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1. Introduction 

Knowing the trajectories of charged particles with spin in an external field is applied in 

many areas of physics, geo- and astrophysics. This makes possible to calculate the various pa-

rameters of particles which account is required in problems of accelerator technology, on the re-

tention of particles in magnetic traps arising in controlled thermonuclear fusion research, in 

plasma physics, magneto-optical studies, etc.  

In the first part of this research [1] the equations of motion of spinning particles in any 

external field are obtained, and solutions for free particles are found under the assumption that 

potential function depends only on the velocity of particle relative to its center of inertia. The 

next challenge is to find solutions for particles that move in electric and magnetic fields. This 

paper is the second part dealing with motion of particles in a stationary homogeneous magnetic 

field. In Sec. 2 the equations of motion in an external field, which are somewhat different for 

massive and massless particles, are written in the Frenet-Serret basis, that allows to consider the 

motion of spinning particles both in stationary and non-stationary fields. Sec. 3 concerns the be-

havior of massive spinning particles in stationary homogeneous magnetic field, and Sec. 4 stud-

ies the same behavior of massless particles. We find all types of trajectories in both cases. It is 

shown that spin of particles in a magnetic field is always arranged parallel or antiparallel to the 

field, and the oscillation frequency of massless particle in a magnetic field increases. 

2. Equations of motion of spinning particle in external field in moving reference frame 

The form of equation of motion of spinning particle in an external field according to [1] 

depends on the relationship between the electric field strength and potential, which can be de-

fined in two ways. If we assume the definition 

 
U d U

dt
E S V

R V

ext[ ] , ([1], Eq. (2.9)), (2.1) 

then the equation of motion takes the form 

 
2

0 0
 V s V E V B s[ ] [ ( )]

d
m

dt
, ([1], Eq. (2.11)), (2.2) 

and if 

 
U

E
R

, ([1], Eq. (2.21)), (2.3) 

                                                 
1
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then 

 
2

0 0

d U
m

dt
 V s V S V E V B s

V

ext[ ] [ ] [ ( )] . (2.4) 

It is easy to see that (2.2) is the special case of (2.4) when 0U V/ , S 0
ext

. Solu-

tion of the equation (2.4) is defined both by the dependence of the fields E, B and S
ext

 and the 

form of potential function U, which remains for free particle, when these fields vanish. In the 

moving r. f. K  equation (2.4) splits into two equations 

 
ext 2

0 0[ ] [ ] [ ( )]
d u
m

dt
 

 
          
 

v s v S v E v B s
v

, (2.5) 

  ext 2

0 (K ) (K ) (K ) (K ) 0[ ] [ ] [ ( )]
d
m

dt
           V s V S V V B s , (2.6) 

where (K ) R R r , (K ) V V v . 

In the paper [1], where solutions for free particles are obtained, we assume that the poten-

tial function depends only on the velocity of particle relative to the center of inertia, ( )U u v . 

Here we shall assume that this condition is satisfied for stationary homogeneous fields. Then, 

decomposing all vectors and pseudo-vectors in (2.5) and (2.6) in Frenet-Serret basis ([1], Ap-

pendix) and choosing the binormal direction as the direction of the velocity of the r. f. K , 

(K ) (K ) bV V e , we obtain a set of two vector equations 

 

ext 2 ext

0 b b b b τ

ext ext 3 2

0 b b b n

ext 2 ext

τ τ n n n

2 ext ext 2 ext

τ τ τ n n

( ) ( )

( )( )

( ) ( )

( )(2 ) (

d du
m v s S v K s S vvK

dt dv

du
m v vK vS s S v v K

dv

s S v K s S v vT

v KS s S vvK v K vS s

 



 

 

  
       

  

  
        

  

      

     

e

e

e

ext ext

n b b b

2 2

τ τ n b b 0 n b n n 0 b

) ( )

( ) ( ) ,

S v s S vvT

E E vB s v E vB s v



 

     

        

e

e e e

 (2.7) 

 

ext ext ext ext

n n (K ) τ τ τ n b b (K ) τ

ext ext ext

b b b (K ) τ τ τ (K ) n

ext ext ext ext

n n τ (K ) n b b τ τ 0

( ) ( ) ( )

( )( ) ( )

( ) ( ) ( )

s S V s S vK S s S vT V

S vT s S vT vT V s S V

s S vK S V s S vK s S vT m v

  

 

  

 

 



        

        

            

e e

e e

e (K ) n

ext ext ext

0 τ τ (K ) b τ τ τ (K ) b

2 2

n n 0 (K ) τ τ τ 0 (K ) n

2( ) ( )( )

( ) ( ) ,

TV

m s S vT V S vT s S vT vT V

B s V B s V

 

 



 

 



            

      

e

e e

e e

 (2.8) 

where K  and T are curvature and torsion of trajectory, respectively. 

The unit vectors of moving basis τe , ne  and be  move in space and precess with an angu-

lar velocity represented by the Darboux vector 
D

τ b
v T K Ω e e( ) . They are related with the 

unit vectors Xe , Ye  and Ze  through rotation matrix, which may be parameterized in various 

ways. In many cases this relationship can be represented as 

 
τ X Y Z

t t t t t       e e e ecos ( )cos ( ) cos ( )sin ( ) sin ( ) . (2.9) 

 
n 2 2 2 2 2 2

2 2 2

X Y

Z

             
   

       
 


   

e e e

e

sin cos cos sin sin sin cos cos

cos cos
cos

,
cos

 (2.10) 
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b 2 2 2 2 2 2

2

2 2 2

X Y

Z

             
  

       

 


   

e e e

e

sin sin cos cos cos sin cos sin

cos cos
cos

.
cos

 (2.11) 

This choice corresponds to representation of the relative velocity as 

 
X Y Z

v t t t t t t       v e e e( )[cos ( )cos ( ) cos ( )sin ( ) sin ( ) ] . (2.12) 

If we choose the direction of binormal fixed, such as in the case of free particles or parti-

cles in a homogeneous external field, then it follows from equation 
b n

0vT  e e  that 

 
2 2 2

2 2 2 2

2
0T

v

            
  

    

v v v

v v

( [ ]) ( )cos ( cos ) sin

[ ] ( cos )
, (2.13) 

which shows that the torsion T vanishes, if 0   or 0  , and corresponds to the representa-

tion of the relative velocity and the velocity of r. f. K  in the form 

 
τ X Y

t v t v t t t    v e e e( ) ( ) ( )[cos ( ) sin ( ) ] , (K ) (K ) b (K )( ) ( ) ( ) Zt V t V t   V e e . (2.14) 

Then curvature is 

 

2 2 2

3
K

v vv

     
  

v v| [ ] | cos
. (2.15) 

Equation of motion of spin 

 
τ n τ n b

        s e e e( cos sin ) ( sin cos )
X Y Z

s s s s s  (2.16) 

becomes 

 
D τ n τ nX Y

s s s s    s Ω s e e[ ] ( sin cos ) ( cos sin ) , (2.17) 

where 

 
D Z

Ω e . (2.18) 

Equation of motion (2.4) at ( )U u v  for any external fields E, B and S
ext

 leads to con-

servation of total energy. In general, such a dependence may be insufficient, and its definition is 

a matter of a separate study. Equations of motion (2.7), (2.8) should be then modified in accord-

ance with the form of potential function. 

3. Massive spinning particle in stationary homogeneous magnetic field 

Taking into account the above assumptions about potential function and the moving r. f.  

K , equations of motion of spinning particle in magnetic field (at E 0 , S 0
ext

) reduce to 

the set of equations 

 
2 2

0 b 0 b[ ( ) ]
du

m v s v v B v
dv


 

       
 

, (3.1) 

 
2

τ n 0 n( ) ( )s v v s v v B v      , (3.2) 

and (K ) 0V   , 

 
2

n n 0sin cosX YB B B s       , (3.3) 

 
2

τ τ 0cos sinX YB B B s      , (3.4) 

for massive particles or (K ) 0 V , 

 
2

n (K ) 0 (K ) τ (K ) n (K ) (K )( ) ( sin cos )X Ys V V s V BV B B V             , (3.5) 

 
2

τ (K ) 0 (K ) n (K ) τ (K ) (K )( ) ( cos sin )X Ys V V s V BV B B V               (3.6) 

for massless particles. 

Furthermore, it follows from the expression of the self-energy ([1], Eq. (2.49)) that 
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 0 0

b 22
 

m d u
s

dv v v
, (3.7) 

 
b 0

2
d du

s v v m v
dt dv

  ( ) . (3.8) 

Substituting (3.1) into (3.8) leads to the equation 

 

2

0 b b 0
v B s vd

v
dt






[ ( / ) ]
, (3.9) 

which implies the first integral 

 

2 2

2 2 2 20 b b

0 b b2

v B s v
v B s v D









[ ( / ) ]
( / ) , (3.10) 

where constant 2D  is always positive, if 
b b

0B s/ , and may be non-positive, if 

b b
0B s/ . 

Substituting (3.3) into (3.2), we obtain 

 
n 
   ( )s v s v v . (3.11) 

For homogeneous magnetic field its direction may be chosen as the direction of the velocity of 

moving r. f. Then b b Z ZB B B e e , 0ZB  , and (3.3)-(3.4) lead to 
τ n

0s s  , i. e. magnetic 

field B and spin s are collinear to the Z-axis, and equation (3.11) becomes identity. We put 

bs es , where e is helicity, 1e    for b 0s   and 1e    for b 0s  ; 1e    corresponds to anti-

parallel direction of the field and spin (electron state), and 1e    corresponds to parallel direc-

tion of the field and spin (positron state). Thus, helicity e plays a role of electric charge. 

Equations (3.7) and (3.9) are two equations for three unknown functions ( ) t , ( )v t  and 

potential function ( )u v , which should satisfy a separate equation. Since such equation is absent 

at present, we consider here a particular solution, corresponding to constant cyclotron frequency 

    const
B . From (3.7) we find potential function 

 

2

0 b

1 0

2

2

 ( )
( ) B

m s v
u v C v , (3.12) 

and the first integral of the equation (3.9) takes the form 

 
2 2

0 b 1
      

B Z B
v B s v C( / ) , (3.13) 

which yields several types of solutions defined by relationship between mass, and spin, and 

magnetic field. 

M.1. B B
t     , 

2 2

0 b/ 0ZB s    . Equation (3.13) has the following solution 

 
1 0 0

   ( ) sin( )v t v v t , (3.14) 

whence 

 
1 0 0 B B X B B Y

t v v t t t          v e e( ) [ sin( )][cos( ) sin( ) ] . (3.15) 

The relevant trajectory is described by radius vector 

 

0

0

0

0 (K )

0 0

0

B B B X

B B B Y

B B B B B X

B B B B B Y Z

t

t t t t

t t t t V t

  

  

  

  


       

      

            

            

R R e

e

e

e e

( ) ( ) cos cos ( )sin

cos sin ( )cos

( )sin( ) cos( )cos( )

( )cos( ) cos( )sin( ) ,

 (3.16) 

where 1    
B B

, 
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 1

1 1
B B

C
v



 ( )

, 

2

0 b

2




 




/
Z

B

B

B s
, (3.17) 

 0b 0

2

b 0

1 





 

 

B
B

B BZ

vs v

s B
, 1

0

01

 
 



 
    

  
( ) sin( )B B

B

v
t t

v
. (3.18) 

Types of trajectories in a plane orthogonal to the direction of motion of the center of inertia are 

presented in Fig. 1-3 (at 1 | |
B

), Fig. 4-6 (at 0 1 1  
B

) and Fig. 7-9 (at 1 
B

) for 

values 1 0/ 0v v , 1 00 / 1 v v  and 1 0/ 1v v . At 0
B

     the particle oscillates in the 

plane (XY), and its center of inertia moves uniformly along the Z-axis. 

               
                                                     

Figure 1. Type of trajectories (3.16) of massive particle in magnetic field 

at  ( , , ) 

               
                                          

Figure 2. Type of trajectories (3.16) of massive particle in magnetic field 

at  ( , , ) 

         
                          

Figure 3. Type of trajectories (3.16) of massive particle in magnetic field 

at  ( , , ) 

Би
бл
ио
те
ка

 БГ
УИ
Р



 6 
 

               

                                             

Figure 4. Type of trajectories (3.16) of massive particle in magnetic field 

at  ( , , ) 

               

                                               

Figure 5. Type of trajectories (3.16) of massive particle in magnetic field 

at  ( , , ) 

        

                        

Figure 6. Type of trajectories (3.16) of massive particle in magnetic field 

at  ( , , ) 

               

                                                     

Figure 7. Type of trajectories (3.16) of massive particle in magnetic field 

at  ( , , ) 
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M.2. If the magnetic field is such that the relation 

2

0

b


   Z
B

s
                                                                    (3.19) 

is valid, i. e. 0 
B , then B  , 

1 1 B
v C / . Trajectory is presented by radius vector

 
0 0 0 0

0 0 0

0 0 0 (K )

0 2 2

2 2 2

2 2 2

B B X B B Y

B B B B B X

B B B B B Y Z

t k k

t k t t

t k t t V t

   

  

  


                 

             

             

R R e e

e

e e

( ) ( ) cos( ) sin sin( ) cos

cos( ) sin( ) sin

sin( ) cos( ) cos ,

    (3.20) 

where 
0 0

4
B

v  / , 
1 0

4k v v / , and represents complicated curve in center-of-inertia r. f., 

which moves with velocity 
C 0 0 0 (K )

2  


  V e e e( / )(sin cos )
X Y Z

v V . Examples of such paths 

are given in Fig. 10. At 0
B

     the law of motion (3.20) corresponds to uniform rectilinear 

        
0k                                        0,8k                                           5,0k   

Figure 10. Type of trajectories (3.20) of massive particle in magnetic field 

at 0 B  ( 2,3B  , 0 1  , 0 10 t ) 

 

X 
  

  

Y 

  

 Y 

  

  

  

X 

 

X 

Y 

  

  

  

               

                                                   

Figure 8. Type of trajectories (3.16) of massive particle in magnetic field 

at  ( , , ) 

        

                          

Figure 9. Type of trajectories (3.16) of massive particle in magnetic field 

at  ( , , ) 
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movement along the Z-azis, 
(K )

0
Z

t V t


 R R e( ) ( ) . 

M.3. B B
t     , 

2 2 2

0 b
0

B Z
B s      / , т. е. 1  

B . In this case equa-

tion (3.13) gives 

 
1 0 0 B B X B B Y

t v v t t t          v e e( ) [ sh( )][cos( ) sin( ) ] , (3.21) 

 

0 0

0

0 (K )

0 0 0
B B B X B B B Y

B B B B B X

B B B B B Y Z

t

t t t t

t t t t V t

     

  

  


               

            

            

R R e e

e

e e

( ) ( ) ch cos ( )sin ch sin ( )cos

( )sin( ) ch( )cos( )

( )cos( ) ch( )sin( ) ,

 (3.22) 

where 1
B B

     , 

0b 0

2

b 0

1 




 
 

 

B

B
B BZ

vs v

s B
, 1

0

01

B B

B

v
t t

v

 
 



 
    

   
( ) sh( ) ,         (3.23) 

B
  and 

1
v  are given in (3.17). 

Trajectory (3.22) in the center-of-inertia r. f. is twisting ( 0t  ), and then untwisting ( 0t  ) 

helix (Fig. 11), and transforms into straight line at 0
B

    . 

M.4. 
2 2

0 b
0    /

B Z
B s , i. e. cyclotron frequency is equal to 

2

0 b
    /

B Z
B s .                                                (3.24) 

In this case (3.13) gives 
2

0 1
2

B
v t v wt C t   ( ) / , 

0 12

0 12

12

1 (K )2

1
0

1

1

1

B B B X

B

B B B Y

B

B B B B B X

B

B B B B B Y Z

B

t v C w

v C w

dv t
v t C t t

dt

dv t
v t C t t V t

dt 

         


        


 
           

 

 
            

 

R R e

e

e

e e

( ) ( ) ( )sin cos

( )cos sin

( )
( ( ) )sin( ) cos( )

( )
( ( ) )cos( ) sin( )

     (3.25) 

The trajectories of this type at 0w , 1 0C   correspond to the trajectories of classical 

Lorentz electrodynamics, where, as it is known, a charged particle, that is flying in uniform 

magnetic field, moves in a spiral or circle, when its velocity is perpendicular to field, and spin of 

the particle is not taken into account in no way. As it follows from the solutions obtained above, 

the spin of a particle that has fallen into magnetic field, has always arranged parallel or antiparal-

 

                           

1 0/ 0v v                                         1 0/ 1,0v v    

Figure 11. Type of trajectories (3.22) of massive particle in magnetic field 

at 1B    ( 1,1B   , 2,3B  , 5 3  t ) 

0.5 0.5 1.0

0.5

0.5

1.0

4 2 2 4 6 8

15

10

5

5
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lel to the field. This was conclusively proven by experiment of Stern and Gerlach. It follows 

from (3.24), that condition 
2

b 0
  

Z
B s                                                         (3.26) 

should be satisfied. Assuming for the electron 
2 20

0 / 7,77 10 Hzem c     ([2], Eq. (4.50), or 

[3], Eq. (89)), 2c   , b / 2s es   , we find limit value of magnetic field 

2 2 112 5 6 10 kg/s  
max

/ ,
e

B m c ,                                       (3.27) 

that corresponds to 2 2 82 3 5 10 T
e

B m c e  
max

/ ,  in SI. Large values of magnetic field are 

occurred in magnetars, that are neutron stars with strong magnetic field (up to 1110 T ), wherein 

condition (3.26) is not valid. For such fields apparently can be realized cases M.1-M.3. For posi-

tron states ( 1e   ) condition (3.26) will be fulfilled, only if 2  c . Therefore in general one 

can put 2  ec . 

Finally, we get the standard solution assuming b 0s  . Then (3.1) looks like 

 0 Z

du
m B

d

 
    

 
v v

v
, (3.28) 

whence (at   
B

) 

 0( / )Z B

du
m B

d
   v
v

, 
2

0

1
( ) ( / )

2
Z Bu m B  v v . (3.29) 

( ) 0u v  corresponds to standard dependence of potential function from relative distance. As it 

follows from (3.29) this is possible, when 

0
   /
B Z

B m ,                                                      (3.30) 

which coincides with standard definition of cyclotron frequency. Then the condition (3.26) is 

equivalent to 
0

2
B

   / . For constant field (3.28), (3.29) give 0 const v v . Then trajectory 

is described by (3.25), or 

0

0

(K )

0
B B B X

B

B B B Y Z
B

v
t t

v
t V t



         

        

R R e

e e

( ) ( ) sin( ) sin

cos( ) cos .

                    (3.31) 

Analyzing the solutions (3.16) (Fig. 1, 2, 4-6, 9) and (3.22) (Fig. 11), one can see that 

they are close to the classical solution (3.31). 

M.5.   const . Taking account of spin at ( ) 0u v  reduces equations (3.7) and (3.9) to 

 0 0

b 22

m
s

v
  , (3.32) 

 

2 2 2

0 b b 0

02 2 2

0 b

0

1
0

2

2

v B s v v m vd

dt m v s v





[ ( / ) ]
. (3.33) 

From (3.33) we have 

 0v f v( ) , (3.34) 

where 

 

2

2 2 0 0 2 0

2 2 2 3

b
2

C C m
f v v

v s v
( ) , 2 constC  , (3.35) 
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2

2 2 b 0

0 2 2

b b
4

B m

s s 
  . (3.36) 

Obviously, classical solution (3.31) corresponds to 
0

0 , 2 0C  , 
0 b

2
B

m s  , i. e. 

2

0 0B
m c / . 

Equation (3.34) admits the first integral 

 
2

3
2v f v dv C( ) const , (3.37) 

whence 

 

0

2 4 3 2 2 2 2

2 0 3 2 0 0 b
2

v

v

vdv
t

v C m v C v C v s /
. (3.38) 

The result of integration is determined by the signs of constants 2 , 
2
C , 

3
C , 

0
 and the rela-

tionship between them, as well as the roots of the equation 

 

2 4 3 2 2 2 2

2 0 3 2 0 0 b

2

1 2 3 4

2

0

v C m v C v C v s

v v v v v v v v





/

( )( )( )( ) .
 (3.39) 

The enumeration of all possible solutions of equation (3.34) is not possible here because of their 

great number and bulkiness. 

4. Massless spinning particle in stationary homogeneous magnetic field 

For massless particles we have a set of equations (3.1), (3.11) and (3.5)-(3.6), which in a 

stationary homogeneous magnetic field b b Z ZB B B e e  reduce to  

 2

n (K ) 0 (K ) τ (K )( ) 0s V V s V      , (4.1) 

 2

τ (K ) 0 (K ) n (K )( ) 0s V V s V      . (4.2) 

Equation (3.1) admits the first integral (3.10), whence 

 

2

2 2 2 20 b

0 b2 2 2 2

0 b

1Z
Z

Z

v B s v d
D v B s v

v dtD v B s v






  
       

   

( / )
( / )

( / )
. (4.3) 

Substituting (4.3) into (3.1) at 0 0m   we get an equation 

 

2

0 b

2 2 2 2

0 b

2
20 b

b 0 b2 2 2 2

0 b

( / )

( / )

[ ( / ) ]
1 [ ( / ) ] ,

( / )

Z

Z

Z
Z

Z

v B s v du

dvD v B s v

v B s v v
s v B s v

D v B s v






 



  


   

   
     

    

 (4.4) 

which is valid either at 1) 
2

0 b
0   ( / )

Z
v B s v  leading to 0  , or at 2) 

2

0 b
0

Z
v B s v   ( / ) , 0  . As a result we have following solutions. 

М0.1. 0 0m  , B
    const , 2

0 b
0   ( / )

Z
v B s v , which gives 

 

2 2

0 0 0 b

2

0 0 b

2 2

0 0 0 b

0

0

0

Z

Z

Z

v t B s

v t v B s

v t B s

 



 

       


   
       


cos( ) , / ,

( ) , / ,

ch( ) , / .

 (4.5) 

Equations (3.11) and (4.1) reduce to identity, if 
n

0s  , or 0v  , 
n

0s  , and (3.7)-(3.8) 

lead to / constdu dv  . (4.1)-(4.2) give solution 

 (K ) (K )0 0 0( ) cos( )V t V t     . (4.6) 
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The law of motion is easily obtained by integrating the velocity vector 

 
(K )

0

0

t

Z
t t V t dt


  R R v e( ) ( ) [ ( ) ( ) ] . (4.7) 

An analysis of possible relations between the quantities in (4.7), as well as determination 

the conditions of closed trajectories is not difficult. 

М0.2. 0 0m  , 0  , 
2

0 b
0

Z
v B s v   ( / ) . Equations (4.1)-(4.2) lead to 

2 2

τ n
0s s  , that possible only when 

τ n
0s s  . Then (4.1)-(4.2) reduce to identities. Equation 

(3.1) has an infinite set of solutions, one of which corresponds to 
D D
t     , where 

2

D D
   Ω const . In this case (3.10) admits the first integral  

2 2 2 2

D 0 bZ
v D v B s v F      ( / ) , from which we find the equation for the velocity 

 2 2 2 2 2

D D 0 b
2

Z
v D F F v B s v         ( / ) . (4.8) 

Substituting (4.8) into (4.3) leads to the equation 

 
2 2

D 0 b DZ
v B s v = F     ( / ) , (4.9) 

whose solution is a function 

 D

0 02 B

B

F
v t v t 




  ( ) cos( ) , 2 2

D 0 bB Z
B s      / , (4.10) 

 D

0 0 D D D D2 B X Y

B

F
t v t t t 



 
              

 

v e e( ) cos( ) cos( ) sin( ) . (4.11) 

It follows from (4.8) and (4.10) that the velocity may vary in the limits  
min max
v v v , 

where 

 D

02
0

B

F
v v




  

min
, D

02

B

F
v v




 

max
, 

2 2 2 2 2

0 b

0 2

B Z

B

D F F B s
v

 



  


/
. (4.12) 

The law of motion is similar to the equation (3.22) from [1]: 

D D D D D D2 2

0 D

D D 0 D 02

0 b

0 D

D D 0 D 02

0 b

0 D

2

0

0

2

2

2

X Y

B B

B
B X

Z

B
B X

Z

B

Z

F F
t t t

v
t

B s
v

t
B s

v

B

 


  




  





             

 
            

 
           

 

 


 

R R e e

e

e

( ) ( ) [sin( ) sin ] [cos cos( )]

( )
sin[( ) ] sin( )

( / )
( )

sin[( ) ] sin( )
( / )
( )

( D D 0 D 0

b

0 D

D D 0 D 02

0 b

(K )

0

2

B Y

B
B Y

Z
t

Z

t
s

v
t

B s

V t dt

  



  





          

 
           

 



e

e

e

cos[( ) ] cos( )
/ )

( )
cos[( ) ] cos( )

( / )

( ) ,

  (4.13) 

where (K ) ( )V t  has an arbitrary dependence on time. 

Condition of closed trajectory in the r. f. K , ( ) ( )t T t v v , leads to the relation 

D
2  T m , whence it follows D  Bm l , or 

 
2 2 2 2 2

0 b DZ
m B s l m    ( / ) ( ) , (4.14) 
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where 1,2,...l  , 1, 2,...,0,1,2,..., 1m l l l      , and 0m   corresponds to 
D

0  , i. e. to 

oscillations along the X-axis with frequency 2

0 0 bB Z
B s    / . Comparison of solutions 

(4.5) and (4.11) with the appropriate solutions for free massless particles (Eqs. (3.9) and (3.22) 

from [1]) shows that the magnetic field induces an increase of the oscillation frequency.  
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