Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/37247
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKostyukova, O. I.-
dc.contributor.authorTchemisova, T. V.-
dc.date.accessioned2019-11-14T13:22:03Z-
dc.date.available2019-11-14T13:22:03Z-
dc.date.issued2019-
dc.identifier.citationKostyukova, O. I. Algorithmic determination of immobile indices in convex SIP problems with polyhedral index sets / O. I. Kostyukova, T. V. Tchemisova // INFOR : Information Systems and Operational Research. – 2019. – P. 1-20. – DOI : 10.1080/03155986.2018.1553754.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/37247-
dc.description.abstractThe concepts of immobile indices and their immobility orders are objective and important characteristics of feasible sets of semi-infinite programming (SIP) problems. They can be used for the formulation of new efficient optimality conditions without constraint qualifications. Given a class of convex SIP problems with polyhedral index sets, we describe and justify a finite constructive algorithm (algorithm DIIPS) that allows to find in a finite number of steps all immobile indices and the corresponding immobility orders along the feasible directions. This algorithm is based on a representation of the cones of feasible directions in the polyhedral index sets in the form of linear combinations of extremal rays and on the approach proposed in our previous papers for the cases of immobile indices’ sets of simpler structures. A constructive procedure of determination of the extremal rays is described, and an example illustrating the application of the DIIPS algorithm is provided.ru_RU
dc.language.isoenru_RU
dc.publisherTaylor & Francisru_RU
dc.subjectsemi-infinite programmingru_RU
dc.subjectconvex programmingru_RU
dc.subjectimmobile indexru_RU
dc.subjectimmobility orderru_RU
dc.subjectcone of feasible directionsru_RU
dc.subjectextremal rayru_RU
dc.titleAlgorithmic determination of immobile indices in convex SIP problems with polyhedral index setsru_RU
dc.typeСтатьяru_RU
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Kostyukova_Algorithmic.pdf152.45 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.