ИССЛЕДОВАНИЕ ХАОТИЧЕСКОЙ ДИНАМИКИ ОБЪЕМНЫХ ЛАЗЕРОВ НА СВОБОДНЫХ ЭЛЕКТРОНАХ (ОЛСЭ) ПОД ВЛИЯНИЕМ ВНЕШНИХ ЭЛЕКТРОМАГНИТНЫХ ВОЛН

С.Н. СЫТОВА

Институт ядерных проблем Белорусского государственного университета ул. Бобруйская, 11, г. Минск, 220030, Республика Беларусь sytova@inp.bsu.by

Проведено исследование хаотической динамики в объемном лазере на свободных электронах (ОЛСЭ) под влиянием внешних падающих на сеточный резонатор ОЛСЭ электромагнитных волн. Показана возможность изменения типа и величины амплитуды динамического решения, а также подавления паразитных мод в ОЛСЭ.

Ключевые слова: объемный лазер на свободных электронах, хаос, нелинейная динамика.

ОЛСЭ – электронный прибор, работающий на излучении релятивистских электронов, движущихся в двумерных (трехмерных) пространственно-периодических средах (резонаторах, естественных или искусственных электромагнитных (фотонных) кристаллах) в синхронизме с одной или несколькими электромагнитными волнами, для которых выполняются условия дифракции Брэгга в резонаторе вблизи области вырождения корней дисперсионного уравнения. Принципы функционирования ОЛСЭ, разработанные и экспериментально подтвержденные в [1–2], справедливы для всех частотных диапазонов и различных механизмов спонтанного излучения. Моделированию нелинейной стадии работы различных типов ОЛСЭ посвящены работы [3–4] (см. ссылки).

Рис. 1. Схема двухволнового ОЛСЭ в геометрии Брэгга

В [3-4] было впервые продемонстрировано, что при прохождении пучков заряженных частиц через двумерные (трехмерные) пространственно-периодические среды генерируемое квазичеренковское параметрическое излучение является хаотическим. То есть, ОЛСЭ является динамической хаотической системой, характеризуемой различными динамическими режимами работы. Источником хаоса в ОЛСЭ является сложная природа взаимодействия пучка электронов с электромагнитным полем в условиях объемной распределенной обратной связи, реализующейся в резонаторе при выполнении условий динамической дифракции, что приводит к неоднородному распределению интенсивности электромагнитного поля и ведет к значительным возмущениям в движении электронов и соответственно к многообразию динамики генерации в ОЛСЭ.

Рассмотрим теоретическую модель ОЛСЭ, лежащую в основе его моделирования (см. рис. 1). Электронный пучок со скоростью **u** «падает» на полубесконечную пространственно-периодическую мишень (резонатор, фотонный кристалл) толщиной *L*. Электроны пучка начинают испускать спонтанное излучение, которое при одновременном выполнении условий дифракции и условий синхронизма преобразуется в коллективное квазичеренковское излучение с частотой ω и волновыми векторами **k** и **k**_т = **k** + τ , где τ – вектор обратной решетки мишени (волны *l* и *2*). Система (рис.1) имеет вид:

$$\frac{\partial E}{\partial t} + \gamma_0 c \frac{\partial E}{\partial z} + 0.5i \,\omega lE - 0.5i \,\omega \,\chi_\tau E_\tau = j \Phi \int_0^{2\pi} \frac{2\pi - p}{4\pi} \left(e^{-i\theta(t,z,p)} + e^{-i\theta(t,z,-p)} \right) dp,$$

$$\frac{\partial E_\tau}{\partial t} + \gamma_1 c \frac{\partial E_\tau}{\partial z} + 0.5i \,\omega \,\chi_{-\tau} E - 0.5i \,\omega l_1 E_\tau = 0,$$

$$\frac{\partial^2 \theta(t,z,p)}{\partial z^2} = \frac{e \Phi}{m \gamma^3 \omega^2} \left(k_{0z} - \frac{\partial \theta(t,z,p)}{\partial z} \right)^3 \operatorname{Re} \left(E e^{i\theta(t,z,p)} \right), \quad (1)$$

$$\frac{\partial \theta(t,0,p)}{\partial z} = k_{0z} - \omega/u, \quad \theta(t,0,p) = p, \quad E(0,t) = E_0(t), \quad E_\tau(L,t) = E_1(t),$$

где $t > 0, z \in [0, L], p \in [-2\pi, 2\pi]$. E(z, t) и $E_t(z, t)$ – амплитуды проходящей и дифрагированной волн (волны l и 2 рис.1). $\theta(t, z, p)$ – фаза электронов относительно электромагнитной волны. $\gamma_{0,1}$ – направляющие косинусы векторов **k** и **k**_t. Φ , l_0 , l_1 , l – системные параметры. γ – Лоренц-фактор электронного пучка. δ – отклонение от точного выполнения условия синхронизма. $\varepsilon_0 = 1 + \chi_0$ – диэлектрическая проницаемость среды, $\chi_0, \chi_{\pm \tau}$ – коэффициенты ее разложения в ряд по векторам обратной решетки.

 $E_0(t)$ и $E_1(t)$ в (1) определяют граничные условия для волн E(z,t) и $E_t(z,t)$ и представляют собой внешние падающие на резонатор волны (волны 3 и 4 рис.1). Они обе могут быть равны 0 и тогда при превышении пороговых условий система работает в режиме генерации, либо быть отличными от нуля. Анализ результатов моделирования для различных случаев $E_0(t)$ по сравнению со случаем $E_0 \equiv 0$ является целью данной работы. По результатам численного моделирования построены параметрические карты перехода к хаосу для случаев $E_0 \equiv 0$; $E_0 \equiv 100$; $E_0(t) = 100 + 20 \sin(3t) + 20a$, где a случайное число в интервале [0,1], генерируемое в каждый момент времени. На данных картах демонстрируется изменение типов динамических решений для различных E_0 , в том числе вместо высокоамплитудных хаотических режимов местами получены низкоамплитудные режимы и наоборот, а также существенное увеличение по амплитуде электромагнитных волн на выходе из резонатора по сравнению со случаем $E_0 \equiv 0$. Показано, как для режима хаотической перемежаемости, представляющего собой случайные переключения между несколькими аттракторами, отвечающими разным модам в системе, внешний сигнал возбуждает сильнее одну из таких мод и решение кардинально меняет свой вид. Продемонстрировано проявление одного из свойств ОЛСЭ – подавления паразитных мод в системе, выражающееся в подавлении хаотической составляющей, вносимой генератором случайных чисел.

Список литературы

- 1. Baryshevsky V.G., Feranchuk I.D. // Physics Let. A. 1984. Vol.102. P. 141–144.
- 2. Baryshevsky V.G. High-energy nuclear optics of polarized particles. World Press. 2012.
- 3. Батраков К.Г., Сытова С.Н. // ЖВМ и МФ. 2005. Т. 45, № 4. С. 690–700.
- 4. Сытова С. Н. // Известия вузов. ПНД. 2012. Т. 20, № 6. С.124–135.