

0 0 0( ) ( ) ( )C C CK y D y D y    for every 0( )y . 

Thus, if 0( )y  ,   then the SSONC at the point 

0y C   is equivalent to the following condition: for 

every  0( )y , there holds    

2 0, ( , ) 0yyy L y y       for all 0( )Cy K y . 

In [25] it has been proposed the relaxed 

Mangasarian-Fromovitz constraint qualification 

(RMFCQ) which was also studied in [20] (a bit later  

in [3] RMFCQ was introduced under the name the 

constant rank of the subspace component condition).  

Let  0 0 0( ) ( ) ( )aI y I y I y  , where    

0 0 0 0( ) { ( ) | ( ), 0, ( )},a
i CI y i I y h y y y y      

0 0 0( ) ( ) \ ( ).aI y I y I y   

It is known [13] that in order to ( )i I y   belongs to 

the set ( )aI y   it is necessary and sufficient that  

there exists  
0
( )y   such as 0

i
  .  

Definition 2. The relaxed Mangasarian–

Fromovitz constraint qualification (RMFCQ) is 

satisfied at 0y C  
 

if the system of vectors 
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0
0{ ( ), ( )}a

ih y i I I y    has constant rank in a 

neighbourhood of  0y .  

The relaxed Mangasarian-Fromovitz constraint 

qualification is implied with many constraint 

qualifications  including MFCQ [22],  the constant 

rank constraint qualification (CRCQ) [19] and the 

relaxed constant rank constraint qualification 

(RCRCQ) [24].  

It is known [2, 24] that SSONC holds at the point 

of local minimum in the problem (NLP), if this point 

satisfies CRCQ or RCRCQ.   

Set 
0 0 0

0( ) { ( ) | ( ), 0, ( )}D i CI y i I y h y y y D y      

, 0 0 0
#( ) ( ) \ ( )DI y I y I y . 

The following lemma follows immediately from 

the definition of 0( )DI y . 

Lemma 2. Let 0y C . Then there exists a 

vector 0 0( )Cy D y  such that   

0 0 0 0 0 0
0 #( ), 0 ( ), ( ), 0 ( ).i D ih y y i I I y h y y i I y        

 Lemma 3. Assume 0( )y   at 0y C .  Then 

0i   for all 0
# ( )yi I  and every  0( )y . 

Proof.  If  0
# ( )yI  , the assertion is trivial. Let 

0
# ( )yI  . Take any 0( )y . In virtue by 

Lemma 2  there exists a vector 0 0( )Cy D y such 

that         

0

0

0 0
0

0 0
#

( ), 0, ( ),

( ), 0, ( ),

i D

i

h y y i I I y

h y y i I y

    

   
and, 

since 0( )y , obtain   

0
0

00 0

( )

( ) ( ), 0,i i

i I I y

f y h y y
 

      

consequently, 

0
#

00

( )

( ), 0.i i

i I y

h y y


    

This means  0i   for all 0
# ( )i I y .                               

 

Corollary 1. Let 0( )y   at 0y C .  Then 

0 0 0 0
#( ) ( ), ( ) ( )DI y I y I y I y 

      for all 

0( )y .  

Note that in general 0 0( ) ( )DI y I y
   and 

0 0
# ( ) ( ).I y I y      

Denote  

0

0 0 0

0

( )

( ) { ( ) | ( ) 0}

( )

i

y

I y i I y y such that

I y


 





     

 

 Lemma  4.  Assume 0( )y   at 0y C . 

Then the following assertions hold: 

(a) 0 0 0( ) ( ) ( )a
DI y I y I y  ; 

(b) an index ( )i I y  belongs to the set 0( )DI y  iff 

there exists 0( )y  such that  0i  ; 

(c) if 0( )DI y  , then there exists 0( )y such 

that 0 0( ) ( )DI y I y
 . 

Proof.  From Lemma 3 follows 
0 0( ) ( )DI y I y  .  Prove that 0 0( ) ( )a

DI y I y . 

Really, let 0( )ai I y . Then 0( ), 0ih y y    for all 

0( )Cy y and, consequently, for all 0( )Cy D y . 

In this case 0( )Di I y  and, hence, 

0 0( ) ( )a
DI y I y .  Thus, 

0 0 0( ) ( ) ( )a
DI y I y I y   . 

On the other hand,  let 0( )Dk I y . Then 

0( ), 0kh y y    and, therefore, 0( ), 0kh y y     

for every 0( )Cy D y . In this case due to the 

Farkash lemma (see, e.g., [27]) there exist numbers 

0 0   and 0
0 ( )i i I I y    such that 0i   for 

all 0( )i I y , where 0k  , and   

0
0

0 0
0

( )

( ) ( ) 0.i i

i I I y

f y h y 
 

     

Then  either  0 0    and, hence, 0( )ak I y   and 

then there exists 0
0 ( )y  with  0k  , or 

0 0   and for the index  0( )Dk I y there exists 

0( )y  with 0k  . That is, 

0 0( ) ( )ak I y I y   and  

0 0 0( ) ( ( ) ( ))a
DI y I y I y  . This means 

0 0 0( ) ( ) ( )a
DI y I y I y   and the assertion (a) is 

true.                    

Thus, ( )i I y  belongs to 0( )DI y  iff there exists  

0 0
0 ( ) ( )y y    such that  0i  . Suppose 

that for all 0( )y    we have  0i     for any 

0( )i I y  and at the same time there exists 

0
0 ( )y   with 0i  where 0( )i I y .   

However,  0
0 ( )y  satisfies the inclusion 

0 0 0
0( ) ( ) ( )y y y   . Then  0( )y  has at least 

one element   with 0i  . This means that 

0 0( ) ( )aI y I y  and , consequently, the index 

( )i I y  belongs to 0( )DI y  iff there exists  
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0( )y   such that  0i  . That is, the assertion 

(b) holds        

If 0( )DI y  , then due to (b) for every 

0( )Dk I y there exists ( ) 0( )k y  such that  

( ) 0k
k    and  

0
0

0 ( ) 0

( )

( ) ( ) 0k
i i

i I I y

f y h y
 

    , 

where  ( ) 0k
i   for all 0

# ( )i I y  due to Lemma 3.   

Denote 0( )DI y q .  Then 

0 0
0

0 0
0

0 ( ) 0

( ) ( )

0 ( ) 0

( ) ( )

0 ( ) ( )

( ) ( ) ( )

D

D

k
i i

k I y i I I y

k
i i

i I I y k I y

q f y h y

q f y h y





  

  

    

   

 

 

. 

Set 
0

1 ( )

( )D

k
i

k I y

q 



   and obtain from the last 

equality that 

0
0

0 ( ) 0

( )

( ) ( ) 0k
i i

i I I y

f y h y
 

    , 

 where 0i    for all 0( )Di I y  and 0i   for all 

0
# ( )i I y .          

Consider the lower tangent cone to the set  С  at 
0y C :   

       
0 0

0 0( ) { | 0 ( ) [0, ]}.m
CT y y R a number t such that y ty o t C t t        

             

Note that 0( )CT y  is a closed cone.        

Denote    
0 0 0

0

0 0
#

( ) { | ( ), 0 ( ),

( ), 0 ( )}

m
C i D

i

W y y R h y y i I I y

h y y i I y

      

   

. 

From Lemma 2  follows that  
0 0 0

0( ) { | ( ), 0 ( )},m
C i DaffW y y R h y y i I I y      

 
0 0 0

0

0 0
#

( ) { | ( ), 0 ( ),

( ), 0 ( )}.

m
C i D

i

riW y y R h y y i I I y

h y y i I y

      

   

Lemma 5. The following equalities are valid: 

 (a) 0 0 0( ) ( ) { | ( ), 0}C CD y W y y f y y     ; 

  (b) 0 0 0( ) ( ) { | ( ), 0}C CriD y riW y y f y y     ; 

  (c) if 0( )y  , then 0 0( ) ( )C CW y D y . 

Proof.  (a) If 0( )Cy D y , then     

0( ), 0f y y   ,

0 0 0
0( ), 0, ( ), ( ), 0,i ih y y i I y h y y i I         

Therefore,  
0( ), 0f y y   ,  

0 0 0 0
0 #( ), 0 ( ), ( ), 0 ( )i D ih y y i I I y h y y i I y        

and, consequently, 
0 0( ) { | ( ), 0}Cy W y y f y y     .  

On the other hand, if 
0 0( ) { | ( ), 0}Cy W y y f y y     , then 

0 0 0 0
0 #( ), 0 ( ), ( ), 0 ( )i D ih y y i I I y h y y i I y        

 

and, hence, the vector y  satisfies the following 

conditions   
0( ), 0f y y   ,

0 0 0
0( ), 0, ( ), ( ), 0,i ih y y i I y h y y i I         

This means that 0( )Cy D y .  

(b)  Due to Lemma 2  there exists a vector  
0 0( )Cy D y  such that 

0( ), 0f y y   ,  

0 0 0 0 0 0
0 #( ), 0 ( ), ( ), 0 ( )i D ih y y i I I y h y y i I y        

 

Therefore, 0 0 0( ) { | ( ), 0}Cy riW y y f y y     . 

Thus, 0 0( ) { | ( ), 0}CriW y y f y y     .  

Then in virtue by Theorem 6.5 [27]  
0 0 0( ) ( ) { | ( ), 0}C CriD y riW y y f y y     . 

(c)  Assume 0( )y . Then for any 0( )Cy W y . 

Since due to Lemma 3 0i   for all 0
# ( )i I y , the 

last equality can be rewritten in the form   

0
0

0 0

( )

( ) ( ), 0.

D

i i

i I I y

f y h y y
 

      

Then, taking into account the definition of  0( )CW y , 

obtain 0( ), 0f y y   . Thus, 

0 0( ) { | ( ), 0}Cy W y y f y y     , consequently, 

0( )Cy D y and 0 0( ) ( )C CW y D y . The inclusion 

0 0( ) ( )C CD y W y   follows from (a).  

Definition  3.  The critical regularity condition 

(CRC) holds at  0y C  iff  0( )y    and 

0
0{ ( ), ( )}i Drank h y i I I y const    in a 

neighbourhood of 0y . 

From Lemma 5 follows this definition can be 

formulated in the following equivalent form.  

Definition  3a.  The critical regularity condition 

(CRC) holds at  0y C  iff 0( )y    and  

Advances in Mathematics and Statistical Sciences

ISBN: 978-1-61804-275-0 142

Би
бл
ио
те
ка

 БГ
УИ
Р



 0
0( ), ( )irank h y i I I y const      in a 

neighbourhood of 0y . 

Note that CRC always holds if CRCQ [19] or 

RCRCQ [24] holds. 

Lemma 6. Suppose that critical regularity 

condition holds at 0y C . Then  0 0( ) ( )C CW y T y  

and for every 0( )Cy riW y  there exist a twice 

continuously differentiable function  ( )r t  and a 

number 0 0t   such that  ( ) / 0r t t   as 0t    and  

0( ) ( )y t y ty r t C       for all 0[0, ]t t ,  

( ( )) 0ih y t    0
0 ( )Di J I I y      for all 

0 0( , )t t t  .  

Proof. Let 0( )Cy riW y .  Denote 

2 0
0( , )J I y y I 

 
where 

2 0 0 0( , ) { ( ) | ( ), 0}iI y y i I y h y y     .  Then for 

every  m-vector function  r(t) such that  ( ) / 0r t t   

as 0t     there exists a number 0 0t   such that  

0( ( )) 0ih y ty r t       for all  2 0\ ( , )i I I y y  and 

all 0(0, )t t .   

First of all note that that the rank of the Jacobi 

matrix for the system of functions  0( )ih y ty r    

i J  with respect to ( , )r t   coincides with the rank 

of the Jacobi matrix of this system with respect to 

r . Suppose that the rank of the Jacobi matrix of the 

system 0( )ih y ty r     i J  with respect to  r  at 

the point  ( , ) (0,0)r t   is equel to l .   Since for 

0( )Cy riW y   the set 2 0( , )I y y  coincides with 

0( )DI y , then due to CRC the rank of this matrix is 

constant in some neighbourhood of the point (0,0) .  

Let J l q  . Then (see, e.g. [28], p.504) without 

loss of generality one can assume that in this 

neighbourhood   l   functions of the system (suppose 

that these are 1,..., lh h ) are independent and the 

others depend of them, that is 

1 1 11 ( ,... ),..., ( ,... )ql l l q lh h h h h h    , where 

0 0
1(0,...,0) ( ( ),..., ( )) 0i i lh y h y    for 1,...,i q    

and 1,..., q   are twice continuously differentiable  

in some neighbourhood of  0 0
1( ( ),..., ( ))lh y h y . 

Then in a neighbourhood of (0,0)  the system of 

equations  

1 0( ) 0h y ty r   ,…., 0( ) 0l qh y ty r     

is equivalent to the system 

1 0( ) 0h y ty r   , …., 0( ) 0lh y ty r   .  

Then due to the implicit function theorem (see 

[28], p.488) the given system defines in some 

neighbourhood of (0,0)  
an implicit twice 

continuously differentiable function ( )r r t  such 

that   (0) 0r  , 
1

0
(0) lim ( ) 0

t
r t r t


   .  

Thus, for every 0( )Cy riW y  there exist a 

number  0 0t   and  twice continuously 

differentiable function ( )r r t  such that   

( ) / 0r t t   as 0t  , 0( ) ( )y t y ty r t C       for 

all 0[0, ]t t  and  ( ( )) 0ih y t    0
0 ( )Di J I I y      

for all 0 0( , )t t t  .  Then  0 0( ) ( )C CriW y T y  and, 

consequently, 0 0( ) ( )C CW y T y .    

The theorem below generalizes the results [2,24].    

Theorem 1. Let a point 0y C  satisfy the 

critical regularity condition and be a local solution 

of the problem (NLP). Then SSONC holds at this 

point. 

Proof.   Consider any multiplier 0( )y  and 

take any vector 0( )Cy riD y .  Due to Lemma 5  

0 0( ) ( )C CriD y riW y . Therefore, according to 

Lemma 6 there exist a twice continuously 

differentiable function  ( )r t  and a number 0 0t   

such that  ( ) / 0r t t  as 0t  , 

0( ) ( )y t y ty r t C       for all 0[0, ]t t  and  

( ( )) 0ih y t    0
0 ( )Di J I I y      for all 

0 0( , )t t t  .  Since ( )y t C  for all 0[0, ]t t  and  

0y C  is the point of local minimum, then  

0 2 2 0

0 2

2 2 0 0 2

1
( ( )) ( (0)) ( ), { , ( )

2

( ), (0) } ( )

1
{ , ( ) ( ), (0) } ( ) 0,
2

f y t f y t f y y t y f y y

f y r o t

t y f y y f y r o t

        

   

        

consequently,   

2 0 01
, ( ) ( ), (0) 0

2
y f y y f y r             (1) 

On the other hand,   0 0( ) ( )DI y I y
  due to 

Corollary 1 and, therefore, for all  0 0( , )t t t   the 

following identity  

0
0

1( )

( ( )) ( ( )) 0

D

p

i i i i

ii I I y

h y t h y t 
 

    

holds. Then  

0 0

1 1

0 ( ( )) { ( ) ( ),
p p

i i i i i i

i i

h y t h y t h y y  
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2 2 0 0 21
[ , ( ) ( ), (0) ]} ( ),

2
i i i it y h y y h y r o t          

consequently,                                                      

2 0

1

0

1

1
, ( )

2

( ), (0) 0

p

i i

i

p

i i

i

y h y y

h y r









   

   





 (2) 

Combining  (1) and (2) , obtain 

2 0 2 0

1

, ( ) , ( ) 0,
p

i i

i

y f y y y h y y


              

that is   
2 0, ( , ) 0yyy L y y      

for any 0( )Cy riD y  and, hence, for any 

0( )Cy D y . 

Since 0 0 0( ) ( ) ( )C C CD y D y K y   due to Lemma 

1, obtain the assertion of the theorem.       

Corollary  2. Let a point 0y C  
be  a local 

solution of the problem (NLP) and satisfy RCRCQ. 

Then  SSONC holds at this point. 

Corollary  3. Assume that a point 0y C  is a 

local solution of the problem (NLP), 0( )y    

and  the vectors  0 0
0( ) ( )ih y i I I y    are 

linearly independent. Then  SSONC holds at this 

point. 

 

 

4 Conclusions 

In the paper the notion of the critical regularity has 

been introduced for the problems of nonlinear 

programming and the strong second-order necessary 

optimality conditions were proved.  These necessary 

conditions generalize the second-order necessary 

conditions [1, 24]. 
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