2016

Доклады БГУИР

УДК 538.945

ПАРАМЕТРИЧЕСКИЙ СПИН-ВЕНТИЛЬНЫЙ ЭФФЕКТ В СТРУКТУРАХ NB/HO

В.Н. КУШНИР

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 2 декабря 2015

В формализме уравнений диффузионного предела микроскопической теории сверхпроводимости дана трактовка результатов экспериментов по исследованию спинвентильного эффекта в эпитаксиальных структурах Nb/Ho; установлена причина «квазиметаллического» поведения их критических зависимостей.

Ключевые слова: спиновый переключатель, сверхпроводимость, ферромагнетизм, слоистые структуры, уравнения Узаделя.

Введение

Эффект «спинового вентиля» (SV) в структурах сверхпроводник(S)/ферромагнетик(F) состоит в зависимости критической температуры сверхпроводящего состояния от взаимного направления магнитных моментов ферромагнитных слоев [1-6]. Это означает возможность реализации переходов между состояниями с нулевым и ненулевым сопротивлением, т.е. достижения идеального гигантского магниторезистивного эффекта [6]. Наиболее простой системой для наблюдения эффекта SV является трехслойная структура типа F1/S/F2, в которой магнитные моменты F-слоев могут быть направлены параллельно (P) или антипараллельно (AP) друг другу. Использование этих структур в спинтронике сопряжено с решением следующей проблемы: разность, ΔT_c , между критическими температурами T_{cAP} и T_{cP} структуры, находящейся, соответственно, в АР и Р магнитных состояниях, должна превышать ширину сверхпроводящего резистивного перехода; критическая температура, T_{cP} или T_{cAP} , должна быть достаточно высока (>2 К) [1–7]. Данная проблема впервые была решена авторами работы [8] с эффектом 0,03 К при величине T_c ~ 2,7 К. В недавних экспериментах на структуре Ho/Nb/Ho был достигнут эффект $\Delta T_c = 0.4 \text{ K} (T_c \sim 3 \text{ K})$ при *P*–*AP* переключении намагниченностей, и 0.8 K, если один из слоев Но переходит в спиральное магнитное состояние (Sp) [9]. Между тем, более значимым представляется другой результат работы [9], а именно, измеренные критические зависимости $T_{cP}(d), T_{cAP}(d)$ (d – толщина слоя гольмия с регулируемым направлением магнитного момента). Их необычность состоит в «квазиметаллическом» характере, т.е. подобии характеристикам S/N структур (N – нормальный металл). На этом основании делается вывод о том, что слои гольмия являются почти нормальным металлом, обладая почти нулевой эффективной обменной энергией, E_{ex} ~ 10 K [9]. Между тем известно, что монокристаллический гольмий при низких температурах (T < 21 K) является геликоидальным ферромагнетиком с магнитным моментом 10,34µв на атом [10, 11], и обменной энергией 0,84–1,1 эВ в мультидоменном состоянии [11]. Противоречие объясняется тем, что происходит усреднение обменного поля, действующего на сверхпроводящий конденсат, поскольку слой используемого эпитаксиального ниобия характеризуется длиной когерентности, много большей размеров доменов [9]. В данной работе дано объяснение экспериментальных результатов, полученных авторами [9]. При этом вначале анализируются зависимости критической температуры от толщины S-слоя, d_s, измеренные для двухслойной эпитаксиальной структуры Nb/Ho [12], так как на них в значительной степени основаны выводы работы [9].

Анализ зависимости критической температуры от толщины сверхпроводящего слоя двухслойной эпитаксиальной структуры Nb/Ho

Оценим, в рамках формализма уравнений Узаделя [13], значение обменной энергии гольмия, а также других параметров системы, на основе характеристики $T_c(d_S)$ (рис. 1), измеренной на серии эпитаксиальных структур Nb(d_S)/Ho(d) [12], включающей образцы с толщинами слоев d = 12 нм и $d_S = 15-20$ нм. На рис. 1 длины когерентности приведены в нанометрах.

Рис. 1. Экспериментальная (символы взяты из работы [12]) и теоретические (линии) зависимости критической температуры от толщины S-слоя для эпитаксиальных структур Nb/Ho

В диффузионном приближении микроскопической теории сверхпроводимости S/F система характеризуется следующими эффективными параметрами [14]: критической температурой T_S массивного сверхпроводника, длинами когерентности ξ_S и ξ_F , обменной энергией E_{ex} , а также параметрами S-F интерфейса – отношением нормальных низкотемпературных удельных сопротивлений S- и F-слоя, $p = \rho_S / \rho_F$, и коэффициентом квантовомеханической прозрачности Т (применение диффузионного приближения обосновано самосогласованностью результатов.) В работах [9, 12] приводится значение критической температуры массивного ниобия, $T_s = 9,2$ K, и данные для определения параметра p, а именно, удельные сопротивления пленки Nb толщиной 30 нм ($\rho_s = 3,6$ мкОм·см) и пленки Ho толщиной 100 нм ($\rho_F = 95$ мкОм·см). Эффективная критическая температура T_S на самом деле достаточно легко оценивается по асимптотическому поведению характеристики $T_c(d_s)$ (хотя измерен только ее участок). Поскольку в эксперименте используются пленки ниобия толщиной 15-30 нм, для которых наблюдается умеренный рост удельного сопротивления с уменьшением толщины, измеренное его значение для $d_s = 30$ нм можно принять в качестве нижней границы величины ρ_s . Напротив, для гольмия удельное сопротивление получено в асимптотической области (оно согласуется с данными эксперимента группы Sosnin и др. [11]), хотя в эксперименте по измерению характеристики T_c(d_s) используется пленка Но толщиной 12 нм. Это означает, что для эффективной величины р можно с достаточно большой уверенностью принять интервал допустимых значений [0,02, 0,15]. В соответствии с общепринятой методикой, величина ξ_s определяется из измерений верхнего перпендикулярного критического поля, а параметр ξ_F – из анализа характеристики T_c(d) [14]; такие данные в работе [12] отсутствуют. По скоростям Ферми, $v_{F,Nb} = 0,27 \cdot 10^6$ м/с [14], $v_{F,Ho} = 1,6 \cdot 10^6$ м/с [9, 11], определяем верхнюю границу коэффициента прозрачности, $\mathcal{T}: \mathcal{T}_{max} \approx 0,5.$

Таким образом, все шесть параметров системы оказываются в той или иной степени неопределенными и, следовательно, подгоночными. Моделирование характеристики $T_c(d_s)$, на основе точного решения уравнений Узаделя [13, 14], привело к следующим результатам.

1. Для любого $E_{ex} \ge 50$ К существует теоретическая кривая, которая воспроизводит экспериментальную характеристику при разумных значениях материальных параметров. При этом, вплоть до значений $E_{ex} \sim (3-4) \cdot 10^3$ К, всегда существует область значений параметров, для которых выполняются условия диффузионного предела.

2. Для малых значений обменной энергии ($E_{ex} \leq 10^3$ K) существуют кривые параметров ξ_s и *p*, моделирующих зависимость $T_c(d_s)$ с одной и той же погрешностью. Для каждой кривой параметрического вырождения $\xi_s(p)$ существует кривая $\mathcal{T}(\xi_F)$, движение вдоль которой оставляет практически неподвижными зависимость $\xi_s(p)$ и характеристику $T_c(d_s)$.

3. Не найдены удовлетворительные аппроксимации экспериментальных характеристик теоретическими кривыми $T_c(d_s)$ при значениях длин когерентности ξ_s и $\xi_F > 20$ нм.

Примеры теоретических зависимостей $T_c(d_S)$, рассчитанных при различных значениях параметра E_{ex} , показаны на рис. 1. Приведенным теоретическим кривым соответствуют значения $\xi_S \sim 10$ нм и $\xi_F \sim 5-9$ нм.

Зависимости критической температуры от толщины ферромагнитного слоя трехслойной эпитаксиальной структуры Ho/Nb/Ho

Зависимости $T_c(d)$ для трех магнитных состояний (*P*, *AP*, *Sp*) измерены авторами работы [9] на серии эпитаксиальных структур $Ho(d_0)/Nb(d_S)/Ho(d)$, включающей 3 образца с фиксированными толщинами $d_0 = 10$ нм и $d_s = 20$ нм, и толщинами *d*, равными 10 нм, 40 нм и 70 нм. Не преследуя цель моделирования экспериментальных характеристик, покажем, как возникает их квази-*S*/*N* поведение. Для этого обратим внимание на то, что при малых значениях отношения нормальных удельных сопротивлений *S*- и *F*- слоев, оказывается существенной зависимость длины свободного пробега Λ и, соответственно, удельного сопротивления тонкой пленки от ее толщины, $\rho(d) = \rho_{\infty} \Lambda_{\infty}/\Lambda(d)$, где функцию $\Lambda(d)$ определим формулой [15, 16]:

$$\Lambda(d) = \Lambda_{\infty} \left\{ 1 + \frac{3}{2} \frac{\Lambda_{\infty}}{d} \left[E_3 \left(\frac{d}{\Lambda_{\infty}} \right) - E_5 \left(\frac{d}{\Lambda_{\infty}} \right) - \frac{1}{4} \right] \right\}.$$
(1)

Здесь $E_n(x)$ – интегральная показательная функция [17], а величины Λ_{∞} и ρ_{∞} характеризуют слой бесконечной толщины.

Заметим, что формула (1) получена в рамках простейшей модели рассеяния электронов на дефектах и на поверхности материала [15], однако доставляет очень хорошие аппроксимации зависимости $\rho(d)$, хотя параметр Λ_{∞} оказывается нефизичным. Например, для ниобия, использовавшегося в структурах системы Nb/PdNi [18], $\Lambda_{\infty} \approx 130$ нм, а для пленки PdNi $\Lambda_{\infty} \sim 60$ нм, что на порядок выше реальных значений. Полагаем, что формулой (1) можно воспользоваться и в рассматриваемом случае.

Учитывая (1) и используя результаты анализа характеристики $T_c(d_S)$, рассчитаем критические температуры $T_{cP}(d)$ и $T_{cAP}(d)$ структуры Ho(d_0)/Nb(d_S)/Ho(d). Примем $d_S = 30$ нм, что достаточно близко к критическому значению, и выберем произвольный набор параметров, соответствующий характеристике $T_c(d_S)$, например, $E_{ex} = 2000$ K, $T_S = 9,2$ K, p = 0,05, $\xi_S = 10,8$ нм, $\xi_F = 9$ нм. Расчеты в предыдущем разделе велись при фиксированном значении параметра p, которое соответствует толщине F-пленки d = 12 нм. Здесь принимаем $p(d) = \rho_S / \rho_F(d) = p_{\infty} \Lambda(d) / \Lambda_{\infty}$. Выберем асимптотическое значение параметра p достаточно произвольно: $p_{\infty} = 0,09$, тогда $\Lambda_{\infty} = 21$ нм (заметим, что удельное сопротивление, например, пленки PdNi уменьшается в 2,6 раза при изменении ее толщины от 12 нм до 100 нм [18]). На рис. 2 представлен результат расчета критических температур с учетом зависимости параметра p от толщины F-слоя. Для сравнения на этом же рисунке показаны зависимости $T_{cP}(d)$, $T_{cAP}(d)$, рассчитанные при тех же параметрах, но при фиксированном значении параметра p, и кроме того, приведен участок зависимости критической температуры от толщины N-слоя S/N структуры Nb/Cu/Nb [14].

Из рис. 2 можно увидеть, что зависимости $T_{cP}(d)$, $T_{cAP}(d)$, рассчитанные для системы Nb/Ho без учета дрейфа удельного сопротивления *F*-слоя, – типичны для *S/F* структуры с сильным ферромагнетиком. Как только учитывается дрейф, их форма меняется и становится подобной характеристике системы Nb/Cu [14]. При этом величина спин-вентильного эффекта растет при увеличении толщины *F*-слоя. В частности, при $d \sim 40-90$ нм $\Delta T_c \sim 0,4-0,6$ нм. Эти значения, так же как и значения критических температур, близки к экспериментальным [12].

Рис. 2. Критические температуры структуры $F(d_0)/S/F(d)$, рассчитанные со значением параметра $E_{ex} = 2000 \text{ K}$ с учетом и без учета дрейфа параметра p (линии). Измеренные (символы) и рассчитанные критические температуры структуры Nb/Cu/Nb [14]

Обсуждение результатов

1. Те же зависимости $T_{cP}(d)$, $T_{cAP}(d)$ можно воспроизвести и с очень малым значением параметра обменной энергии, порядка 5–20 К (как в работе [9]); остальные параметры системы принимают формальные значения: для обеспечения медленного затухания величину ξ_F выбираем примерно такой же, как для структуры Nb/Cu, $\xi_F \sim \xi_N \sim 35$ нм, нужную степень подавления критической температуры можно получить выбором большого значения длины когерентности ξ_S (например, 32 нм, как в работе [12]). Однако при этом мы вынуждены допустить, что обменное поле неким образом усредняется, хотя эпитаксиальный гольмий, в соответствии с измерениями [12], обладает почти 100%-й остаточной планарной намагниченностью. Более того, в соответствии с выводами в работе [12], для сильного подавления критической температуры необходимо выполнение соотношения $\xi_S \ll w_d (w_d - размеры доменов размагниченного ферромагнетика), а в соответствии с выводами [9], должно выполняться условие <math>\xi_S \gg w_r (w_r - размеры доменов ферромагнетика с остаточной планарной намагниченностью).$

В предлагаемой здесь трактовке наблюдаемое квази-*S*/*N* поведение характеристики $T_c(d)$ обязано как раз большим значениям обменной энергии и удельного сопротивления *F*-материала. Благодаря малому значению характерной длины затухания сверхпроводящих корреляций в ферромагнетике, $\zeta_F \sim E_{ex}^{-1/2}$ (в приведенном примере $\zeta_F \sim 1,5$ нм), очень быстро достигается асимптотическое поведение параметра порядка. Далее, при увеличении толщины *F*-слоя, каждое значение T_c при $d \gg \zeta_F$, по сути, является асимптотическим, испытывающим, однако, дрейф изза дрейфа параметров системы. Ввиду больших значений ρ_{Ho} эффект наблюдаем, поскольку разница между температурами T_S и $T_c(d \to \infty)$ порядка $p\sqrt{E_{ex}} \sim \sqrt{E_{ex}}/\rho_{Ho}$. На первый взгляд, критическое состояние обеих систем, Nb/Ho и Nb/Cu, должно одинаково реагировать на дрейф материальных параметров в силу подобия их характеристик $T_c(d_F)$. Однако это не так, поскольку для структуры Nb/Cu зависимости $T_c(d_N)$ и $\rho(d)$ выходят на асимптотическое поведение при значения толщин одного порядка.

2. Из вышеприведенных расчетов следует вывод о двух различных процессах распространения куперовских пар из *S*-слоя в *F*-слой, проявляющихся одинаковыми характеристиками $T_c(d)$.

Первому из них (гипотетическому) соответствуют малое и фиксированное значение параметра p, малое значение обменной энергии, $E_{ex} \sim k_{\rm B}T_c$, и очень большие длины ξ_s , ξ_F . Малое и фиксированное значение p определяет неизменную и слабую интенсивность процесса диффузии куперовских пар из S-слоя в F-слой, что стимулирует сверхпроводимость; с другой стороны, большие значения ξ_s приводят к резкому ослаблению сверхпроводящих корреляций в F-слое, что способствует подавлению сверхпроводимости; большие значения ξ_F означают, в силу соотношения $E_{ex} < 2\pi k_{\rm B}T_c$, медленное уменьшение критической температуры при увеличении толщины F-слоя.

Другому процессу, реализующемуся в рассматриваемой системе, соответствует малая, но возрастающая с толщиной *d* величина *p*, большое значение обменной энергии и умеренные значения величин ξ_S , ξ_F . Большая обменная энергия, E_{ex} , определяет сильное подавление сверхпроводимости в *F*-слое, так что сверхпроводящий конденсат проникает на глубину всего в несколько атомных слоев; с увеличением толщины *F*-слоя глубина проникновения куперовских пар, ~ ζ_F , почти не изменяется, но, в силу уменьшения сопротивления *F*-слоя, интенсивность процесса диффузии через *S*-*F* границу и, соответственно, разрушения куперовских пар возрастает, что приводит к падению критической температуры. В данном случае на эксперименте мы могли бы наблюдать парадокс: чем больше обменная энергия, тем отчетливей проявляется квази-*S*/*N* поведение на зависимости *T_c*(*d*). Очевидно, увеличение интенсивности процесса диффузии приводит и к росту величины спин-вентильного эффекта – в *F*1/*S*/*F*2 структуре, находящейся в *AP* состоянии, возрастает частота образования куперовских пар электронами, проникающими в *S*-слой из слоев *F*1 и *F*2.

Заключение

На основе точного решения уравнений Узаделя проведен анализ экспериментальных результатов исследования спин-вентильного эффекта на эпитаксиальных структурах Nb/Ho. В результате проведенного анализа установлено, что наблюдаемый «квазиметаллический» характер зависимостей критической температуры от толщины ферромагнитного слоя, а также величина эффекта обусловлены дрейфом параметров структуры при изменении толщины ферромагнитного слоя.

Автор выражает признательность проф. Куприянову М.Ю. и проф. Прищепе С.Л. за полезные обсуждения.

PARAMETRIC SPIN-VALVE EFFECT IN THE NB/HO STRUCTURES

V.N. KUSHNIR

Abstract

In the formalism of equations of the diffusive limit of the microscopic theory of superconductivity, the results of experimental investigations of the spin-valve effect in epitaxial Nb/Ho structures are explained. The mechanism of the "quasi-metal" behavior of their critical dependences is established.

Keywords: spin switch, superconductivity, ferromagnetism, multilayered structures, Usadel equations.

Список литературы

- 1. Oh S., Youm D., Beasley M.R. // Appl. Phys. Lett. 1997. Vol. 71. P. 2376–2378.
- 2. Tagirov L.R. // Phys. Rev. Lett. 1999. Vol. 83, № 10. P. 2058–2061.
- 3. Buzdin A.I., Vedyayev A.V., Ryzhanova N.V. // Europhys. Lett. 1999. Vol. 48, № 6. P. 686–691.
- 4. Buzdin A. I. // Rev. Mod. Phys. 2005. Vol. 77. P. 935–976.
- 5. Кушнир В.Н., Прищепа С.Л. // Вестник Фонда фундамент. исслед. 2011. №1/11. С. 101–120.
- 6. Кушнир В.Н., Прищепа С.Л. // Вестник Фонда фундамент. исслед.. 2015. №2/15. С. 165–192.
- 7. Кушнир В.Н. // Докл. БГУИР. 2013. №8(78). С. 40-47.
- Aarts J., Attanasio C., Bell C. et al. // Nanoscience and engineering in superconductivity series "NanoScience and Technology" / Eds. V. Moschalkov, R. Woerdenweber, W. Lang. Springer Berlin: Heidelberg. 2010. P. 323–347.
- 9. Gu Y., Halasz G., Robinson J. W. A. et al. // Phys. Rev. Lett. 2015. Vol. 114. P. 067201(1-4).
- 10. Koehler W.C., Cable J.W., Wilkinson M.K. et al. // Phys. Rev. 1966. Vol. 151. P. 414-424.
- 11. Sosnin I., Cho H., Petrashov V. T. et al. // Phys. Rev. Lett. 2006. Vol. 96, P. 157002(1-4).
- 12. Gu Y., Robinson J. W. A., Bianchetti M. et al. // APL Materials. 2014. Vol. 2. 046103(1-6).
- 13. Usadel K. // Phys. Rev. Lett. 1970. Vol. 25.P. 507-509.
- 14. Кушнир В.Н. Сверхпроводимость слоистых структур. Минск, 2010.
- 15. Movshovitz D., Wiser N. // Phys. Rev. B. 1990. Vol. 41. P. 10503-10509.
- 16. Brammertz G., Golubov A.A., Verhoeve P., et al. // Appl. Phys. Lett. 2002. Vol. 80. P. 2955–2958.
- 17. Справочник по специальным функциям / Под ред. М. Абрамовица и И. Стиган. М., 1979.
- 18. Кушнир В.Н., Прищепа С.Л. // Докл. НАН Беларуси. 2012. Т. 56, № 1. С. 60-64.