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Abstract. A system of N interacting objects with internal degrees of

freedom is considered. Derivation of system of equations for the descrip-

tion of two interacting objects with spin is given. Relations between the

parameters describing subsystems and the parameters describing the

system as a whole are obtained. In particular, relation between ener-

gies of subsystems and energy of system is found, on the basis of which
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functions of time, so that interaction between objects is reduced to per-

manent energy exchange.
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1 Introduction

Solution of the two-body problem has exclusive meaning for decoding the structure of
interactions between both macroscopic bodies and elementary particles. The unique way
to determine it by experiment is a study the scattering of particles on each other at various
energies, theoretical description of which is a problem of two particles. A motion of cosmic
objects (such as satellites, planets, stars, etc.) or a motion of two charged particles also
reduces to the two-body problem (classical Kepler-Coulomb problem), which a lot of
works is dedicated to beginning from Newton’s formulation of the World Gravity Law,
Hooke’s formulation of elastic deformations and Coulomb’s law of electrostatic interaction
of charges. Laws of Newton, Hooke and Coulomb made possible to solve a bulk of physical
problems and give rise to a great many discoveries. The up-to-date enunciating of a
mathematical problem of two bodies interacting via central potential, one can find in the
book [1].

The two-object problem, i.e. determination of their trajectories, can be solved in
principle, if interaction between them is known. On the other hand, Bertrand sets up an
inverse problem of determining interaction with respect to known trajectories of motion
of bodies ( [2]). As it is known, according to the Bertrand’s theorem only two types of
central potentials, of Coulomb and harmonic type, give closed circular or elliptic orbits
(see, e.g., [3]). However Bertrand’s problem is solved in the assumption that interaction
between objects depends only on relative distance between them and is central, meanwhile
as early as in 19 century it was considered that interaction should depend also from relative
velocity and acceleration. On this way Weber has developed well-working electrodynamics
which after creation by Maxwell of the theory of electromagnetic field undeservedly has
been removed aside. Weber has obtained expression for the force of interaction between
charged particles depending on the relative velocity and acceleration [4]- [7]. Special and
general relativity have given a new push to a consideration of the two-body problem. In
particular, Sommerfeld has considered the relativistic problem in approximation when
one of masses is infinitely great [8]. Darwin has obtained expression for interaction force
between charged particles using retarded potential in non-relativistic approximation of
relativistic Lagrangian [9]. Later on Darwin’s Lagrangian was used in quantum mechanical
calculations.

Besides dependence on the relative velocities and accelerations, interaction between
physical objects depends also on mutual orientation of their spins originally interpreted
classically as angular velocity of rotation ( [10], p. 123), and now as proper moments of
momenta. In the bound state the spins of interacting objects are arranged up in definite
way. For example, it is established that in a deuteron the spins of proton and neutron
are oriented in one direction. Spins of electrons in Cooper pairs have opposite orientation
whereas electrons and positrons in positronium can have both the same orientations of
spins (orthopositronium), and opposite orientations (parapositronium).

By far not simple question about interaction between objects can be clarified by means
of studying of the equations of motion taking into account all parameters of objects. To
clarify all aspects of a problem we will start from the classical equations of motion of a
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material point with internal degrees of freedom, obtained in [11]- [13]. The aim of this
paper is to obtain a system of equations of motion, describing non-relativistic motion of
two interacting spinning objects. Having non-relativistic classical theory it is easy later
on to pass on to relativistic and quantum variants, using a correspondence principle.
Equations, which describe any system of N interacting objects with internal degrees of
freedom, are considered in §2. These equations are applied to system of two objects in §3.
Unlike Newton’s mechanics here it is supposed that additivity of a momentum does not
take place, i.e. momentum of the system differs from the sum of momenta of subsystems
by ”the momentum excess” which disappears if interaction does not depend on relative
speed. Center-of-mass variables and relative variables are introduced in §4, as well as
relations are established between quantities describing a motion of the system as a whole
and relative motion of subsystems. The equations of motion of the center of mass of
the system and of relative motion of subsystems are obtained, which contain undefined
scalar and pseudo-vector functions describing interaction. For a concrete definition of
these functions and establishing of the spin equations of motion in §5 the moments of
momentum of the system and its subsystems are considered. Relations between total
moments of momentum and angular momenta and spins of the system and its subsystems
are obtained. Equations of motion of spins are considered in §6. Finally, §7 has to do
with a question of correlation of the energy of system with energies of its subsystems.

2 System of N objects with internal degrees of

freedom

It is shown in Refs. [11]- [13] that the equation of motion of a mass-point with internal
degrees of freedom whose position is defined by a radius-vector RK and which interacts
with external fields, can be presented in the form

dPK

dt
= FK , (1)

where K = 1, 2, ..., N is subscript labeling a mass-point,

PK = mKVK = m0KVK −
∂UK

∂VK

+ [SK ×WK ] , (2)

is dynamical momentum of K-th point, m0K is a naked mass of the point without of
taking into account an interaction and interior structure, mK is an effective mass of the
point,

FK = −
∂UK

∂RK

+ [CK ×VK ] , (3)

is a force acting onto K-th point,

UK = UK(t,RK,VK ,WK ,ẆK, ...,W
(N)
K ) = U0K − ([RK ×VK ] ·CK) , (4)
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is a potential function of K-th point, which generally may be function of coordinates RK ,
velocities VK = ṘK and accelerations W(m) = dmWK/dt

m, m = 0, 1, 2, ..., n, of both
points.

A mass-point with internal degrees of freedom should be considered as non-inertial
extended object with internal structure, defined by pseudo-vectors SK and CK , which
also depend on the interaction of the object with external fields. For the system of
N objects, interacting both with external fields and with each other, functions UK and
pseudo-vectors SK , CK may be represented as sums

UK = Uext
K +

N
∑

J=1

U int
JK , (5)

SK = S0K + Sext
K = S0K + Sext

0K +
N
∑

J=1

Sint
JK , (6)

CK = C0K +Cext
K = C0K +Cext

0K +
N
∑

J=1

Cint
JK , (7)

Here functions Uext
K , Sext

0K , C
ext
0K are specified by interaction of objects with external fields,

whereas U int
JK , S

int
JK , C

int
JK are specified by interaction of objects J and K with each other.

Pseudo-vectors

Sext
K = Sext

0K +
N
∑

J=1

Sint
JK , (8)

Cext
K = Cext

0K +

N
∑

J=1

Cint
JK , (9)

may depend on the same variables as potential function (4). Internal parameters S0K

and C0K are specified exclusively by internal structure of objects and do not depend on
external variables. In Ref. [13] it is shown that for free objects (mass-points with internal
degrees of freedom) they are expressed in terms of spin, being integral characteristic of
this structure, as follows

S0K = ςKsK , (10)

C0K = −Ω2
0KS0K = −ςKΩ

2
0KsK , (11)

where ςK is a constant with dimensionality of inverse square of velocity, Ω0K is a cyclic
frequency of Zitterbewegung of K-th object. If ςK = −c−2

K , where cK is some velocity
the equation of motion for free K-th object is reduced to non-relativistic limit of Frenkel-
Mathisson-Weyssenhoff equation ( [14]- [16]). If one adopt ςK = +c−2

K , the corresponding
equation will describe a particle with opposite direction of spin, i.e. antiparticle. One
may assume further that all constants cK are equal among themselves and represent
the velocity of light. However it should be noticed that constant with dimensionality of
velocity is proportional to product r0KΩ0K , where r0K is a radius of Zitterbewegung of
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K-th object. If cK = r0KΩ0K , the center of mass of freeK-th object in its center-of-inertia
reference frame moves along circle round the direction of motion of its center of inertia
with velocity cK . It is reasonable to expect the relations (10)-(11), including the cases
S0K = 0 (cK = ∞) and C0K = 0 (Ω0K = 0), will be valid also for interacting objects.

Along with (1) it is necessary to write down the equations of motion for spins

dsK
dt

= [ΩNK(t)× sK ] +mK(t) = σNK(t)[NK × sK ] +mK(t) , (12)

where ΩNK(t) are angular velocities of precession of spins sK round directions of vectors
NK(t), which can be the same vector for the system of objects, for example, the vector
of velocity of the center of inertia of the system. mK(t) has meaning of the moment of
force acting onto extended object relative to its center of mass. One can try to define
the structure of mK(t) from analysis of interaction of internal substance of the extended
object with external fields, which induces possible movement of this substance inside the
object.

A geometrical structure of the object, on the one hand, is specified by distribution of
its internal substance in some spatial volume V which can change due to the interaction,
and on the other hand, itself determines an interaction of the object with external fields.
There are only two variants of consideration of extended object: either as a set (discrete
or continuous) of structureless mass-points, in the same way as it is usually made in the
mechanics of absolutely rigid or deformable body, or as a set of mass-points with internal
degrees of freedom, i.e. similar objects. Then by definition expression for spin of K-th
object looks like

sK = j0Kω0K =

NK
∑

i=1

[r
(K)
i × π

(K)
i ] , (13)

for discrete set of points, or

sK = j0Kω0K =

∫

VK(t)

[ρK × πK(ρK)]dVK , (14)

for continuous set of points. Here r
(K)
i and ρK are radius-vectors of internal points relative

to the center of mass of K-th object,

π
(K)
i = m

(K)
i v

(K)
i = m

(K)
i

dr
(K)
i

dt
, (15)

is momentum of i-th point with effective mass m
(K)
i and velocity v

(K)
i in the case of

discrete set of structureless points,

πK(ρK) =
dµK

dV
υK(ρK) =

dµK

dV

dρK

dt
, (16)

is momentum density of elementary mass dµK , moving with velocity υK(ρK) inside of
K-th object, representable as continuous distribution of structureless points. In the case
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when the object with internal degrees of freedom is a set of the points also endowed
with internal degrees of freedom, expressions for π

(K)
i and πK(ρK) should have the same

structure as in (2). This variant unjustifiably complicates the description of extended
objects, but it may be relevant for the description of larger composite objects.

Differentiation of (13) and (14) with respect to time and comparison of result with
(12) will give the possibility to determine the structure of mK(t). However at first it is
necessary to contemplate the two-object problem, and then the problem of many objects
with internal degrees of freedom.

3 System of two objects with internal degrees of

freedom

In the system of two interacting mass-points, each of which possesses internal degrees
of freedom, pseudo-vectors SK and CK , K = 1, 2, due to (6), (7), (10) and (11) are
represented like

S1 = ς1s1 + Sext
01 + Sint

21 , S2 = ς2s2 + Sext
02 + Sint

12 , (17)

C1 = −ς1Ω
2
01s1 +Cext

01 +Cint
21 , C2 = −ς2Ω

2
02s2 +Cext

02 +Cint
12 . (18)

Momenta of these points with respect to (2), (5), (17) look like

P1 = m01V1 −
∂(Uext

1 + U int
21 )

∂V1

+ [(ς1s1 + Sext
01 + Sint

21 )×W1] = m1V1 , (19)

P2 = m02V2 −
∂(Uext

2 + U int
12 )

∂V2
+ [(ς2s2 + Sext

02 + Sint
12 )×W2] = m2V2 , (20)

where m01, m1 and m02, m2 are the naked and effective masses of constituents, respec-
tively. Forces, acting upon the points, with respect to (3), (5), (18) are

F1 = −
∂(Uext

1 + U int
21 )

∂R1

+ [(−ς1Ω
2
01s1 +Cext

01 +Cint
21 )×V1] , (21)

F2 = −
∂(Uext

2 + U int
12 )

∂R2
+ [(−ς2Ω

2
02s2 +Cext

02 +Cint
12 )×V2] . (22)

System as a whole, as well as their constituents, is non-inertial object with internal
degrees of freedom, whose dynamical momentum should have the structure similar to (2),
i.e.

P = m0V −
∂U

∂V
+ [(ςs + Sext)×W] = mV , (23)

wherem0 andm are the naked and effective mass of the system, respectively, and potential
function U and pseudo-vector Sext have to determined exclusively by interaction of the
system as a whole with external fields.
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In Newton’s classical mechanics, where potential function does not depend on veloc-
ities, momentum is additive quantity (see, e.g., [17]). It means that the momentum of
the system is determined as sum of momenta of its subsystems P = P1 + P2. However
experimental data of nuclear and elementary particle physics testify to an absence of
the momentum additivity. For example, momentum of nucleus considered as a system
of interacting nucleons does not equal to sum of momenta of nucleons. Due to strong
interaction arises a mass excess. Therefore the composition law for momenta should be
written down in the form

P = P1 +P2 +∆P , (24)

where ∆P can be named similar to the mass excess as ”momentum excess”. In general
case we shall consider momentum excess to be caused not only by the interaction of
constituents of system with each other, but also their interaction with external fields.
Therefore we suppose

∆P = ∆Pext +∆Pint . (25)

Momentum (24) should satisfy to the Second Newton’s Law

dP

dt
= F = F1 + F2 , (26)

the right hand side of which includes the resultant of all forces, acting onto points of the
system. This resultant force should be of the same structure as expression (3), i.e.

F = −
∂U

∂R
+ [(−ςΩ2

0s+Cext)×V] . (27)

All quantities entering into expressions (23), (27), characterize system as a whole and
can be expressed through corresponding partial quantities. Spin of the system s should
also satisfy to equation of type (12), or

ds

dt
=

σP(t)

m
[P× s] +m(t) . (28)

Thus, on the one hand, the system of two objects with internal degrees of freedom is
described by system of six equations (1) and six equations (12), which, on the other hand,
should be equivalent to three equations (26) and three equations (28). The remaining six
equations should describe internal movements in the system. These equations we shall
consider in the separate section.

4 Relations between quantities, describing

the system and its subsystems

Quantities m0, m, U , ς, Ω0, s, S
ext, Cext, entering into (23), (27), may be determined, if

partial quantities m0K , mK , UK , ςK , Ω0K , sK , S
ext
0K , C

ext
0K , entering into (1), are known.
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To find a connection between all these quantities we transform system of equations (1)
and (12) in standard way by introducing the relative variables

r = R2 −R1 , v = V2 −V1 , w(m) = W
(m)
2 −W

(m)
1 = dmw/dtm , (29)

and the center-of-mass variables

R =
m01R1 +m02R2

m0
, V =

m01V1 +m02V2

m0
,W(m) =

m01W
(m)
1 +m02W

(m)
2

m0
, (30)

where
m0 = m01 +m02 . (31)

We define also the internal variables, namely, radius-vectors, velocities and accelera-
tions of points relative to the center of mass

rK = RK −R , vK = VK −V , w
(m)
K = W

(m)
K −W(m) . (32)

From (29)-(32) we obtain

r1 = R1 −R = −
m02

m0
r , r2 = R2 −R =

m01

m0
r , (33)

m01r1 +m02r2 = m01R1 +m02R2 −m0R = 0 , (34)

as well as corresponding relations for velocities and accelerations. If radius-vector R(t) of
the center of mass and relative radius-vector r(t) are known, then radius-vectors RK(t)
of points in absolute reference frame can be easily determined from (33).

For arbitrary functions f(R1, ...;R2, ...), depending on R1, R2 and their derivatives
with respect to time we have

∂f

∂R1

=
m01

m0

∂f

∂R
−

∂f

∂r
,

∂f

∂R2

=
m02

m0

∂f

∂R
+

∂f

∂r
, (35)

and corresponding derivatives with respect to V1, V2, ... .
Substitution of quantities RK(t), VK(t), WK(t), obtained from (33) into (24)-(26)

and comparison of the result with (23), (27), give rise to equations, connecting quantities
relating to the whole system with partial ones

∂U

∂R
=

1

m0

∂[m01(U
ext
1 + U int

21 ) +m02(U
ext
2 + U int

12 )]

∂R
+

+
∂(Uext

2 + U int
12 − Uext

1 − U int
21 )

∂r
+

+[(ς1Ω
2
01s1 + ς2Ω

2
02s2 − ςΩ2

0s+Cext −Cext
01 −Cint

21 −Cext
02 −Cint

12 )×V]−

−
1

m0
[(m02ς1Ω

2
01s1 −m01ς2Ω

2
02s2 −m02C

ext
01 −m02C

int
21 +m01C

ext
02 +m01C

int
12 )× v] , (36)
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∂U

∂V
=

1

m0

∂[m01(U
ext
1 + U int

21 ) +m02(U
ext
2 + U int

12 )]

∂V
+

+
∂(Uext

2 + U int
12 − Uext

1 − U int
21 )

∂v
−∆Pext −∆Pint+

+[(ςs− ς1s1 − ς2s2 + Sext − Sext
01 − Sint

21 − Sext
02 − Sint

12 )×W]+

+
1

m0
[(m02ς1s1 −m01ς2s2 +m02S

ext
01 +m02S

int
21 −m01S

ext
02 −m01S

int
12 )×w] . (37)

For free system which is not undergo to action of external fields it is necessary to put
U = Uext

1 = Uext
2 = 0, ∆Pext = 0, Sext = Sext

01 = Sext
02 = 0, Cext = Cext

01 = Cext
02 = 0. It

is reasonably to admit also that U int
12 and U int

21 depend only on relative variables whereas
Uext
1 and Uext

2 do not depend on them. Since they are scalar functions depending on
relative variables we have

U int
12 = U int

12 ≡ U int . (38)

Then (36), (37) reduce to equations

[(ς1Ω
2
01s1 + ς2Ω

2
02s2 − ςΩ2

0s−Cint
21 −Cint

12 )×V]−

−
1

m0
[(m02ς1Ω

2
01s1 −m01ς2Ω

2
02s2 −m02C

int
21 +m01C

int
12 )× v] = 0 , (39)

∆Pint = [(ςs− ς1s1 − ς2s2 − Sint
21 − Sint

12 )×W]+

+
1

m0
[(m02ς1s1 −m01ς2s2 +m02S

int
21 −m01S

int
12 )×w] , (40)

where one may get rid of dependence on the center-of-mass variables when assuming

ςs = ς1s1 + ς2s2 + Sint
21 + Sint

12 , (41)

Cint
21 +Cint

12 = ς1Ω
2
01s1 + ς2Ω

2
02s2 − ςΩ2

0s =

= ς1(Ω
2
01 − Ω2

0)s1 + ς2(Ω
2
02 − Ω2

0)s2 − Ω2
0(S

int
21 + Sint

12 ) . (42)

These relations follow from the Galileo’s relativity principle, according to which equations
(39), (40) should be covariant relative to Galileo’s transformations, so that in the center-
of-mass reference frame (V = 0, W = 0) they take the form

[(m02ς1Ω
2
01s1 −m01ς2Ω

2
02s2 −m02C

int
21 +m01C

int
12 )× v] = 0 , (43)

∆Pint =
1

m0
[(m02ς1s1 −m01ς2s2 +m02S

int
21 −m01S

int
12 )×w] . (44)

It is naturally to accept equation (43) to be valid in the case of interaction of the system
with external fields. Then substitution of (41)-(44) in (36), (37) leads to equations

∂U

∂R
=

1

m0

∂(m01U
ext
1 +m02U

ext
2 )

∂R
+ [(Cext −Cext

01 −Cext
02 )×V]+
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+
1

m0
[(m02C

ext
01 −m01C

ext
02 )× v] , (45)

∂U

∂V
=

1

m0

∂(m01U
ext
1 +m02U

ext
2 )

∂V
+ [(Sext − Sext

01 − Sext
02 )×W]+

+
1

m0
[(m02S

ext
01 −m01S

ext
02 )×w]−∆Pext . (46)

To get rid of relative variables it is sufficient to put

Sext
0K =

m0K

m0
(Sext + ΣWK) , Cext

0K =
m0K

m0
(Cext + ΓVK) , (47)

where functions or constants Sext, Cext, Σ and Γ are specified by external fields. It follows
from (47)

Sext = Sext
01 + Sext

02 , Cext = Cext
01 +Cext

02 . (48)

Now equations (45), (46) take simple form

∂U

∂R
=

∂

∂R

m01U
ext
1 +m02U

ext
2

m0

, (49)

∆Pext =
∂

∂V

(

m01U
ext
1 +m02U

ext
2

m0
− U

)

. (50)

It follows from (49)

U(t;R,V, ...) =
m01

m0
Uext
1 +

m02

m0
Uext
2 + u(t;V,W, ...) , (51)

where functions Uext
K are equal to U(t;R,V, ...) up to arbitrary function u(t;V,W, ...),

determined from initial and boundary conditions

Uext
K (t;R,V, ...) = U(t;R,V, ...) + u(t;V,W, ...) . (52)

In accordance to (50) it is connected with external momentum excess

∆Pext(t;V,W, ...) =
∂u(t;V,W, ...)

∂V
, (53)

which hence is determined by dependence of initial and boundary conditions from the
velocity of the center of mass of the system. If such dependence is absent, then we have
∆Pext(t;W, ...) = 0.

Thus, equation of motion (26) of the system as a whole takes the following form

d

dt

[

m0V −
∂U

∂V
+ [(ς1s1 + ς2s2 + Sint

21 + Sint
12 + Sext)×W]

]

=

= −
∂U

∂R
− Ω2

0[(ς1s1 + ς2s2 + Sint
21 + Sint

12 )×V] + [Cext ×V] , (54)
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where functions U = U(t;R,V, ...), Sext = Sext(t;R,V, ...), Cext = Cext(t;R,V, ...), as
well as Sint

12 (r,v, ...) and Sint
21 (r,v, ...), specified by both structure of constituents and their

spins s1 and s2, should be determined in advance.
Let us define now the relative momentum which in view of relations (47), (52) is

p = P2 −P1 =
m02 −m01

m0

[

m0V −
∂(U + u)

∂V
+ [Sext ×W]

]

+

[(ς2s2 − ς1s1 + Sint
12 − Sint

21 )×W]− 2
∂U int

∂v
+

2m01m02

m2
0

(

m0v + [Sext ×w]
)

+ (55)

+ς[s×w]−
1

m0

[(m01ς1s1 +m02ς2s2 +m01S
int
21 +m01S

int
12 )×w]

and due to (1) and (19)-(22) satisfies to equation

dp

dt
= F2 − F1 . (56)

Thus, system of six equations (54) and (56) describes six translational degrees of
freedom of the system.

For free system (Uext
1 = Uext

2 = 0, Cext = 0, Sext = 0) the relative momentum equals

p = (m02 −m01)V + [(ς2s2 − ς1s1 + Sint
12 − Sint

21 )×W] +
2m01m02

m0

v−

−2
∂U int

∂v
+

1

m0
[(m02ς1s1 +m01ς2s2 +m02S

int
21 +m01S

int
12 )×w] , (57)

whence it is obvious that it depends not only on the state of movement of system con-
stituents, but also on the state of motion of the center of mass of the system. Equations
of motion (54) and (56) in this case look like

d

dt
(m0V + ς[s×W]) + ςΩ2

0[s×V] = 0 , (58)

d

dt

[

(m02 −m01)V + [(ς2s2 − ς1s1 − Sint
21 + Sint

12 )×W] +
2m01m02

m0
v

]

−

−
d

dt

[

2
∂U int

∂v
− ς[s×w] +

1

m0
[(m01(ς1s1 + Sint

21 ) +m02(ς2s2 + Sint
12 ))×w]

]

=

= −2
∂U int

∂r
+ [(ς1Ω

2
01s1 − ς2Ω

2
02s2 −Cint

21 +Cint
12 )×V]− ςΩ2

0[s× v]+

+
1

m0
[(m01(ς1Ω

2
01s1 −Cint

21 ) +m02(ς2Ω
2
02s2 −Cint

12 ))× v] . (59)

In (55)-(59) scalar function U int(r,v, ...) and pseudo-vector functions Sint
12 (r,v, ...),

Sint
21 (r,v, ...), Cint

12 (r,v, ...) and Cint
21 (r,v, ...), satisfying to relations (41), (42), remain

indeterminate. They may be obtained from additional equations, following from spin
equations of motion, which will be considered below.
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5 Moment of momentum of the system

As it was told above, each of two constituents of the system may be considered either as
a system of structureless mass-points or as a system of mass-points with internal degrees
of freedom. In this paragraph we deal with first variant, when for every i-th point in (1)
it is necessary to put Si = 0, Ci = 0 (i = 1, 2, ..., N1, N1 + 1, N , N = N1 +N2 is amount
of points in the whole system, NK is amount of points in K-th subsystem). Then, if
potential function Ui depends on the velocity of the point, the momentum (2) and force

(3) take standard form Pi = miVi, Fi = −∂Ui/∂Ri, where mi ≡ m
(K)
i , Ri ≡ R

(K)
i and

Vi ≡ V
(K)
i = dR

(K)
i /dt are effective mass, radius-vector and velocity of i-th mass-point

of K-th subsystem relative to the origin of coordinates, respectively.
Both system and its subsystems are characterized by the moments of momentum

relative to origin J, J1, J2. Then, assuming the moment of momentum to be additive
quantity, we have

J =

N
∑

i=1

[Ri ×Pi] =

N
∑

i=1

mi[Ri ×Vi] = J1 + J2 , (60)

where

JK =

NK
∑

i=1

m
(K)
i [R

(K)
i ×V

(K)
i ] . (61)

In each of two subsystems one may determine the center of mass defined by radius-
vector

RK =
1

mK

NK
∑

i=1

m
(K)
i R

(K)
i , mK =

NK
∑

i=1

m
(K)
i , (62)

whereas radius-vector of the center of inertia of the whole system is

R =
1

m

N
∑

i=1

miRi =
1

m

(

N1
∑

i=1

m
(1)
i R

(1)
i +

N2
∑

i=1

m
(2)
i R

(2)
i

)

=
m1R1 +m2R2

m
, (63)

where m = m1+m2. Differentiation of (62), (63) with respect to time gives corresponding
relations for velocities and accelerations.

Let’s note here that if potential function U = U(t;R,V, ...) explicitly depends on
time, then effective masses can also depend on time. Hence it follows from (62), (63)

VK =
1

mK

NK
∑

i=1

m
(K)
i V

(K)
i +

1

mK

NK
∑

i=1

ṁ
(K)
i R

(K)
i −

ṁK

mK

RK , (64)

V =
m1V1 +m2V2

m
+

ṁ1R1 + ṁ2R2

m
−

ṁ

m
R . (65)

If we introduce the relative coordinates of the center of inertia of second subsystem
relative to the center of inertia of first subsystem

r21 = R2 −R1 , (66)
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then (63) gives

R1 = R−
m2

m
r21 , R2 = R+

m1

m
r21 . (67)

Substituting (67) in (65) we obtain

V =
m1V1 +m2V2

m
+

m1ṁ2 − ṁ1m2

m2
r21 . (68)

Let r
(K)
i be a radius-vector of i-th point of K-th subsystem relative to its center of

mass MK , ri be a radius-vector of the same point relative to the center of mass M of the
whole system, rK be a radius-vector of the center of mass MK of K-th subsystem relative
to the center of mass M of the whole system, which is determined similar to (62)

rK =
1

mK

NK
∑

i=1

m
(K)
i ri , (69)

Then we have following geometric relations

R
(K)
i = R+ ri = RK + r

(K)
i , (70)

ri = rK + r
(K)
i , (71)

RK = R+ rK . (72)

Differentiation of (69)-(72) with respect to time gives corresponding relations for velocities
and accelerations.

Substituting (70) into (63) we obtain

N
∑

i=1

miri =

N1
∑

i=1

m
(1)
i ri +

N2
∑

i=1

m
(2)
i ri = m1r1 +m2r2 = 0 , (73)

whence it follows

m1v1 +m2v2 +
m1ṁ2 − ṁ1m2

m2
r21 = 0 . (74)

Substitution of (71) into (69) gives respectively

NK
∑

i=1

m
(K)
i r

(K)
i = 0 ,

NK
∑

i=1

(m
(K)
i v

(K)
i + ṁ

(K)
i r

(K)
i ) = 0 . (75)

Now taking into account relations (70) and (75) expressions (61) for partial moments
of momentum look like

JK = JMK + sK = LK + Jint
K + sK , (76)

where

JMK = LK + Jint
K = mK [RK ×VK ] + [RK ×

NK
∑

i=1

m
(K)
i v

(K)
i ] , (77)
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is a moment of momentum of the center of mass of K-th subsystem relative to the origin,

sK =

NK
∑

i=1

m
(K)
i [r

(K)
i × v

(K)
i ] , (78)

is proper moment of momentum (spin) of K-th subsystem (i.e. total moment of momen-
tum of all points of K-th subsystem relative to its center of mass, see formula (13)),

Jint
K = [RK ×

NK
∑

i=1

m
(K)
i v

(K)
i ] , (79)

is a moment of internal momentum ofK-th subsystem relative to the origin of coordinates,
which according to (75) vanishes, if effective masses of points of subsystem do not depend
on time.

Substitution of (72) into (77) gives

JMK = LK + LMK +mK [rK ×V] , (80)

where

LK = mK [R×VK ] + [R×

NK
∑

i=1

m
(K)
i v

(K)
i ] , (81)

is orbital angular momentum of K-th subsystem relative to the origin,

L
(0)
MK = mK [rK × vK ] , (82)

LMK = L
(0)
MK − [rK ×

NK
∑

i=1

ṁ
(K)
i r

(K)
i ] , (83)

are orbital angular momenta of K-th subsystem relative to the center of mass M of the
whole system with and without taking into account of dependence of effective masses on
time, respectively.

Substitution of (76) and (80) into (60) and using relations (73), (74), gives rise to

J = JM1 + s1 + JM2 + s2 = L1 + L2 + LM1 + LM2 + s1 + s2 . (84)

Quantity

L = L1 + L2 = m[R ×V] + [R×

(

N1
∑

i=1

m
(1)
i v

(1)
i +

N2
∑

i=1

m
(2)
i v

(2)
i

)

(85)

represents orbital angular momentum of the system relative to origin of coordinates O,
whereas

s =

N
∑

i=1

[ri × vi] = s1 + s2 + LM1 + LM2 = s1 + s2 +m1[r1 × v1] +m2[r2 × v2] (86)
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is spin, or proper moment of momentum of the system, i.e. total moment of momentum
of all points of the system relative to its center of mass M.

Relative coordinates and velocity of the center of mass of J-th subsystem relative to
the center of mass of K-th subsystem are

rJK = rJ − rK = RJ −RK , vJK = vJ − vK = VJ −VK . (87)

Taking into account relations (73), (74), we obtain from (86) finally

s = s1 + s2 +
m1m2

m
[r21 × v21] . (88)

Comparison of this expression with relation (41) is reduced to relations

Sint
21 + Sint

12 = (ς − ς1)s1 + (ς − ς2)s2 + ς
m1m2

m
[r21 × v21] , (89)

Cint
21 +Cint

12 = (ς1Ω
2
01 − ςΩ2

0)s1 + (ς2Ω
2
02 − ςΩ2

0)s2 − ς
m1m2Ω

2
0

m
[r21 × v21] . (90)

Quantity

l =
m1m2

m
[r21 × v21] (91)

is an orbital angular momentum characterizing the relative motion of subsystems.
Expressions (89)-(91) concern to both objects and are symmetric relative to their

permutation. Therefore Sint
JK and Cint

JK may be represented as sums of symmetric and
antisymmetric terms

Sint
JK =

1

2
(ςJK − ςJ)sJ +

1

2
(ςJK − ςK)sK + ςJK

mJmK

2mJK

[rJK × vJK ] + Sint
[JK] , (92)

Cint
JK =

1

2
(ςJΩ

2
0J − ςJKΩ

2
0JK)sJ +

1

2
(ςKΩ

2
0K − ςJKΩ

2
0JK)sK−

−ςJK
mJmKΩ

2
0JK

mJK

[rJK × vJK ] +Cint
[JK] , (93)

where mJK = mJ +mK , ςK and ςJK are constants associated both with K-th subsystem
and system composed from K-th and J-th subsystem, respectively.

Let’s try to determine antisymmetric terms Sint
[JK] and Cint

[JK] basing on following argu-
ments. In the process of evolution the state of system changes from some initial state to
finite one, in which spins of subsystems sK are oriented relative to each other by some def-
inite way. For example, s2 = +s1, i.e. ∆s = s2−s1 = 0, in finite state of electron-positron
system corresponds to orthopositronium, and at s2 = −s1, i.e. ∆s = s2 − s1 = −2s1, the
finite state is parapositronium. Thus, variation of difference ∆sJK = −∆sKJ = sJ − sK
with time characterizes variation of relative orientation of spin of constituents. From (69),
(78), (83) we obtain

∆sJK = sJ − sK =

NJ
∑

i=1

m
(J)
i [r

(J)
i × v

(J)
i ]−

NK
∑

i=1

m
(K)
i [r

(K)
i × v

(K)
i ] =
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=

NJ
∑

i=1

m
(J)
i [ri × vi]−

NK
∑

i=1

m
(K)
i [ri × vi]−mJ [rJ × vJ ] +mK [rK × vK ] =

= jMJ − jMK − L
(0)
MJ + L

(0)
MK , (94)

where

jMK =

NK
∑

i=1

m
(K)
i [ri × vi] = L

(0)
MK + sK , (95)

is a moment of momentum of K-th subsystem relative to the center of mass M of the
whole system.

We find from (88), (91), (94)

s1 =
s− l−∆s

2
, s2 =

s− l+∆s

2
. (96)

Now, writing down the equation (56) in terms of the relative variables and the center-
of-mass variables and assuming it to be covariant under Galileo transformations, one may
come to conclusion, that following relations

d

dt

[

∂u

∂V
+ ς[s×W]

]

+ ςΩ2
0[s×V] = 0 , (97)

Sint
[21] =

1

2
(ς2s2 − ς1s1) =

ς1 + ς2
4

∆s+
ς2 − ς1

4
(s− l) , (98)

Cint
[21] =

1

2
(ς1Ω

2
01s1 − ς2Ω

2
02s2) =

= −
ς1Ω

2
01 + ς2Ω

2
02

4
∆s +

ς1Ω
2
01 − ς2Ω

2
02

4
(s− l) . (99)

should be fulfilled.
Then the equations of motion (54), (56), describing six translational degrees of free-

dom, will take the following form

dP

dt
+

∂U

∂R
+ ςΩ2

0[s×V]− [Cext ×V] =

=
d

dt

[

m0V −
∂(U + u)

∂V
+ [Sext ×W]

]

+
∂U

∂R
− [Cext ×V] = 0 , (100)

d

dt

[

m01m02

m0

v −
∂U int

∂v
+

1

4
ς[s×w] +

m01m02

m2
0

[Sext ×w]

]

+

+
∂U int

∂r
−

m01m02

m0
[Cext × v] +

1

4
ςΩ2

0[s× v] = 0 , (101)

where the momentum of the system is given by expression (23). Equation (100) shows,
that the system in question moves in such a way as if it has no internal degrees of freedom,
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but interaction with external fields is specified not by potential function U , but function
U + u.

Substitution of relations (88), (92), (98) into (55) gives following expression for the
relative momentum

p =
m02 −m01

m0

[

m0V −
∂(U + u)

∂V
+ [Sext ×W]

]

− 2
∂U int

∂v
+

+
2m01m02

m2
0

(m0v + [Sext ×w]) +
1

2
ς[s×w] = m2VC2 −m1VC1 . (102)

It follows from here that the relative momentum depends on the state of motion not only
of constituents but also of its center of mass.

For a complete solution of the two-body problem the spin equations of motion should
be added to equations (100), (101) that will be considered in the next section.

6 Spin equations of motion

Equations of motion for spins may be written down in accordance with (12) as

dsK
dt

= [ΩV(t)× sK ] +mK(t) , (103)

ds

dt
= [ΩV(t)× s] +m(t) , (104)

d∆s

dt
= [ΩV(t)×∆s] + ∆m(t) , (105)

where ∆m(t) = m2 −m1 6= 0, as the relative direction of spins of interacting subsystems
can change.

On the other hand, differentiation of spin (88) with respect to time gives

ds

dt
=

ds1
dt

+
ds2
dt

+
d

dt

(m1m2

m
[r× v]

)

, (106)

or

m = m1 +m2 +
dl

dt
− [ΩV × l] . (107)

This relation suggests that pseudo-vectors m, mK should have identical structure. Thus
we assume that

m = m1 −
1

2
∆m = m2 +

1

2
∆m = −

dl

dt
+ [ΩV × l] . (108)

Hence, equations of motion (104) may be finally written down in the form

d

dt
(s + l) = [ΩV × (s + l)] , (109)
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whence it follows that pseudo-vector s + l is constant over module. Thus, system of
equations (100)-(101) and (105), (109) is sufficient for description of all movements of
the system of two objects with internal degrees of freedom, where angular velocity of
precession ΩV is constant, if dynamical momentum (23) is conserved.

It is necessary to notice that the equation of motion of spin of the system in the
form (109) can take place only in the case when in the system one may distinguish two
subsystems divided by a relative radius-vector r. If the system is imagined as indivisible
“atomic object, for which introduction of relative variables has no sense, then in the system
of two vector equations, (100)-(101), and two pseudo-vector equations, (105), (109), two
equations, (100) and (109), (with m(t) = 0), are independent, whereas equations (101)
and (105) lose meaning because of ∆s = 0, U int = 0, u(t;V, ...) = 0, m02 = m01, v = 0,
w = 0. In this case spin equation of motion (107) takes the standard form

ds

dt
= [ΩV(t)× s] . (110)

The similar situation takes place for the object represented as a set of noninteracting
mass-points (with or without of internal degrees of freedom). The equations of motion of
such object are (100) and (110).

7 Energy of system

In modern physics the conservation energy law has fundamental meaning. It is shown
in [11]- [13] that possible explicit dependence of potential function on time and acceler-
ations of the higher order leads to violation of this law for separately taken non-inertial
object even if its internal degrees of freedom are not considered. Let us consider a problem
of the energy of the system in question in detail.

If the energy conservation law takes place, but is broken for separately taken object,
it means that the object in question is an open system interacting with its environment.
Increment of energy of the object is compensated by decrease of energy of external medium
so that total energy of object and medium remains constant. These general intuitive
reasoning may be illustrated by example of two interacting objects with internal degrees
of freedom.

For one of two objects, both environment and second object are external. Equations
of motion for objects are given by (1), where expressions for momenta of subsystems
and forces acting on them, are obtained by substitution of expressions (17)-(18), (47),
(52)-(53), (92)-(93), (98)-(99) into (19)-(22). It gives

PK = m0KVK −
∂(U + u+ U int)

∂VK

+ [(
1

2
ςs +

m0K

m0
Sext)×WK ] = mKVK , (111)

FK = −
∂(U + u+ U int)

∂RK

+ [(
m0K

m0
Cext −

1

2
ςΩ2

0s)×VK ] . (112)
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The equation of energy balance, which energy conservation as a special case follows
from, is due to equations of motion (1) which for the system of two objects with interior
degrees of freedom are reduced to equations (97), (100) and (101). All these equations
have identical structure and lead to following equations of energy balance.

It follows from (1)

dEK

dt
=

∂(U + u+ U int)

∂t
+

N
∑

k=0

(
∂(U + u+ U int)

∂W
(k)
K

·W
(k+1)
K ) , (113)

where

EK =
m0KV

2
K

2
+ (VK · [(

1

2
ςs +

m0K

m0
Sext)×WK ]−

−(VK ·
∂(U + u+ U int)

∂VK

) + U + u+ U int , (114)

is total energy of K-th subsystem in absolute reference frame. On account of relations
(33), (35) the energy (114) may be represented as

EK = EMK + E0K , (115)

where

EMK =
m0KV

2

2
+ (V · [(

1

2
ςs +

m0K

m0

Sext)×W]− (V ·
∂(U + u+ U int)

∂VK

)+

+U + u+m0K(V · vK) + (vK · [(
1

2
ςs +

m0K

m0

Sext)×W]+

+(V · [(
1

2
ςs +

m0K

m0
Sext)×wK ]−

m0K

m0
(vK ·

∂(U + u)

∂V
) , (116)

E0K =
m0Kv

2
K

2
+ (vK · [(

1

2
ςs +

m0K

m0

Sext)×wK ]− (−1)K(vK ·
∂U int

∂v
) + U int , (117)

is energy of K-th subsystem in the reference frame of the center of mass of the whole
system. It is obvious that in the center-of-mass reference frame (V = 0, W = 0, ...) the
energy of K-th subsystem is EK = E0K .

On the other hand, equations (97), (100) and (101) lead to

dEν

dt
= −

∂u

∂t
−

N
∑

k=0

(
∂u

∂W(k)
·W(k+1)) , (118)

dE

dt
= −

dEν

dt
+

∂U

∂t
+

N
∑

k=0

(
∂U

∂W(k)
·W(k+1)) , (119)

dEr

dt
=

∂U int

∂t
+

N
∑

k=0

(
∂U int

∂w(k)
·w(k+1)) , (120)

Би
бл
ио
те
ка

 БГ
УИ
Р



19

where on account of (47)-(48)

E =
m0V

2

2
+ (V · [Sext ×W]− (V ·

∂(U + u)

∂V
) + U + u =

=
m0V

2

2
+ (V · [(ςs+ Sext)×W]− (V ·

∂U

∂V
) + U −Eν (121)

is total energy of the system,

Er =
m01m02

2m0

v2 +
ς

4
(v · [s×w]) +

m01m02

m2
0

(v · [Sext ×w])− (v ·
∂U int

∂v
) + U int (122)

is total energy of relative movement in the system,

Eν = ς(V · [s×W] + (V ·
∂u

∂V
)− u (123)

is additional energy arising because of internal degrees of freedom.
It is not difficult to show that total energy (121) is expressed in terms of E1, E2, Eν ,

and Er in the following way

E = µ1E1 + µ2E2 + u− E , (124)

where
µK =

m0m0K

m2
01 +m2

02

, (125)

E =
2m01m02(U + Er) +m2

0u

m2
01 +m2

02

+ U int −
m0(m02 −m01)

m2
01 +m2

02

(V ·
∂U int

∂v
)+

+
ςm2

0

2(m2
01 +m2

02)
(V · [s×W])−

m01m02(m02 −m01)

m0(m
2
01 +m2

02)
(v ·

∂(U + u)

∂V
)+ (126)

+
m01m02(m02 −m01)

m0(m2
01 +m2

02)

[

m0(V · v) + (v · [Sext ×W]) + (V · [Sext ×w])
]

.

In the center-of-mass reference frame of the whole system relation (124) reduces to

E0 − u(t; 0, 0, ...) = µ1E01 + µ2E02 − E0 , (127)

where

E0 =
m01m02

m2
01 +m2

02

[

2(U + Er)−
(m02 −m01)

m0
(v ·

∂(U + u)

∂V
)

]

V=0,W=0,...

+

+
m2

0u

m2
01 +m2

02

+ U int . (128)

For free system (U = 0, Sext = 0) equation (119) in the center-of-mass reference frame
reduces to d(E0−u)/dt = 0, that gives E0−u = µ1E01 +µ2E02−E0 = const. It does not
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follow from equations of motion (1) that energies (117) will be conserved, as the interaction
potential U int, generally speaking, can depend on time. Then, for example, if dE01/dt > 0,
i.e. energy E01 increases, function µ2E02 − E0 should decrease, because E01 cannot in-
crease infinitely. Since both subsystems are in equivalent positions, energy E02 behaves
similarly. Thus, energies of interacting objects should oscillate with time. It means that
potential energy U int of interaction also should be oscillatory function of time. Thereby
interaction between objects is reduced to permanent energy exchange. Moreover, pres-
ence of function u(t;V,W, ...), apparently, allows to describe the high-energy interaction
considered usually from the point of view of relativistic quantum theories. Determination
of explicit dependence of interaction energy and an ascertainment of a role of function
u(t;V,W, ...) requires separate careful consideration.
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