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The coupling of two superconductors (S) through a ferromagnet (F) can lead to either a zero- or a π -phase
difference between the superconducting banks. Most research in this area is performed on trilayer S/F/S film
structures, in which two-order parameter configurations are possible. Increasing the number of layers and
junctions leads to a larger number of possible configurations with, in principle, different properties such as
the superconducting transition temperature Tc. Here we study the behavior of a series of multilayers made of
superconducting Nb and ferromagnetic Pd81Ni19. We find that for the individual layer thicknesses used, the
transition width �Tc increases with increasing number of bilayers in the multilayer, in a well-defined manner.
That the broadening is not simply due to increased disorder in the larger stacks, it is shown from x-ray diffraction,
which finds very sharp interfaces for all samples; and from the effect of the magnetic field on the transition, which
shows a considerable sharpening. We can make a connection with the various order parameter configurations
using a matrix formulation of quasiclassical theory based on the Usadel equations and show that these different
configurations take part in the Josephson networks, which are building up in the transition to the superconducting
state.
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I. INTRODUCTION

When combining a superconducting (S) and a ferromag-
netic (F) thin film, it is well known that the superconduct-
ing correlations induced in the ferromagnet are spatially
inhomogeneous.1 In SFS junctions, by choosing the appro-
priate value for the F-layer thickness dF , this can lead to a so-
called π state, in which the phase of the superconducting order
parameter changes over π when going from one side of the
junction to the other. This is by now a well-established effect,
with experimental consequences such as strong variations of
the junction critical current as a function of temperature,2 or
spontaneous currents occurring in a superconducting ring with
an SFS junction.3 Obviously the SFS trilayer can only have
two ground states: one without phase change, and one with a
phase change (equivalent to a sign change or a node) in the pair
amplitude. The two states have a different critical temperature
Tc, leading to the well-known Tc oscillations as function of
dF .4 When more junctions are added to the stack, the number
of possible modes can be expressed in terms of a primary
building block 1

2dF /dS/
1
2dF (with dS the S-layer thickness) as

Ntri + 1, where Ntri is the number of blocks. More than one
node is now possible, which distinguishes the S/F case from
multilayers with normal metals, and S/F multilayers from an
SFS trilayer. Each mode can be characterized by its own critical
temperature. A first attempt to clarify such new issues was
recently published.5 Incidentally, for Tc the well-known limit
to the problem is the infinite multilayer (IM) with periodic
boundary conditions. With this approach, calculations were
for instance made of the upper critical field behavior in S/N
superlattices,6 while for the F case it actually led to the
prediction of oscillatory Tc(dF ).7,8 On general grounds, the
infinite multilayer Tc with a symmetrical periodic solution
furnishes the upper limit for Tc of a system with a finite number
of blocks.

In this work we compare the nucleation of superconduc-
tivity in samples with different symmetries, where different
modes can play a weaker or a stronger role. For the preparation
we use weakly ferromagnetic Pd81Ni19 and superconducting
Nb, and choose a value dF somewhat lower than the value
where the 0–π transition in a simple S/F/S junction is
expected.9 In particular we compare samples with fixed dF , dS ,
and IM symmetry, consisting of Ntri building blocks defined
above, with samples consisting of a starting F layer and
Nbi(F/S) bilayers {notation [F/Nbi(S/F)]}. Such samples we
call asymmetric in the sense that they do not possess the IM
symmetry, even though they possess a mirror plane. A sketch
of both types of multilayers is given in Fig. 1. We find that this
difference in symmetry (where actually only the outer layers
have different thicknesses) has clearly observable effects on
the nucleation, both seen in the width of the resistive transition
�Tc and in its shape. For the symmetric samples, �Tc is
small (≈50 mK) and hardly changes with increasing Ntri.
For the asymmetric samples, �Tc gradually increases until
a maximum width of around 2 K is reached around Nbi = 9,
after which it becomes constant. We also find the occurrence of
steps in the resistance. In one particular sample with Nbi = 9,
the number of steps even comes close to the number of possible
modes Nbi. However, in a magnetic field the broad transitions
sharpen up again. Next we demonstrate that both the increasing
�Tc as well as its final value can be directly connected to
the increasing number of modes. For this we use a matrix
formulation of the quasiclassical theory on basis of the Usadel
equation. We use measurements on bilayer building blocks
as input parameters, calculate the Tc values of the different
modes, and extract in this way a highest and lowest value of Tc

for a multilayer, which can be connected to the measured �Tc.
The agreement between theory and experiment is very good,
indicating that the modes play a role in the phase transition.
We discuss this in terms of networks of Josephson junctions
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FIG. 1. Left: symmetric multilayer consisting of building blocks
1
2 dF /dS/

1
2 dF (infinite multilayer symmetry). Right: asymmetric

multilayer consisting of a starting F layer and Nbi(F/S) bilayers. In
both cases the mirror axis of the multilayers is indicated.

which are formed throughout the transition.10 Moreover, we
demonstrate that this network formation is reinforced for dF

values close to the 0–π transition.
The paper is organized as follows. First we describe sample

preparation and characterization by x-ray reflectometry in
order to demonstrate the structural integrity of the samples.
Next we give the results of measurements of the resistance
R as function of temperature T for both symmetric and
asymmetric multilayers around the superconducting transition,
and we show measurements of the dependence of R on an
applied magnetic field Ha at a fixed temperature below Tc

for asymmetric samples. Then we develop the theoretical
framework and we give a detailed example of the evolution of
order parameter configurations as function of F-layer thickness
for a fictitious five-bilayer asymmetric sample. That allows
a discussion of our results in terms of such configurations,
and the demonstration that the increasing transition width is
connected to the increasing number of possible modes. We
end with another experimental example of Tc broadening in
asymmetric multilayers using blocks of Cu41Ni59/Nb.

II. EXPERIMENT

The samples consist of Si/[Pd81Ni19/Nbi(Nb/Pd81Ni19)] and
were grown on Si(100) substrates by diode sputtering in an
ultrahigh vacuum system as described in Ref. 9. Three series
were grown; two asymmetric ones called MAn and MBn,
with n the number of bilayers, which runs from 5 to 9 for
MA and from 3 to 14 for MB; and one symmetric set called
MSn consisting of blocks of 1

2dF /dS/
1
2dF and n running

from 1 to 9. The layer thicknesses nominally grown were
dS = 18.7 nm (MAn) or 16.0 nm (MBn, MSn), and dF =
2.2 nm (all). The latter is somewhat lower than the value of
3.1 nm where the 0–π transition in a simple S/F/S junction
is expected, but the results show that this deviation is not
critical. The number of 3.1 nm needs some explanation, which
will be given in Appendix A. Magnetization measurements
at 10 K confirmed the presence of ferromagnetism. The
resistance R was measured as function of temperature T

using a four-probe technique, with indium contact pads put
in line on the top of the (unstructured) samples. The structural
properties were characterized by x-ray reflectometry (XRR).
Since the structural quality is important, we show in Fig. 2
the result for the symmetric sample MS2 and the asymmetric
sample MA9. The data were fitted using the Parrat and
Nevot-Croce recursion relation, which takes into account the
electron density height fluctuations at the interface.11,12 Within
the fit procedure the roughness of each single layer was

FIG. 2. (Color online) Measured x-ray reflectometry spectrum
(upper) and numerical simulations (lower; shifted downward for
clarity) for (a) sample MS2 and (b) sample MA9.

supposed to be independent on the roughness of other layers
(the case of uncorrelated roughness13). Fitted values for the
layer thicknesses came out very closely to the nominal values.
For MS2, dext

PdNi = 1.0 nm, dPdNi = 2.0 nm, dNb = 15.8 nm; for
MA9, the values were 2.2, 2.2, and 18.7 nm, respectively. In
the framework of this model we deduce that the thickness of
Nb and PdNi layers is constant in the multilayer structures,
while the values of the root-mean-square roughness are in
general smaller for the internal layers (0.4–0.8 nm) and higher
for the bottom and the capping layers (0.8–1.1 nm). Samples
MBn have the same nominal characteristics, but their Tcs were
somewhat lower, probably due to slightly thinner Nb layers.

III. RESULTS

A. R(T ) of symmetric and asymmetric multilayers

Figures 3(a) and 3(b) show R/Rn(T ), the resistance
normalized to a value just above Tc for several MSn and MBn

samples, respectively. For the MS series, the transitions are
very sharp, no more than 50 mK wide. Most of them show a
small step which lowers R by no more than 10%, followed by
the main transition.

For the MB series the transitions are broader from the
start, and at higher n the width is of the order of 1.5 K.
For all samples, zero resistance is reached in a final sharp
drop at nearly the same temperature. It is remarkable that this
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FIG. 3. (Color online) Normalized resistive transitions for differ-
ent Nb/PdNi multilayers. (a) From the series MSn. The sample with
the highest Tc has a single S layer; the other ones have n from 2 to 9.
(b) From the series MB, as indicated. Also shown is the transition for
sample MA9 and the sample MA9-35 with the middle S layer having
a thickness of 35 nm (see text).

difference is due to only changing the outer (F) layers from
a thickness of 1 nm to a thickness of 2 nm. In the broad
transitions, hints can be seen of more steps. To make this more
clear, also shown in Fig. 3(b) is R(T ) for MA9, which is
the best example of such a multistep transition. Indications
of similar broadening of R(T ) curves of S/F hybrids can
be found,14–17 but to our knowledge were never explicitly
investigated. One more curve is shown in Fig. 3(b) of a sample
similar to MA9, but now with a central (S) layer of 35 nm.
This sample again shows a very sharp transition. In Fig. 4 we
show the variation of the transition width �Tc = T (0.9Rn) −
T (0.1Rn) for the samples MBn, which we consider the central
result of our work. The plot shows that the zero-resistance
value is reached around 4.4–4.5 K and does not vary much
through the series, but that the transition width increases and
becomes constant again above Nbi = 9, where it is 1.5 K.

B. The field dependence of sample MA9

In order to better understand the origin of the transition
widening in asymmetric multilayers, best shown by sample
MA9, we also measured R both as function of T in a fixed
magnetic field Ha , oriented parallel to the layers; and as
function of Ha for fixed T , as shown in Figs. 5(a) and 5(b).

FIG. 4. The transition width for the samples MBn vs number
of bilayers Nbi. Experiment : shown are the temperatures for 0.9Rn

(closed circles) and 0.1Rn (closed squares), with Rn the normalized
resistance. Theory: open squares (circles) correspond to the maximum
(zero) node state.

The curves in fixed field show a shift, but the R(T ) behavior
is essentially unchanged from the zero-field behavior, with
multiple steps visible. The curves at fixed temperature behave
differently and sharpen up appreciably in higher applied fields,
from about 1 T to less than 0.2 T.

IV. THEORETICAL FRAMEWORK

A. Formulation of the model

In order to explain these observations, a model was
developed to calculate Tc of the different order parameter
configurations in finite multilayers. The onset of the critical
state, in the diffusive limit and neglecting paramagnetic and
spin-orbit effects, is described by a system of linearized Usadel
equations1,18 for the S and F layers (taking kB = h̄ = 1):

−πTcSξ
2
SF ′′

n (z) + |ωn|Fn(z) = πT λ
∑

ωm|�ωD

Fm(z), (1)

−πTcS(ξ ∗
F )2F ′′

n (z) + [|ωn| + iEexsgn(ωn)]Fn(z) = 0. (2)

Here, TcS is the bulk critical temperature of the superconductor,
ωn = πT (2n + 1) are the Matsubara frequencies [n = 0,

± 1, . . . ,nD(T )], with nD(T ) the integer part of the expression
(ωD/2πT − 0.5) and ωD the Debye frequency, λ is the
effective electron-electron interaction constant, Fn(z) are the
Usadel anomalous Green functions, and Eex is the exchange
field energy. The z axis is taken perpendicular to the layers,
while the xy plane at z = 0 coincides with the mirror plane of
the sample. Furthermore, ξS,ξ

∗
F are the dirty limit coherence

lengths in the S(F) metal, given by
√

DS,F /(2πTcs), with
DS,F the diffusion coefficients in S(F). These equations are
supplemented by matching and boundary conditions:19

ρ−1(z+
i )F ′

n(z+
i ) = ρ−1(z−

i )F ′
n(z−

i ), (3)

Fn(z+
i ) = Fn(z−

i ) + γbξS

ρF

ρ(z−
i )

F ′
n(z−

i ), (4)

F ′
n(−L/2) = F ′

n(L/2) = 0. (5)
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FIG. 5. (Color online) Field dependence of the resistive transition
of sample MA9. (a) Resistance R as function of in-plane applied field
Ha at temperatures (left to right) T = 4.25, 4.14, 4.05, 3.94, 3.82,
3.68, 3.54, 3.36, 3.25, 3.10, 2.94, 2.87, 2.74, 2.63, 2.51, 2.24, 2.13,
1.99, and 1.96 K. (b) R(T ) for fields (right to left) Ha = 0, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0, and 1.1 T.

Here L is the overall thickness of the multilayer, zi (i =
1, 2, . . . ,2Nbi) are the z coordinates of the interfaces, z±

i ≡
zi ± 0, and ρ(z) = ρF,S for z in F, S, with ρF,S the low-
temperature specific resistance of the F, S layer. The parameter
γb is defined as (2	F )/(3tbξ

∗
F ), with 	F the electron mean

free path in the ferromagnet and 0 < tb < ∞ the transparency
parameter. For solving the set of equations the matrix method
is used.20 The details of the calculations are described in
Appendix B. With this model, values for Tc can be calculated
for each order parameter configuration, since these are the
eigenvalues of the matrix equations. The number of Tc values
is obviously given by Nbi. They will be called T (k), where T (0)

denotes the configuration with zero nodes (the first symmetric
solution), and T (Nbi−1) the configuration with Nbi − 1 nodes.

B. An example: The five-bilayer system

To demonstrate the applicability of our approach, and in
order to make the main features of the studied multilayers
more transparent, we start with the examination of the sim-
plest generic F/[5(S/F)] structure, an asymmetric multilayer
consisting of five bilayers and a closing F layer. It contains

FIG. 6. (Color online) Eigenvalues of the critical temperature T (k)

of the F/[5(S/F)] structure as a function of F layer thickness dF ,
calculated for dS = 4.67ξS . Also shown are the solutions for the
infinite multilayer Tc0 and Tcπ .

the smallest amount of blocks necessary to demonstrate the
effects we have observed experimentally in more complex
systems. We need materials constants for the calculation, and
we have chosen them close to ones of Nb/PdNi bilayers9;
namely, ρS/ρF = 0.29, γbξ

∗
F /ξF = 0.28, and ξF = 0.5ξS ,

where ξF ≡ √
DF /Eex is the characteristic decay length of

the order parameter. We also take the thickness of the S layer
large enough (dS = 4.7ξS) in order to satisfy the conditions
of the single mode approximation.21 Figure 6 shows the
thickness dependence of eigenvalues T (k)(dF ) for five-bilayer
system. Also shown are the results for the infinite multilayer
calculation, with the symmetric solution Tc0 (solid gray line)
and the antisymmetric solution Tcπ (dashed gray line). The
eigenvalues T (k) are numbered according to the number
of zeros of appropriate eigenvector functions 
(k)(z) (see
Appendix B for details).

It is clearly seen that there is an intersection of all the
curves T (k)(dF ) (k = 0, . . . ,4), which occurs in a narrow
regions in the vicinity of 0–π crossover d∗

F ≈ 1.35ξF . In the
interval dF < d∗

F the hierarchy in T (k) is T (k+1) < T (k), while
for dF > d∗

F this is changed to the opposite T (k+1) > T (k).
For dF < d∗

F , the zero-node state occurs, as described by
eigenvector function 
(0)(z) shown in Fig. 7(a). Above d∗

F

the system goes into the four-node state, which is basically
a π state, and described by the eigenvector function 
(4)(z)
[Fig. 7(b)].

Now let us focus on the immediate proximity to the point
of 0–π crossover and understand the evolution the order
parameter is going through. Figure 8 shows the detailed
variation of T (k) around the crossing point at d∗

F . Looking
closely, all curves evolve in a nonmonotonous fashion. The
solutions T (0,1) show a jump down, the solutions T (3,4) show
a jump up, and T (2) shows a kink at d∗

F . However, there is
continuity in the variation of the eigenvalues in the sense
that at the degeneracy point the variation in T (0) is continued
in T (2), as is T (1) continued in T (3), T (2) in T (4), T (3) in
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FIG. 7. Real 
+(z) and imaginary [−i
−(z)] parts of eigenvector
functions (a) 
(0)(z) and (b) 
(4)(z) calculated for dF = 0.7ξF ≈
0.52d∗

F and dF = 2.2ξF ≈ 1.63d∗
F , respectively.

T (1), and T (4) in T (0). The evolution of the eigenfunctions
reflect this change in the sense that, in the vicinity of the
degeneracy point, they start to take on the shape of the
continuation.

For instance, the eigenfunction 
(0)(z) transform from the
shape at dF = 0.7ξF given in Fig. 7(a) to the one at dF = 1.33ξF

(very close to the degeneracy point) shown in Fig. 9(a). The
similarity to a two-node function is becoming apparent, which
is the way in which the eigenvalue continues. Similarly, the
eigenvalue with the proper function 
(4)(z) is a continuation
of the one with 
(2)(z) and at dF = 1.37ξF (just beyond the
degeneracy point) 
(4)(z) still shows strong resemblance to a
two-node function as can be seen in Fig. 9(c).

Figure 9 is also meant to make another point; namely,
how the ground state of the system, casu quo the highest
eigenvalue (which is Tc) evolves around d∗

F . Figures 9(a)–9(c)
present those eigenfunctions which in turn determine Tc when
increasing dF from 1.33ξF up to 1.37ξF ; namely, 
(0)(z),

(1)(z), and 
(4)(z). An interesting feature of the crossover

FIG. 8. (Color online) Eigenvalues of critical temperature T (k) of
F/[5(S/F)] structure as a function of F layer thickness in immediate
proximity to the point of 0–π crossover (see Fig. 6).

FIG. 9. (Color online) Real 
+(z) and imaginary [−i
−(z)] parts
of eigenvector functions and supercurrent density Jx(z) calculated
for the F/[5(S/F)] multilayer for (a) dF = 1.33ξF , (b) and (d) dF =
1.35ξF , and (c) dF = 1.37ξF .

is that upon approaching d∗
F , superconductivity is practically

suppressed in the outward layers, while exactly at the crossover
it disappears in the central layer. However, this solution is only
marginally lower in energy than the solution emerging from

(0,2,4)(z) given in Fig. 9(d). Another interesting feature is
the behavior of the spatial distribution of the supercurrent
density Jx(z), which shows weak countercurrents flowing
along the central ferromagnetic layers [see Fig. 9(a)]. It means
that a measurement current will actually be accompanied by
countercurrents.

C. Engineering an order parameter

From the above it will be clear that the system goes through
strong evolutions in the neighborhood of d∗

F (and more so than
in the symmetric case), but also that for other thicknesses in a
regular F/[Nbi(S/F)] only the eigenfunctions with eigenvalues
T (0,Nbi−1) occur, and that the other eigenfunctions remain
hidden (see Fig. 6). On the other hand, there is a rather simple
solution for engineering the occurrence of the other states,22 by
slightly changing the thickness of even one layer. For example,
increasing the thickness of a central F layer (for even Nbi), or
decreasing the thickness of a central S layer (for odd Nbi),
will force a node into that layer and the corresponding state
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FIG. 10. (Color online) Eigenvector functions and supercurrent
density Jx(z) calculated for the F/[5(S/F)] multilayer with (a) enlarged
thickness of the two central F layers and (b) with reduced thickness
of the central S layer.

determines the multilayer critical temperature. Our numerical
calculations confirm this statement. Figure 10 gives the spatial
distribution of the eigenfunctions calculated for two particular
structures of the F/[5(S/F)] model system, which has a central
S layer. In the first case [Fig. 10(a)], the thicknesses of the F
layers directly contacting the central S layer are dF = 2.2ξF ,
while the other F layers have dF = ξF . In the second case
[Fig. 10(b)], the central S layer thickness dS = 2ξS , while the
other S layers have dS = 4.67ξS . In the first case, the ground
state becomes 
(2)(z), while in the second it is 
(1)(z). It is
important to note that also in these configurations (as also
shown in Fig. 10) the application of a measuring current
into the structure will be accompanied by generation of
countercurrents.

Obviously, in the presence of structural inhomogeneities
in any true structure consisting of Nbi (F/S) bilayers, it will
be energetically favorable for the countercurrents to be closed
by forming current loops having the smallest characteristic
dimension. It means that such a multilayer is unstable against
the formation of clusters of current loops in the transition from
the normal to the superconducting state. Moreover, for the set
of parameters under which a multilayer is close to the 0 to π

transition such current loops (stretching over varying numbers
of bilayer blocks) should, in the transition, leave fingerprints of
the otherwise hidden eigenvalues T (k) of smaller blocks within
the full structure. This we believe to be is what we essentially
observe.

V. ANALYSIS AND DISCUSSION

We use the theoretical model developed above to study
quantitatively the variation of �Tc as found in the series
MBn as well as in the stepped structure in MA9. The
parameters to be chosen and varied are the usual ones for
proximity effect problems. Fixed are TcS = 9.2 K (the bulk
value for Nb) and ωD = 275 K. Fitting parameters then in
principle are the proximity parameter γ = ρSξS/(ρF ξF ) and
the transparency parameter tb. However, the fitting strategy is
not straightforward for the multilayers, since it is not simply
Tc which is to be fitted. We therefore use a slightly different
approach, and determine the necessary parameters using the
basic multilayer building blocks MS1 and MS2, which do have
a well-determined Tc and a transition width of 50 mK. We
optimize the following parameters around the values found
in Ref. 9: ξS = 5.6 nm (5.6 nm), ξ ∗

F = 5.0 nm (6.2 nm),
p = ρS/ρF = 0.15 (0.26), and γb = 0.22 (0.13), where the
values in brackets are the ones used in Ref. 9. The current
parameter set is quite close to the previous one, which gives
confidence in the procedure. We then use these parameters
to calculate the sets Tn for the series MBn. The values for the
T (0) ≈ Tc0 (no nodes) and T (8) ≈ Tcπ (largest number of nodes)
are given in Fig. 4.

The first striking conclusion is that the transition widths for
large Nbi are roughly given by the spread of T (k). In particular,
the upper limit is very well reproduced by the zero-node
solutions (open circles in Fig. 4). The lower limit (open
squares) is the maximum nodal state. The critical temperature
for the lower limit is always less than the measured values,
for reasons to be discussed below. Also clear is that below
Nbi = 5, the transition singles out only one mode. Before
discussing the behavior of these samples in more detail, we
turn to the multistep transition of sample MA9, shown in
Fig. 3 and enlarged in Fig. 11. The typical behavior of our

FIG. 11. Normalized resistive transition for sample MA9. Ver-
tical lines mark the positions of all T (k) values as calculated using
the materials parameters given in the main text. Inset: the width of
the resistive transitions �Tc given in Fig. 5(b) as function of applied
in-plane magnetic field.
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multilayer samples is a transition with two or three broad
steps, but here a number of visible steps is larger. For this
sample we examined whether all nine T (k)s can be reasonably
fitted in the transition. This turns out to work surprisingly
well. Using ξS = 5.2 nm (5.6 nm), ξ∗

F = 5.2 nm (5.0 nm),
p = ρS/ρF = 0.10 (0.15), and γb = 0.16 (0.22) (with the
values in parentheses now the ones used in fitting the MBn

series), we find T (k) values as plotted in Fig. 11. We do not
claim that we literally observe these T (k)s. The point is rather
that this sample spans the full transition width of about 2.5 K
allowed by its physical parameters, which means that for MA9
the transition to superconductivity starts with the 0-node state
and ends with the maximum nodal configuration.

The unequivocal message from the experiments is that
our large-Nbi multilayers have transition widths which are
connected to the different possible order parameter configura-
tions, starting with the 0-node symmetric one. Still, it is not
as if the system sequentially samples them; in that case the
highest of the possible Tcs in the system would determine the
transition temperature. The picture is a bit more subtle, and
for the discussion we refer to a recent study we performed
on the transition width in simple S/F/S trilayers made with
Nb and Cu41Ni59, where dF was varied through the 0–π

transition region.10 In that region, similar broadenings were
found as in the multilayers under discussion, although the
values of �Tc were significantly less, not more than 0.5 K.
For the trilayers we proposed a model in which, under the
influence of small variations in thickness, interface roughness,
and exchange energies, the system in the transition actually has
to be viewed as a network of S-N-S and S-F-S junctions. At
the onset of superconductivity, superconducting islands start
to form in the S layers, separated by still normal regions
in the same layer, while the islands are also connected to
islands in other layers through the weak F material. Local
loops between two S layers (1 and 2) may now emerge of type
S1-N1-S1-F-S2-N2-S2-F-S1, containing two S-F-S junctions.
If one of these goes into a π state, the loop can maintain a
circulating Josephson current which works against the growth
of the S islands and broadens the transition. Of course, once
the S islands coalesce, the circulating currents disappear and
the system is in a well-defined state with respect to the phases.

Obviously a similar mechanism should be at work in our
multilayers, where the F-layer thickness is in the region of
allowing π states. But now the multilayer allows a larger
variety of networks to be formed on the basis of order
parameter configurations with numbers of nodes up to Nbi − 1.
The picture which then emerges is that the first networks
which occur below the onset of superconductivity are like
0-node configurations. Going down in the transition, loops
between two adjacent S layers survive longest, which is like
the full-nodal configuration, although this configuration is not
necessarily reached. For that, the structure should have the
correct periodical structure, and if that condition is not fulfilled,
the system separates in different subblocks having a smaller
number of nodes and a higher Tc. In our case the F-layer
thickness is not optimal, and we usually find Tc for the system
above that was predicted by the full nodal solution. It is worth
noting that a similar model of Josephson networks with 0 and
π contacts was considered almost 20 years ago in connection
with the paramagnetic Meissner effect (“Wohlleben effect”)

FIG. 12. (Color online) Resistance R vs temperature T for
two different sets of multilayers consisting of building blocks
Cu0.41Ni0.59(3 nm)/Nb(30 nm), and in different applied magnetic
fields; from right to left: (0, 0.25, 0.5, 0.75, 1) T. (a) is an asymmetric
set of type F/[9(S/F)]; (b) is a symmetric set where the outer F layers
have half the thickness of the inner ones.

in high-Tc ceramics.23–26 The main difference with our work
is that the finite S/F multilayer can spontaneously divide into
fragments with different Tcs.

The measurements of the field dependence of the transition
performed on sample MA9 [see Fig. 5(a)] are in line with
this picture. The variation of the widths of the transition as
a function of applied Ha are given in the inset of Fig. 11.
They show that for decreasing temperature, �Tc continuously
decreases from a value around 2 K at 0 T to 0.1 K at 3 T.
This again illustrates that the broadening is not simply due
to static sample inhomogeneities. Similar to the trilayer case,
we ascribe this to a breaking up of the Josephson networks
in higher magnetic fields, resulting in sharper transitions. The
experiment with sample MA9-35 adheres to the same picture,
increasing the central S-layer thickness also results in a sharper
transition (see Fig. 3): coalescence of superconducting islands
in the thicker layer will occur more quickly than in the other
layers, shorting still existing networks in the multilayer.
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Finally, to show the generality of our results, we prepared
a multilayer set on the basis of the weak ferromagnet
Cu0.41Ni0.59 (called CuNi), also used in earlier experiments.27

The asymmetric sample consisted of nine blocks CuNi(3 nm)/
Nb(30 nm), with a closing layer of CuNi(3 nm) cov-
ered by Nb(2 nm) to prevent oxidation. The symmet-
ric sample had outer layers of 1.5 nm CuNi. The re-
sults in Fig. 12 sketch exactly the same picture as for
the multilayers with PdNi. The thickness of the CuNi
layer is close to the transition to the π state, and
the asymmetric sample has a transition width of about
0.5 K, which sharpens to 0.2 K in a field of 1 T. The symmetric
sample shows transition widths of less then 0.1 K. The smaller
widths in the asymmetric case compared to the PdNi samples
is probably due to the somewhat larger thickness of the Nb
layers, which result in a Tc around 7.5 K. In conclusion,
we have worked out the concept of different possible order
parameter configurations in S/F multilayers. We have used this
in analyzing the increasing transition width in S/F multilayers
in terms of simultaneously emerging superconducting islands
and Josephson junction networks, and we have shown that
this width can actually be quantitatively predicted on the basis
of the possible Tcs of the system as given by the different
configurations. We also showed how the model we developed
allows us to engineer different order parameter configurations.
It would seem that this property of S/F multilayers could lead
to novel devices if they can be brought to switch between
different configurations, in particular between zero, one, and
two nodes. This will be an area of future research.
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APPENDIX A: dF AT THE 0–π TRANSITION

Generally, many factors (among which, e.g., the trans-
parency of the interfaces and the strength of the magnetic
scattering) determine the thickness dF,cr at which an S/F
multilayer crosses over from the 0 state to the π state,
and it is not possible to give a simple estimate in terms
of what is actually a complex coherence length ξF1 + iξF2,
where ξF1 sets the decay length and ξF2 sets the oscillation
length of the order parameter. We neglect magnetic scattering,
as we did above, so that both lengths are given by ξF

(and the oscillation wavelength by λF = 2πξF ). Under that
assumption, an estimate can be given for some simple cases.

In the case of an S/F bilayer, Fominov et al.21 find for a fully
transparent interface that 4dF,cr/λF ≈ 0.7, which means the
ratio dF,cr/ξF = 0.35π = 1.1. It was argued in Ref. 21 that
this result can be qualitatively understood in terms of a simple
interference picture which yields dF,cr/ξF = (π/4) ≈ 1.55,
which still overestimates the actual value by about 40%. If
the interface is less than fully transparent, the ratio goes down,
but also the minimum in Tc(dF ) disappears. For the case of the
infinite S/F multilayer with fully transparent interfaces, the
calculations by Radovic et al. yielded dF,cr/ξF ≈ 1,8 while
Buzdin1 finds the first 0–π transition to occur at dF,cr/ξF ≈
1.18. Again, when the interface transparency decreases, the
ratio goes down. Note that for the case of the asymmetric
five-layer system above, we find dF,cr/ξF ≈ 1.35, still quite
close to the (symmetric) infinite multilayer case.

Next to the minimum in Tc, also the minimum in the critical
current Ic,min, can be used to find the crossover. Near Tc this
minimum is found at the same dF,cr as for the Tc minimum;
namely at 1.18 ξF ,1 and at somewhat lower value for lower
temperatures. Also here, the introduction of insulating (I)
barriers, leading to SIFS or SIFIS configurations, can strongly
lower the value of the crossover thickness.1,28 The bottom
line is that in general, the crossover value depends on many
parameters, with few simple rules.

Experimentally, values for ξF in Pd1−xNix are as follows.
For x = 0.12, Khaire et al. find an oscillation length ξF2

of 4.4 nm from the critical current in S/F/S junctions with
relatively clean layers. Baladié and Buzdin find ξF = 3.0 nm
by reanalyzing the data of Kontos et al.29,30 in the correct
SIFS junction geometry. For x = 0.14, Cirillo et al. found
ξF = 3.4 nm from a Tc analysis of S/F bilayers,31 and Matsuda
et al. found ξF = 3.5 nm, also from the Tc of bilayers.32

For x = 0.19, the value of the present samples, Cirillo et al.
found a Tc minimum around 3.0 nm in bilayers. Neglecting
magnetic scattering, and noting that the interface transparency
in these bilayers is rather high, this yielded a value of ξF =
2.8 nm9; similarly, a Tc study of SFS trilayers also yielded
ξF = 2.8 nm.33 Note the more or less monotonic decrease of
ξF with increasing Ni concentration. For a symmetric infinite
multilayer with highly transparent interfaces, the crossover can
therefore be expected somewhat below the full transparency
value of 1.2ξF = 3.4 nm. We estimate the transparency effect
to yield 3.1 nm. The thickness used in the experiment is a little
bit lower than that, but this does not appear to be critical.

APPENDIX B: THEORETICAL DETAILS

It is convenient to write the solution of boundary problem
(1)–(5) in the matrix form20

Y(z) = R̂(z)Y(−L/2), (B1)

where Y(z) is the direct sum 
+(z) ⊕ 
′
+(z) ⊕ 
−(z) ⊕


′
−(z), where 
±(z) = (
±,0
±,1 · · · 
±,nD+1)tr are (nD +

1)-dimensional vector functions (by the symbol tr we denote
here the transposition operation) related to Fn by 
±,n =
(Fn ± F−n−1)/2, and R̂(z) is the matrizant of the system
(1)–(4). [The matrizant is the matrix of fundamental system
solutions, which is satisfied by the condition R̂(−L/2) = 1̂, 1̂
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is the unit matrix.] Substitution of (B1) into (5) leads to the
following system of linear uniform algebraic equations:

R̂24,13(L/2)
(−L/2) = 0. (B2)

Here 
 = 
+ ⊕ 
− is a column vector, while

R̂24,13 =
(

R̂2,1R̂2,3

R̂4,1R̂4,3

)
, (B3)

where R̂α,β (α,β = 1, 2, 3, 4) are (nD + 1) × (nD + 1) matrix
blocks of matrix R̂.

The condition of existence of nontrivial solutions of the
system (B2) gives the characteristic equation in the form

det[R̂24,13(L/2)] = 0. (B4)

The matrizant R̂ in Eq. (B4) can be found in explicit form and
is expressed in terms of the product of the matrizants of S-(Ŝ)
and F-(M̂) layers and the matrices ̂SF , ̂FS determined by
the matching conditions (3), (4). In particular for the structures
F/Nbl(S/F) the matrizant, which is connected vectors Y(−L/2)
and Y(L/2), has the form

R̂(L/2) = M̂(dF )[̂FS Ŝ(dS)̂SF M̂(dF )]Nbl . (B5)

Matrices Ŝ, M̂, and ̂SF (FS) can be written as

Ŝ(z) =
(
ĈŜ+(z)Ĉ tr 0̂

0̂ Ŝ−(z)

)
(B6)

and matrices Ŝ+(z) and Ŝ−(z) in (B6) are given by

Ŝ±(z) =
(

diag[cosh(k±
n z)] diag[(k±

n )−1 sinh(k±
n z)]

diag[k±
n sinh(k±

n z)] diag[cosh(k±
n z)]

)
.

(B7)

Here diag[an] is diagonal matrix with the main diago-
nal elements a0,a1, . . . ,anD

; k+
n = ξ−1

S

√−2T μn/TcS , k−
n =

ξ−1
S

√
(2n + 1)T/TcS , where μn ≡ μn(T ) are the roots of the

equation

ψ

(
ωD

2πT
+ μ + 1

)
− ψ

(
1

2
+ μ

)

= ψ

(
ωD

2πTcS

+ 1

)
− ψ

(
1

2

)
, (B8)

where ψ(t) is the digamma function.
The matrix Ĉ in (B6) has the form

Ĉ =
(

Ĉ 0̂

0̂ Ĉ

)
,

where Ĉ is an orthogonal matrix, which is intended by vectors

cnm = 2sm

2n + 1 + 2μm

, (B9)

containing the normalized coefficients

sm =
[ nD∑

l=0

4

(2l + 1 + 2μm)2

]−1/2

. (B10)

For matrizants of the F layer it is easy to get

M̂(z) =
(

Re[m̂(z)] ıIm[m̂(z)]

ıIm[m̂(z)] Re[m̂(z)]

)
, (B11)

where

m̂(z) =
(

diag[cosh(κnz)] diag[(κn)−1 sinh(κnz)]

diag[κn sinh(κnz)] diag[cosh(κnz)]

)
,

(B12)

and the characteristic lengths κn are given by the following
formula:

κn = 1

ξ ∗
F

√
ıEex + ωn

πTcS

. (B13)

Finally, from (3) and (4) it follows:

̂FS(SF ) =
(

P̂FS(SF ) 0̂

0̂ P̂FS(SF )

)
, (B14)

where

P̂FS =
(

1̂ γbξ
∗
F p−11̂

0̂ p−11̂

)
, P̂SF =

(
1̂ γbξ

∗
F 1̂

0̂ p1̂ = .

)
(B15)

In (B15) the parameter p is the ratio of normal resistivities
ρS/ρF , and the unit and zero matrices have (nD + 1) dimen-
sionality.

Thereby, the equations (B1)–(B15) determine the full
solution of the boundary problem (1)–(5). From the char-
acteristic equation (B4) and from Eq. (B2) one can get
the T (k) eigenvalue set and the corresponding eigenvectors

(k)(−L/2), respectively. After that, making use of (B1),
it is possible to find the eigenvector functions 
(k)(z). The
largest eigenvalue from the T (k) eigenvalue set is the critical
temperature Tc of multilayer structure.

In an experiment, to get information about Tc, it is necessary
to apply a measurement (transport) current Jx in the direction
parallel to the S-F boundary planes,for example, along the
OX axis. To find out the spatial distribution of this current
in the direction perpendicular to the S-F interfaces direction
(OZ) we should take into account that this current is small.
In first approximation we can then neglect the suppression
of the 
± functions by this current and need not take
into consideration the items in Eqs. (1) and (2) which are
responsible for this depairing effect. We can further suppose
that the existence of Jx can be described by introducing factors
exp(ikx) independent of ω in all 
± functions with the wave
vector k is proportional to the condensate superfluid velocity.

Substitution of that form of solution into an expression for
the supercurrent density1,34,35

J = 4πT

ieρ(z)
(
+∗tr∇
+ − 
−∗tr∇
− − c.c.), (B16)

results in Jx(z) in the form

Jx(z) = 8kπT

eρ(z)
(
+∗tr
+ − 
−∗tr
−). (B17)

Taking into account that for a given eigenvalue of the critical
temperature T (k) there is the eigenvector function 
(k)(z), we
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can conclude that for every T (k) there is a well-defined spatial
current distribution J (k)

x (z). It is necessary to mention that the
existence of 
−(z) component in (B17) under certain condi-
tions may lead to an alternation of sign of Jx(z) with change of

coordinate z, that is to generation of countercurrents in the S-F
multilayer structures. This effect is the consequence of the ex-
istence of exchange interactions in F layers. In S-N multilayers

−(z) is identically zero and these countercurrents do not exist.
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and A. Palevski, Phys. Rev. B 73, 174506 (2006).

18K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970).
19M. Y. Kuprianov and V. F. Lukichev, Zh. Eksp. Teor. Phys. 94, 139

(1988) [Sov. Phys. JETP 67, 1163 (1988)].
20V. N. Kushnir and M. Yu. Kupriyanov, Pis’ma v Zh. Eksp. Teor.

Fiz. 93, 597 (2011).
21Ya. V. Fominov, N. M. Chtchelkatchev, and A. A. Golubov, Phys.

Rev. B 66, 014507 (2002).
22A. Buzdin and A. E. Koshelev, Phys. Rev. B 67, 220504 (2003).
23W. Braunisch, N. Knauf, V. Kataev, S. Neuhausen, A. Grütz,
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