The Stability Box in Interval Data for Minimizing the Sum of Weighted Completion Times.

Conference Paper • January 2011
Source: DBLP
CITATONS

CITATIONS
3

Yuri N. Sotskov
United Institute Of Informatics Problems
135 PUBLICATIONS 1,482 CITATIONS

SEE PROFILE
4 authors, including:

READS

30

Frank Werner

Otto-von-Guericke-Universität Magdeburg
346 PUBLICATIONS 2,588 CITATIONS

SEE PROFILE

THE STABILITY BOX IN INTERVAL DATA FOR MINIMIZING THE SUM OF WEIGHTED COMPLETION TIMES

Yuri N. Sotskov
United Institute of Informatics Problems, National Academy of Sciences of Belarus, Surganova Str 6, Minsk, Belarus
Natalja G. Egorova
United Institute of Informatics Problems, National Academy of Sciences of Belarus, Surganova Str 6, Minsk, Belarus
Tsung-Chyan Lai
Department of Business Administration, National Taiwan University, Roosevelt Rd 85, Taipei, Taiwan

Frank Werner
Faculty of Mathematics, Otto-von-Guericke-University, Magdeburg, Germany
Keywords: Single-machine scheduling, Uncertain data, Total weighted flow time, Stability analysis.
Abstract: We consider a single-machine scheduling problem, in which the processing time of a job can take any value from a given segment. The criterion is to minimize the sum of weighted completion times of the n jobs, a positive weight being associated with a job. For a job permutation, we study the stability box, which is a subset of the stability region. We derive an $O(n \log n)$ algorithm for constructing a job permutation with the largest volume and dimension of a stability box. The efficiency of a permutation with the largest dimension and volume of a stability box is demonstrated via a simulation on a set of randomly generated instances with $1000 \leq n \leq 2000$. If several permutations have the largest volume of a stability box, the developed algorithm selects one of them due to one of three simple heuristics: a lower-point heuristic, an upper-point heuristic or a mid-point heuristic.

1 INTRODUCTION

In a real-life scheduling problem, the numerical data are often uncertain. The stochastic method (Pinedo, 2002) or the fuzzy method (Slowinski and Hapke, 1999) are used when the job processing times may be defined as random variables or as fuzzy numbers. If the processing times can be defined neither as random variables with known probability distributions nor as fuzzy numbers with known membership functions, other methods are needed to solve a scheduling problem under uncertainty (Daniels and Kouvelis, 1995; Sabuncuoglu and Goren, 2009; Sotskov et al., 2010). In particular, the robust method (Daniels and Kouvelis, 1995) assumes that the decision-maker prefers a schedule hedging against the worst-case scenario among possible realizations of the job processing times. The stability method (Lai and Sotskov, 1999; Lai et al., 1997; Sotskov et al., 2010) combines a stability analysis with a multi-stage scheduling decision framework on the basis of the data obtained while some jobs have been completed.

In this paper, we implement the stability method for a single-machine problem with interval processing times of the n jobs (Section 2). In Section 3, we derive an $O(n \log n)$ algorithm for constructing a job permutation with the largest volume of a stability box. An example is considered in Subsection 3.1. Computational results are presented in Section 4. We conclude with Section 5.

2 PROBLEM SETTING

A set of jobs $\mathcal{I}=\left\{J_{1}, \ldots, J_{n}\right\}, n \geq 2$, has to be processed on a single machine, a positive weight w_{i} being given for a job $J_{i} \in \mathcal{I}$. The processing time p_{i} of a job J_{i} can take any real value from a given segment $\left[p_{i}^{L}, p_{i}^{U}\right], 0 \leq p_{i}^{L} \leq p_{i}^{U}$. The exact value $p_{i} \in\left[p_{i}^{L}, p_{i}^{U}\right]$ may remain unknown until the completion of job J_{i}.

Let $T=\left\{p \in R_{+}^{n} \mid p_{i}^{L} \leq p_{i} \leq p_{i}^{U}, i \in\{1, \ldots, n\}\right\}$ denote the set of vectors $p=\left(p_{1}, \ldots, p_{n}\right)$ (scenarios) of the possible job processing times. $S=\left\{\pi_{1}, \ldots, \pi_{n!}\right\}$ denotes the set of permutations $\pi_{k}=\left(J_{k_{1}}, \ldots, J_{k_{n}}\right)$ of the jobs \mathcal{I}. Problem $1\left|p_{i}^{L} \leq p_{i} \leq p_{i}^{U}\right| \sum w_{i} C_{i}$ is to find an optimal permutation $\pi_{t} \in S$:

$$
\begin{equation*}
\sum_{J_{i} \in \mathcal{I}} w_{i} C_{i}\left(\pi_{t}, p\right)=\gamma_{p}^{t}=\min _{\pi_{k} \in S}\left\{\sum_{J_{i} \in \mathcal{I}} w_{i} C_{i}\left(\pi_{k}, p\right)\right\} \tag{1}
\end{equation*}
$$

Hereafter, $C_{i}\left(\pi_{k}, p\right)=C_{i}$ is the completion time of job $J_{i} \in \mathcal{I}$ in a semi-active schedule defined by π_{k}.
Since a factual scenario $p \in T$ is unknown before scheduling, the completion time C_{i} of a job $J_{i} \in \mathcal{I}$ can be determined only after the execution of the schedule. Therefore, one cannot calculate the value γ_{p}^{k} of the objective function

$$
\gamma=\sum_{J_{i} \in \mathcal{I}} w_{i} C_{i}\left(\pi_{k}, p\right)
$$

for a permutation $\pi_{t} \in S$ before the realization of the schedule. However, one must somehow define a schedule before to realize it. So, problem $1\left|p_{i}^{L} \leq p_{i} \leq p_{i}^{U}\right| \sum w_{i} C_{i}$ of finding an optimal permutation $\pi_{k} \in S$ defined in (1) is not correct. In general, one can find only a heuristic solution (a permutation) to problem $1\left|p_{i}^{L} \leq p_{i} \leq p_{i}^{U}\right| \sum w_{i} C_{i}$ the efficiency of which may be estimated either analytically or via simulation.

In the deterministic case, when a scenario $p \in T$ is fixed before scheduling (i.e., equalities $p_{i}^{L}=p_{i}^{U}=p_{i}$ hold for each job $J_{i} \in \mathcal{J}$), problem $1\left|p_{i}^{L} \leq p_{i} \leq p_{i}^{U}\right| \sum w_{i} C_{i}$ reduces to the classical problem $1 \| \sum w_{i} C_{i}$. In contrast to the uncertain problem $1\left|p_{i}^{L} \leq p_{i} \leq p_{i}^{U}\right| \sum w_{i} C_{i}$, problem $1 \| \sum w_{i} C_{i}$ is called deterministic. Problem $1 \| \sum w_{i} C_{i}$ is correct and can be solved exactly in $O(n \log n)$ time (Smith, 1956) due to the necessary and sufficient condition (2) for the optimality of a permutation $\pi_{k}=\left(J_{k_{1}}, \ldots, J_{k_{n}}\right) \in S$:

$$
\begin{equation*}
\frac{w_{k_{1}}}{p_{k_{1}}} \geq \ldots \geq \frac{w_{k_{n}}}{p_{k_{n}}} \tag{2}
\end{equation*}
$$

where $p_{k_{i}}>0$ for each job $J_{k_{i}} \in \mathcal{I}$. Using the sufficiency of condition (2), problem $1 \| \sum w_{i} C_{i}$ can be solved to optimality by the weighted shortest processing time rule: process the jobs \mathcal{I} in non-increasing order of their weight-to-process ratios $\frac{w_{k}}{p_{k_{i}}}, J_{k_{i}} \in \mathcal{I}$.

3 THE STABILITY BOX

In (Sotskov and Lai, 2011), the stability box $\mathcal{S B}\left(\pi_{k}, T\right)$ within a set of scenarios T has been defined for a permutation $\pi_{k}=\left(J_{k_{1}}, \ldots, J_{k_{n}}\right) \in S$. To present the definition of $\mathcal{S B}\left(\pi_{k}, T\right)$, we need the following notations. Let $\mathcal{I}\left(k_{i}\right)=\left\{J_{k_{1}}, \ldots, J_{k_{i-1}}\right\}, \mathcal{I}\left[k_{i}\right]=\left\{J_{k_{i+1}}, \ldots, J_{k_{n}}\right\} . S_{k_{i}}$ is the set of permutations $\left(\pi\left(\mathcal{I}\left(k_{i}\right)\right), J_{k_{i}}, \pi\left(\mathcal{I}\left[k_{i}\right]\right)\right) \in S, \pi\left(\mathcal{I}^{\prime}\right)$ denoting a permutation of the jobs $\mathscr{I}^{\prime} \subset \mathcal{I} . N_{k}$ is a subset of $N=\{1, \ldots, n\}$. The notation $1|p| \sum w_{i} C_{i}$ is used for indicating an instance with a fixed scenario $p \in T$ of the deterministic problem $1 \| \sum w_{i} C_{i}$.

Definition 1 (Sotskov and Lai, 2011) The maximal closed rectangular box

$$
\mathcal{S B}\left(\pi_{k}, T\right)=\times_{k_{i} \in N_{k}}\left[l_{k_{i}}, u_{k_{i}}\right] \subseteq T
$$

is a stability box of permutation $\pi_{k}=\left(J_{k_{1}}, \ldots, J_{k_{n}}\right) \in S$, if permutation $\pi_{e}=\left(J_{e_{1}}, \ldots, J_{e_{n}}\right) \in S_{k_{i}}$ being optimal for the instance $1|p| \sum w_{i} C_{i}$ with a scenario $p=\left(p_{1}, \ldots, p_{n}\right) \in T$ remains optimal for the instance $1\left|p^{\prime}\right| \sum w_{i} C_{i}$ with a scenario

$$
p^{\prime} \in\left\{\times_{j=1, j \neq i}^{n}\left[p_{k_{j}}, p_{k_{j}}\right]\right\} \times\left[l_{k_{i}}, u_{k_{i}}\right]
$$

for each $k_{i} \in N_{k}$. If there does not exist a scenario $p \in T$ such that permutation π_{k} is optimal for the instance $1|p| \sum w_{i} C_{i}$, then $\mathcal{S B}\left(\pi_{k}, T\right)=\emptyset$.

For any scheduling instance, the stability box is a subset of the stability region (Sotskov et al., 1998). However, we substitute the stability region by the stability box, since the latter is easy to compute.

3.1 Illustrative example

For the sake of simplicity of the calculation, we consider the special case $1\left|p_{i}^{L} \leq p_{i} \leq p_{i}^{U}\right| \Sigma C_{i}$ of problem $1\left|p_{i}^{L} \leq p_{i} \leq p_{i}^{U}\right| \sum w_{i} C_{i}$ when each job $J_{i} \in \mathcal{I}$ has a weight w_{i} equal to one. From condition (2), it follows that the deterministic problem $1 \| \sum C_{i}$ can be solved to optimality by the shortest processing time rule: process the jobs in non-decreasing order of their processing times $p_{k_{i}}, J_{k_{i}} \in \mathcal{I}$. A set of scenarios T for Example 1 of problem $1\left|p_{i}^{L} \leq p_{i} \leq p_{i}^{U}\right| \sum C_{i}$ is defined in columns 1 and 2 in Table 1.

Table 1: Data for calculating $\mathcal{S B}\left(\pi_{1}, T\right)$ for Example 1.

	1	2	3	4	5	6	7	8
i	p_{i}^{L}	p_{i}^{U}	$\frac{w_{i}}{p_{i}^{U}}$	$\frac{w_{i}}{p_{i}^{L}}$	d_{i}^{-}	d_{i}^{+}	$\frac{w_{i}}{d_{i}^{+}}$	$\frac{w_{i}}{d_{i}^{-}}$
1	2	3	$\frac{1}{3}$	0.5	1	0.5	2	1
2	1	9	$\frac{1}{9}$	1	$\frac{1}{6}$	$\frac{1}{3}$	3	6
3	8	8	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{6}$	$\frac{1}{9}$	9	6
4	6	10	0.1	$\frac{1}{6}$	0.1	$\frac{1}{9}$	9	10
5	11	12	$\frac{1}{12}$	$\frac{1}{11}$	0.1	$\frac{1}{11}$	11	10
6	10	19	$\frac{1}{19}$	0.1	$\frac{1}{15}$	$\frac{1}{12}$	12	15
7	17	19	$\frac{1}{19}$	$\frac{1}{17}$	$\frac{1}{15}$	$\frac{1}{19}$	19	15
8	15	20	$\frac{1}{20}$	$\frac{1}{15}$	$\frac{1}{20}$	$\frac{1}{19}$	19	20

In (Sotskov and Lai, 2011), formula (8) has been proven. To use it for calculating the stability box $\mathcal{S B}\left(\pi_{k}, T\right)$, one has to define for each job $J_{k_{i}} \in \mathcal{I}$ the maximal range $\left[l_{k_{i}}, u_{k_{i}}\right]$ of possible variations of the processing time $p_{k_{i}}$ preserving the optimality of permutation π_{k} (see Definition 1).

Due to the additivity of the objective function

$$
\gamma=\sum_{J_{i} \in \mathcal{I}} w_{i} C_{i}\left(\pi_{k}, p\right),
$$

the lower bound $d_{k_{i}}^{-}$on the maximal range of possible variations of the weight-to-process ratio $\frac{w_{k_{i}}}{p_{k_{i}}}$ preserving the optimality of permutation $\pi_{k}=\left(J_{k_{1}}, \ldots, J_{k_{n}}\right) \in S$ is calculated as follows:

$$
\begin{gather*}
d_{k_{i}}^{-}=\max \left\{\frac{w_{k_{i}}}{p_{k_{i}}^{U}}, \max _{i<j \leq n}\left\{\frac{w_{k_{j}}}{p_{k_{j}}^{L}}\right\}\right\}, i \in\{1, \ldots, n-1\}, \tag{3}\\
d_{k_{n}}^{-}=\frac{w_{k_{n}}}{p_{k_{n}}^{U}} \tag{4}
\end{gather*}
$$

The upper bound $d_{k_{i}}^{+}, J_{k_{i}} \in \mathcal{I}$, on the maximal range of possible variations of the weight-to-process ratio $\frac{w_{k_{i}}}{p_{k_{i}}}$ preserving the optimality of π_{k} is calculated as

$$
\begin{gather*}
d_{k_{i}}^{+}=\min \left\{\frac{w_{k_{i}}}{p_{k_{i}}^{L}}, \min _{1 \leq j<i}\left\{\frac{w_{k_{j}}}{p_{k_{j}}^{U}}\right\}\right\}, i \in\{2, \ldots, n\}, \tag{5}\\
d_{k_{1}}^{+}=\frac{w_{k_{1}}}{p_{k_{1}}^{L}} \tag{6}
\end{gather*}
$$

For Example 1, the values $d_{k_{i}}^{-}, i \in\{1, \ldots, 8\}$, defined in (3) and (4) are given in column 5 of Table 1. The values $d_{k_{i}}^{+}$defined in (5) and (6) are given in column 6.
Theorem 1 (Sotskov and Lai, 2011) If there is no job $J_{k_{i}}, i \in\{1, \ldots, n-1\}$, in permutation $\pi_{k}=\left(J_{k_{1}}, \ldots, J_{k_{n}}\right) \in S$ such that inequality

$$
\begin{equation*}
\frac{w_{k_{i}}}{p_{k_{i}}^{L}}<\frac{w_{k_{j}}}{p_{k_{j}}^{U}} \tag{7}
\end{equation*}
$$

holds for at least one job $J_{k_{j}}, j \in\{i+1, \ldots, n\}$, then the stability box $\mathcal{S B}\left(\pi_{k}, T\right)$ is calculated as

$$
\begin{equation*}
\mathcal{S B}\left(\pi_{k}, T\right)=\times_{d_{k_{i}}^{-} \leq d_{k_{i}}^{+}}\left[\frac{w_{k_{i}}}{d_{k_{i}}^{+}}, \frac{w_{k_{i}}}{d_{k_{i}}^{-}}\right] . \tag{8}
\end{equation*}
$$

Otherwise, $\mathcal{S B}\left(\pi_{k}, T\right)=\emptyset$.
Using Theorem 1, we can calculate the stability box $\mathcal{S B}\left(\pi_{1}, T\right)$ of permutation $\pi_{1}=\left(J_{1}, \ldots, J_{8}\right)$ in Example 1. We convince that there is no job $J_{k_{i}}, i \in\{1, \ldots, n-1\}$, with inequality (7). Due to Theorem $1, \mathcal{S B}\left(\pi_{1}, T\right) \neq \emptyset$. The bounds $\frac{w_{k_{i}}}{d_{k_{i}}^{+}}$and $\frac{w_{k_{i}}}{d_{k_{i}}^{-}}$on the maximal possible variations of the processing times $p_{k_{i}}$ preserving the optimality of π_{1} are given in columns 7 and 8 of Table 1. The maximal ranges (segments) of possible variations of the job processing times within the stability box $\mathcal{S B}\left(\pi_{1}, T\right)$ are dashed in a coordinate system in Fig. 1, where the abscissa axis is used for indicating the job processing times and the ordinate axis for the jobs from set \mathcal{I}.

Using formula (8), we obtain the stability box for permutation π_{1} :

$$
\mathcal{S B}\left(\pi_{1}, T\right)=\left[\frac{w_{2}}{d_{2}^{+}}, \frac{w_{2}}{d_{2}^{-}}\right] \times\left[\frac{w_{4}}{d_{4}^{+}}, \frac{w_{4}}{d_{4}^{-}}\right] \times\left[\frac{w_{6}}{d_{6}^{+}}, \frac{w_{6}}{d_{6}^{-}}\right] \times\left[\frac{w_{8}}{d_{8}^{+}}, \frac{w_{8}}{d_{8}^{-}}\right]=[3,6] \times[9,10] \times[12,15] \times[19,20] .
$$

Each job $J_{i}, i \in\{1,3,5,7\}$, has an empty range of possible variations of the time p_{i} preserving the optimality of permutation π_{1} since $d_{i}^{-}>d_{i}^{+}$(see columns 5 and 6 in Table 1). The dimension of the stability box $\mathcal{S B}\left(\pi_{1}, T\right)$ is equal to $4=8-4$. The volume of this stability box is equal to $9=3 \cdot 1 \cdot 3 \cdot 1$.

For practice, the value of the relative volume of a stability box is more useful than its absolute value. Hereafter, the relative volume of a stability box is defined as the product of the fractions

$$
\begin{equation*}
\left(\frac{w_{i}}{d_{i}^{-}}-\frac{w_{i}}{d_{i}^{+}}\right):\left(p_{i}^{U}-p_{i}^{L}\right) \tag{9}
\end{equation*}
$$

for the jobs $J_{i} \in \mathcal{I}$ having non-empty ranges $\left[l_{i}, u_{i}\right]$ of possible variations of the time p_{i} (inequality $d_{i}^{-} \leq d_{i}^{+}$must hold for such a job $J_{i} \in \mathcal{I}$).

The relative volume of the stability box for permutation π_{1} in Example 1 is calculated as follows:

$$
\frac{3}{8} \cdot \frac{1}{4} \cdot \frac{3}{9} \cdot \frac{1}{5}=\frac{1}{160}
$$

The absolute volume of the whole box of the scenarios T is equal to $2880=1 \cdot 8 \cdot 4 \cdot 1 \cdot 9 \cdot 2 \cdot 5$. The relative volume of the rectangular box T is defined as 1 .

Figure 1: The maximal ranges $\left[l_{i}, u_{i}\right]$ of possible variations of the processing times $p_{i}, i \in\{2,4,6,8\}$, within the stability box $\mathcal{S B}\left(\pi_{1}, T\right)$ are dashed.

3.2 Properties of a stability box

We investigate some properties of a stability box, which allow us to derive an $O(n \log n)$ algorithm for finding a permutation $\pi_{t} \in S$ with the largest volume of a stability box

$$
\mathcal{S B}\left(\pi_{t}, T\right)=\times_{t_{i} \in N_{t}}\left[l_{t_{i}}, u_{t_{i}}\right] \subseteq T
$$

Definition 1 implies the following claim.
Property 1 For any jobs $J_{i} \in \mathcal{I}$ and $J_{v} \in \mathcal{I}, v \neq i$,

$$
\left(\frac{w_{i}}{u_{i}}, \frac{w_{i}}{l_{i}}\right) \curvearrowright\left[\frac{w_{v}}{p_{v}^{U}}, \frac{w_{v}}{p_{v}^{L}}\right]=\varnothing
$$

Let $S^{\max }$ be the set of all permutations in S with the largest volume and dimension of a stability box. Using Property 1 , we shall show how to define the relative order of a job $J_{i} \in \mathcal{I}$ with respect to a job $J_{v} \in \mathcal{I}$ for any $v \neq i$ in a permutation $\pi_{t}=\left(J_{t_{1}}, \ldots, J_{t_{n}}\right) \in S^{\max }$. To this end, we have to treat all three possible cases (I)-(III) for the intersection of the open interval $\left(\frac{w_{i}}{p_{i}^{U}}, \frac{w_{i}}{p_{i}^{L}}\right)$ and the closed interval $\left[\frac{w_{v}}{p_{v}^{V}}, \frac{w_{v}}{p_{v}^{L}}\right]$.

Case (I) is defined by the inequalities

$$
\begin{equation*}
\frac{w_{v}}{p_{v}^{U}} \leq \frac{w_{i}}{p_{i}^{U}}, \frac{w_{v}}{p_{v}^{L}} \leq \frac{w_{i}}{p_{i}^{L}} \tag{10}
\end{equation*}
$$

provided that at least one of inequalities (10) is strict.
In case (I), the order of the jobs J_{v} and J_{i} in permutation $\pi_{t} \in S^{\max }$ may be defined by a strict inequality from (10): job J_{v} proceeds job J_{i} in permutation π_{t}. Indeed, if job J_{i} proceeds job J_{v}, then the maximal ranges $\left[l_{i}, u_{i}\right]$ and $\left[l_{v}, u_{v}\right]$ of possible variations of the processing times p_{i} and p_{v} preserving the optimality of $\pi_{k} \in S$ are both empty (it follows from equalities $(3)-(6)$ and (8)). The following property has been proven.

Property 2 For case (I), there exists a permutation $\pi_{t} \in S^{\max }$, in which job J_{v} proceeds job J_{i}.
Case (II) is defined by the equalities

$$
\begin{equation*}
\frac{w_{v}}{p_{v}^{U}}=\frac{w_{i}}{p_{i}^{U}}, \frac{w_{v}}{p_{v}^{L}}=\frac{w_{i}}{p_{i}^{L}} \tag{11}
\end{equation*}
$$

Property 3 For case (II), there exists a permutation $\pi_{t} \in S^{\max }$, in which jobs J_{i} and J_{v} are located adjacently: $i=t_{r}$ and $v=t_{r+1}$.

Proof: The maximal ranges $\left[l_{i}, u_{i}\right]$ and $\left[l_{v}, u_{v}\right]$ of possible variations of the processing times p_{i} and p_{v} preserving the optimality of $\pi_{k} \in S$ are both empty. If jobs J_{i} and J_{v} are located adjacently, then the maximal range $\left[l_{u}, u_{u}\right]$ of possible variation of the processing time p_{u} for any job $J_{u} \in \mathcal{I} \backslash\left\{J_{i}, J_{v}\right\}$ preserving the optimality of π_{k} is no less than that if at least one job $J_{w} \in \mathcal{I} \backslash\left\{J_{i}, J_{v}\right\}$ is located between jobs J_{i} and J_{v}.

If equalities (11) hold, one can restrict the search for a permutation $\pi_{t} \in S^{\max }$ by a subset of permutations in S with adjacently located jobs J_{i} and J_{v} (Property 3). Moreover, the order of such jobs $\left\{J_{i}, J_{v}\right\}$ does not influence the volume of the stability box and its dimension.
Remark 1 Due to Property 3, while looking for a permutation $\pi_{t} \in S^{\max }$, we shall treat a pair of jobs $\left\{J_{i}, J_{v}\right\}$ satisfying (11) as one job (either job J_{i} or J_{v}).

Case (III) is defined by the strict inequalities

$$
\begin{equation*}
\frac{w_{v}}{p_{v}^{U}}>\frac{w_{i}}{p_{i}^{U}}, \frac{w_{v}}{p_{v}^{L}}<\frac{w_{i}}{p_{i}^{L}} . \tag{12}
\end{equation*}
$$

For job $J_{i} \in \mathcal{I}$ satisfying case (III), let $\mathcal{I}(i)$ denote the set of all jobs $J_{v} \in \mathcal{I}$, for which (12) holds.
Property 4 (i) For a fixed permutation $\pi_{k} \in S$, job $J_{i} \in \mathcal{I}$ may have at most one maximal segment $\left[l_{i}, u_{i}\right]$ of possible variations of the processing time $p_{i} \in\left[p_{i}^{L}, p_{i}^{U}\right]$ preserving the optimality of permutation π_{k}.
(ii) For the whole set of permutations S, only in case (III), a job $J_{i} \in \mathcal{I}$ may have more than one (namely: $|\mathcal{I}(i)|+1>1)$ maximal segments $\left[l_{i}, u_{i}\right]$ of possible variations of the time $p_{i} \in\left[p_{i}^{L}, p_{i}^{U}\right]$ preserving the optimality of a particular permutation from set S.
Proof: Part (i) of Property 4 follows from the fact that a non-empty maximal segment $\left[l_{i}, u_{i}\right]$ (if any) is uniquely determined by the subset $\mathcal{I}^{-}(i)$ of jobs located before job J_{i} in permutation π_{k} and the subset $\mathcal{I}^{+}(i)$ of jobs located after job J_{i}. The subsets $\mathscr{I}^{-}(i)$ and $\mathscr{J}^{+}(i)$ are uniquely determined for fixed $\pi_{k} \in S$ and $J_{i} \in \mathcal{I}$.

Part (ii). If the open interval $\left(\frac{w_{i}}{p_{i}^{U}}, \frac{w_{i}}{p_{i}^{L}}\right)$ does not intersect with the closed interval $\left[\frac{w_{v}}{p_{v}^{V}}, \frac{w_{v}}{p_{v}^{L}}\right], J_{v} \in \mathcal{I}$, then there exists a permutation $\pi_{t} \in S^{\max }$ with a maximal segment $\left[l_{i}, u_{i}\right]=\left[w_{i} / p_{i}^{U}, w_{i} / p_{i}^{L}\right]$ preserving the optimality of π_{t}. Each job $J_{v} \in \mathcal{I}$ with a non-empty intersection

$$
\left(\frac{w_{i}}{p_{i}^{U}}, \frac{w_{i}}{p_{i}^{L}}\right) \bigcap\left[\frac{w_{v}}{p_{v}^{U}}, \frac{w_{v}}{p_{v}^{L}}\right] \neq 0
$$

satisfying inequalities (10) (case (I)) or equalities (11) (case (II)) may shorten the above maximal segment $\left[l_{i}, u_{i}\right]$ and cannot generate a new possible maximal segment. In case (III), a job J_{v} satisfying inequalities (12) may generate a new possible maximal segment $\left[l_{i}, u_{i}\right]$ just for job J_{i} satisfying the same inequalities (12) as job J_{v} does. So, the cardinality $|\mathcal{L}(i)|$ of the whole set $\mathcal{L}(i)$ of such segments $\left[l_{i}, u_{i}\right]$ is not greater than $|\mathcal{J}(i)|+1$.

Let \mathcal{L} denote the set of all maximal segments $\left[l_{i}, u_{i}\right]$ of possible variations of the processing times p_{i} for all jobs $J_{i} \in \mathcal{I}$ preserving the optimality of permutation $\pi_{t} \in S^{\max }$. Using Property 4 and induction on the cardinality $|\mathcal{I}(i)|$, we proved
Property $5|\mathcal{L}| \leq n$.

3.3 A job permutation with the largest volume of a stability box

A job permutation with larger volume and dimension of the stability box seems to be more efficient than one with a smaller volume and (or) dimension.

Algorithm MAX-STABOX

Input:	Segments $\left[p_{i}^{L}, p_{i}^{U}\right]$, weights $w_{i}, J_{i} \in \mathcal{I}$.
Output:	Permutation $\pi_{t} \in S^{\text {max }}$, stability box $\mathcal{S B}\left(\pi_{t}, T\right)$.

Step 1: \quad Construct the lists $\mathcal{M}(U)=\left(J_{u_{1}}, \ldots, J_{u_{n}}\right)$ and $\mathcal{W}(U)=\left(\frac{w_{u_{1}}}{p_{u_{1}}^{U}}, \ldots, \frac{w_{u_{n}}}{p_{u_{n}}^{U}}\right)$ in non-decreasing order of $\frac{w_{u_{r}}}{p_{u_{r}}^{U}}$. Ties are broken via increasing $\frac{w_{u_{r}}}{p_{u_{r}}^{L}}$.
Step 2: Construct the lists $\mathcal{M}(L)=\left(J_{l_{1}}, \ldots, J_{l_{n}}\right)$ and $\mathcal{W}(L)=\left(\frac{w_{l_{1}}}{p_{l_{1}}^{L}}, \ldots, \frac{w_{l_{l}}}{p_{l_{n}}^{L}}\right)$ in non-decreasing order of

```
Step 3: \(\quad\) for \(j=1\) to \(j=n\) do compare \(J_{u_{j}}\) and \(J_{l_{j}}\)
Step 4: \(\quad\) if \(J_{u_{j}}=J_{l_{j}}\) then job \(J_{u_{j}}\) has to be located in position \(j\) in permutation \(\pi_{t} \in S^{\max }\)
    go to step 8 .
Step 5: \(\quad\) else job \(J_{u_{j}}=J_{i}\) satisfies (12). Construct the set \(\mathcal{I}(i)=\left\{J_{u_{r+1}}, \ldots, J_{l_{k+1}}\right\}\) of all jobs \(J_{v}\)
    satisfying (12), where \(J_{i}=J_{u_{j}}=J_{l_{k}}\).
Step 6: \(\quad\) Choose the largest range \(\left[l_{u_{j}}, u_{u_{i}}\right]\) among those generated for job \(J_{u_{j}}=J_{i}\).
Step 7: \(\quad\) Partition the set \(\mathscr{g}(i)\) into the subsets \(\mathscr{g}^{-}(i)\) and \(\mathscr{I}^{+}(i)\) generating the largest range \(\left[l_{u_{j}}, u_{u_{j}}\right]\).
    Set \(j=k+1\) go to step 4 .
Step 8: \(\quad\) Set \(j:=j+1\) go to step 4.
    end for
Step 9: \(\quad\) Construct permutation \(\pi_{t} \in S^{m a x}\) via putting the jobs \(\mathcal{I}\) in the positions defined in steps \(3-8\).
Step 10: \(\quad\) Construct the stability box \(\mathcal{S} \mathcal{B}\left(\pi_{t}, T\right)\) using algorithm STABOX from (Sotskov and Lai, 2011).
    Stop.
```

Steps 1 and 2 are based on Property 3 and Remark 1. Step 4 is based on Property 2. Steps 5-7 are based on Property 4, part (ii). Step 9 is based on Property 6.

To prove Property 6, we have to analyze algorithm MAX-STABOX. In steps 1, 2 and 4, all jobs $g^{t}=\left\{J_{i} \mid J_{u_{j}}=\right.$ $\left.J_{i}=J_{l_{i}}\right\}$ having the same position in both lists $\mathscr{M}(U)$ and $\mathcal{M}(L)$ obtain fixed positions in permutation $\pi_{t} \in S^{\max }$. The positions of the remaining jobs $\mathcal{I} \backslash g^{t}$ in permutation π_{t} are determined in steps $5-7$. The fixed order of the jobs \mathcal{g}^{t} may shorten the original segment $\left[p_{i}^{L}, p_{i}^{U}\right]$ of a job $J_{i} \in \mathcal{I} \backslash \mathcal{I}^{t}$ as follows: $\left[\hat{p}_{i}^{L}, \widehat{p}_{i}^{U}\right]$. So, in steps 5-7, the reduced segment $\left[\widehat{p}_{i}^{L}, \widehat{p}_{i}^{U}\right]$ has to be considered instead of segment $\left[p_{i}^{L}, p_{i}^{U}\right]$ for a job $J_{i} \in \mathcal{I} \backslash \boldsymbol{g}^{t}$. Let I^{\prime} denote the maximal subset of set I including exactly one element from each set $I(i)$, for which job $J_{i} \in \mathcal{I}$ satisfies (12).
Property 6 There exists a permutation $\pi_{t} \in S$ with the set $I^{\prime} \subseteq I$ of maximal segments $\left[l_{i}, u_{i}\right]$ of possible variations of the processing time $p_{i}, J_{i} \in \mathcal{I}$, preserving the optimality of permutation π_{t}.
Proof: Due to Property 2 and steps $1-4$ of algorithm MAX-STABOX, the maximal segments $\left[l_{i}, u_{i}\right]$ and $\left[l_{v}, u_{v}\right]$ (if any) of jobs J_{i} and J_{v} satisfying (10) preserve the optimality of permutation $\pi_{t} \in S^{\max }$.

Let \mathscr{J}^{*} denote the set of all jobs J_{i} satisfying (12). It is easy to see that

$$
\bigcap_{J_{i} \in \mathcal{I}}\left(\widehat{p}_{i}^{L}, \widehat{p}_{i}^{U}\right]=\varnothing .
$$

Therefore,

$$
\bigcap_{J_{i} \in \mathcal{I}} \mathcal{I}(i)=\varnothing .
$$

Hence, step 9 is correct: putting the set of jobs \mathcal{I} in the positions defined in steps $3-8$ does not cause any contradiction of the job orders.

Steps 1 and 2 take $O(n \log n)$ time. Due to Properties 4 and 5, steps 6, 7 and 9 take $O(n)$ time. Step 10 takes $O(n \log n)$ time since algorithm STABOX derived in (Sotskov and Lai, 2011) has the same complexity. Thus, the whole algorithm MAX-STABOX takes $O(n \log n)$ time.

Using Algorithm MAX-STABOX, one can show that the permutation $\pi_{1}=\left(J_{1}, \ldots, J_{8}\right)$ has the largest volume of a stability box in Example 1.

Next, we compare $\mathcal{S B}\left(\pi_{1}, T\right)$ with the stability boxes calculated for the permutations obtained by three heuristics defined as follows.

The lower-point heuristic generates an optimal permutation $\pi_{l} \in S$ for the instance $1\left|p^{L}\right| \sum w_{i} C_{i}$ with

$$
p^{L}=\left(p_{1}^{L}, \ldots, p_{n}^{L}\right) \in T .
$$

The upper-point heuristic generates an optimal permutation $\pi_{u} \in S$ for the instance $1\left|p^{U}\right| \sum w_{i} C_{i}$ with

$$
p^{U}=\left(p_{1}^{U}, \ldots, p_{n}^{U}\right) \in T
$$

The mid-point heuristic generates an optimal permutation $\pi_{m} \in S$ for the instance $1\left|p^{M}\right| \sum w_{i} C_{i}$, where

$$
p^{M}=\left(\frac{p_{1}^{U}-p_{1}^{L}}{2}, \ldots, \frac{p_{n}^{U}-p_{n}^{L}}{2}\right) \in T
$$

For Example 1, we obtain $\pi_{l}=\left(J_{2}, J_{1}, J_{4}, J_{3}, J_{6}, J_{5}, J_{8}, J_{7}\right)$ and

$$
\mathcal{S B}\left(\pi_{l}, T\right)=\left[\frac{w_{2}}{d_{2}^{+}}, \frac{w_{2}}{d_{2}^{-}}\right] \times\left[\frac{w_{6}}{d_{6}^{+}}, \frac{w_{6}}{d_{6}^{-}}\right]=[1,2] \times[10,11] .
$$

The volume of the stability box $\mathcal{S B}\left(\pi_{l}, T\right)$ is equal to 1 .
We obtain $\pi_{u}=\left(J_{1}, J_{3}, J_{2}, J_{4}, J_{5}, J_{7}, J_{6}, J_{8}\right)$ and $\pi_{m}=\left(J_{1}, J_{2}, J_{4}, J_{3}, J_{5}, J_{6}, J_{8}, J_{7}\right)$. The volume of the stability box

$$
\mathcal{S B}\left(\pi_{u}, T\right)=\left[\frac{w_{8}}{d_{8}^{+}}, \frac{w_{8}}{d_{8}^{-}}\right]=[19,20] \times[10,11]
$$

is equal to 1 . The volume of the stability box

$$
\mathcal{S B}\left(\pi_{m}, T\right)=\left[\frac{w_{2}}{d_{2}^{+}}, \frac{w_{2}}{d_{2}^{-}}\right] \times\left[\frac{w_{6}}{d_{6}^{+}}, \frac{w_{6}}{d_{6}^{-}}\right]=[3,6] \times[12,15]
$$

is equal to $9=3 \cdot 3$. It is the same volume of the stability box as that of permutation π_{1}. Note that the dimension of the stability box $\mathcal{S B}\left(\pi_{m}, T\right)$ is equal to 2 , while the dimension of the stability box $\mathcal{S B}\left(\pi_{1}, T\right)$ is equal to 4 .

4 COMPUTATIONAL RESULTS

There might be several permutations with the largest dimension and (or) relative volume of a stability box, e.g., since several consecutive jobs in a permutation $\pi_{k} \in S^{\max }$ may have an empty range of possible variations of their weight-to-process ratios. We break ties in ordering such jobs by adopting one of the three obvious heuristics. Algorithm MAX-STABOX combined with the lower-point heuristic, the upper-point heuristic and the mid-point heuristic (see Subsection 3.3) is called Algorithm SL, Algorithm SU and Algorithm SM, respectively.

Note that in the experiments for $10 \leq n \leq 1000$ conducted in (Sotskov and Lai, 2011), the mid-point heuristic outperformed the lower-point heuristic and the upper-point heuristic.

Algorithms SL, Algorithm SU and Algorithm SM were coded in C++ and tested on a PC with AMD Athlon $(\mathrm{tm}) 64$ Processor $3200+$, $2.00 \mathrm{GHz}, 1.96 \mathrm{~GB}$ of RAM. We solved (exactly or approximately) a lot of randomly generated instances. Some of the computational results obtained are presented in Table 2 for randomly generated instances of problem $1\left|p_{i}^{L} \leq p_{i} \leq p_{i}^{U}\right| \sum w_{i} C_{i}$ with

$$
n \in\{1000,1200 \ldots, 2000\}
$$

Each series, which is presented in Table 2, contains 10 instances with the same number n and the same maximal error δ of the random processing times. The number n is given in parenthesis in column 1 in Table 2 before the corresponding set of instances tested.

An integer center C of a segment $\left[p_{i}^{L}, p_{i}^{U}\right]$ was generated using the uniform distribution in the range $[L, U]$: $L \leq C \leq U$. The lower bound p_{i}^{L} was defined as follows:

$$
p_{i}^{L}=C \cdot\left(1-\frac{\delta}{100}\right),
$$

and the upper bound p_{i}^{U} was defined as follows:

$$
p_{i}^{U}=C \cdot\left(1+\frac{\delta}{100}\right)
$$

The maximal possible error of the random processing time (in percentages) is equal to $\delta \%$ given in column 1 in Table 2.

We tested instances of problem $1\left|p_{i}^{L} \leq p_{i} \leq p_{i}^{U}\right| \sum w_{i} C_{i}$ with

$$
\delta \% \in\{0.25 \%, 0.5 \%, 0.75 \%, 1 \%, 2.5 \%, 5 \%, 15 \%, 25 \%\}
$$

The same range $[L, U]$ for the varying center C of the segment $\left[p_{i}^{L}, p_{i}^{U}\right]$ was used for all jobs $J_{i} \in \mathcal{I}$, namely: $L=1$ and $U=100$.

For each job $J_{i} \in \mathcal{I}$, the weight $w_{i} \in R_{+}^{1}$ was uniformly distributed in the range $[1,50]$.

In the experiments, we answered the question of how large the relative error Δ of the value $\gamma_{p^{*}}^{*}$ of the objective function

$$
\gamma=\sum_{i=1}^{n} w_{i} C_{i}
$$

was obtained for the permutation π_{t} with the largest dimension and relative volume of a stability box $\mathcal{S B}\left(\pi_{t}, T\right)$ with respect to the actually optimal objective function value $\gamma_{p^{*}}$ calculated for the actual processing times $p^{*}=$ $\left(p_{1}^{*}, \ldots, p_{n}^{*}\right) \in T$:

$$
\Delta=\frac{\gamma_{p^{*}}-\gamma_{p^{*}}^{t}}{\gamma_{p^{*}}}
$$

In contrast to the weights w_{i}, the actual processing times $p_{i}^{*}, J_{i} \in \mathcal{I}$, were assumed to be unknown before scheduling. Column 2 represents the average largest relative volume of the stability box $\mathcal{S B}\left(\pi_{t}, T\right)$ (see (9) for the definition of a relative stability box).

The average (maximum) error Δ of the value $\gamma_{p^{*}}^{k}$ of the objective function $\gamma=\sum_{i=1}^{n} w_{i} C_{i}$ obtained for the permutation π_{k} with the largest relative volume of a stability box are presented in columns $3-5$ (columns $6-8$). Columns 3, 4 and 5 (columns 6, 7 and 8) present the average (maximal) error Δ for the corresponding series of instances obtained by Algorithm SL, Algorithm SU and Algorithm SM, respectively.

For all series presented in Table 2, the average error Δ of the value $\gamma_{p^{*}}^{k}$ of the objective function $\gamma=\sum_{i=1}^{n} w_{i} C_{i}$ obtained for the permutation π_{k} with the largest relative volume of a stability box combined with the lower-point heuristic, the upper-point heuristic and the mid-point heuristic was not greater than $0.012201,0.012171$ and 0.012187 , respectively (see series of instances with $n=1400$ and $\delta \%=25 \%$).

The maximum error Δ of the value $\gamma_{p^{*}}^{k}$ of the objective function $\gamma=\sum_{i=1}^{n} w_{i} C_{i}$ obtained for the permutation π_{k} with the largest relative volume of a stability box combined with the lower-point heuristic, the upper-point heuristic and the mid-point heuristic was not greater than $0.013244,0.013143$ and 0.013169 , respectively (see the series of instances with $n=1400, \delta \%=25 \%$ and that with $n=1600, \delta \%=25 \%$). In most series tested in our experiments with algorithm MAX-STABOX, Algorithm SM outperformed both Algorithm SL and Algorithm SU.

The CPU-time (column 9) grows slowly with n, and it was not greater than 52.4 s for each instance tested.

5 CONCLUDING REMARKS

In (Sotskov and Lai, 2011), an $O\left(n^{2}\right)$ algorithm has been developed for calculating a permutation $\pi_{t} \in S$ with the largest volume of a stability box $\mathcal{S B}\left(\pi_{t}, T\right)$ with respect to interval data T.

In Section 3, we proved Properties $1-6$ of a stability box $\mathcal{S B}\left(\pi_{t}, T\right)$ allowing us to derive an $O(n \log n)$ algorithm for calculating a permutation π_{t}. The volume of a stability box is an efficient invariant of uncertain interval data, as it is shown in computational experiments on a PC (see Section 4 and Table 2).

ACKNOWLEDGEMENTS

The first and third authors were supported in this research by the National Science Council of Taiwan.

REFERENCES

Daniels, R. and Kouvelis, P. (1995). Robust scheduling to hedge against processing time uncertainty in single stage production. Management Science, V. 41(2):363-376.
Lai, T.-C. and Sotskov, Y. (1999). Sequencing with uncertain numerical data for makespan minimization. Journal of the Operations Research Society, V. 50:230-243.

Lai, T.-C., Sotskov, Y., Sotskova, N., and Werner, F. (1997). Optimal makespan scheduling with given bounds of processing times. Mathematical and Computer Modelling, V. 26(3):67-86.

Pinedo, M. (2002). Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Englewood Cliffs, NJ, USA.
Sabuncuoglu, I. and Goren, S. (2009). Hedging production schedules against uncertainty in manufacturing environment with a review of robustness and stability research. International Journal of Computer Integrated Manufacturing, V. 22(2):138157.

Slowinski, R. and Hapke, M. (1999). Scheduling under Fuzziness. Physica-Verlag, Heidelberg, Germany, New York, USA.
Smith, W. (1956). Various optimizers for single-stage production. Naval Research Logistics Quarterly, V. 3(1):59-66.
Sotskov, Y. and Lai, T.-C. (2011). Minimizing total weighted flow time under uncertainty using dominance and a stability box. Computers \& Operations Research. doi:10.1016/j.cor.2011.02.001.
Sotskov, Y., Sotskova, N., Lai, T.-C., and Werner, F. (2010). Scheduling under Uncertainty. Theory and Algorithms. Belorusskaya nauka, Minsk, Belarus.
Sotskov, Y., Wagelmans, A., and Werner, F. (1998). On the calculation of the stability radius of an optimal or an approximate schedule. Annals of Operations Research, V. 83:213-252.

Table 2: Computational results for randomly generated instances with $[L, U]=[1,100], w_{i} \in[1,50]$ and $n \in\{1000, \ldots, 2000\}$.

8\%	Volume of $\mathcal{S B}\left(\pi_{t}, T\right)$	Average error			Maximal error			$\begin{aligned} & \mathrm{CPU} \\ & \text { time } \end{aligned}$
(Number of jobs)		SL	SU	SM	SL	SU	SM	
($n=1000$)								
0.25\%	1	0	0	0	0	0	0	6.1
0.5\%	1	0	0	0	0	0	0	6.1
0.75\%	≈ 1	0.000038	0.000039	0.000023	0.000044	0.00005	0.000028	6.2
1\%	≈ 1	0.00006	0.000057	0.000042	0.000068	0.000061	0.000046	6.1
2.5\%	0.2043605	0.000183	0.000176	0.000159	0.000214	0.000207	0.000183	6.2
5\%	0.0001695	0.000545	0.000541	0.000524	0.000596	0.000589	0.000578	6.2
15\%	≈ 0	0.004294	0.004288	0.004268	0.004805	0.004794	0.004763	6.4
25\%	≈ 0	0.01174	0.011709	0.011704	0.012772	0.012727	0.012802	6.7
($n=1200$)								
0.25\%	1	0	0	0	0	0	0	10.5
0.5\%	1	0	0	0	0	0	0	10.5
0.75\%	≈ 1	0.000038	0.000038	0.000022	0.000042	0.000041	0.000023	10.7
1\%	≈ 1	0.000059	0.000057	0.000041	0.000065	0.000062	0.000043	10.4
2.5\%	0.0294795	0.000177	0.000172	0.000154	0.000184	0.000181	0.000163	10.8
5\%	0.000009	0.000538	0.000538	0.000518	0.000571	0.000564	0.000554	10.7
15\%	≈ 0	0.004200	0.004199	0.004178	0.004641	0.004654	0.004618	10.9
25\%	≈ 0	0.012056	0.012065	0.012065	0.012637	0.012698	0.01262	11.3
($n=1400$)								
0.25\%	1	0	0	0	0	0	0	16.8
0.5\%	≈ 1	0	0	0	0.000001	0.000001	0.000001	16.9
0.75\%	≈ 1	0.000041	0.000039	0.000023	0.000044	0.000044	0.000029	17.7
1\%	≈ 1	0.00006	0.000059	0.000042	0.000067	0.000063	0.000047	16.8
2.5\%	0.0231771	0.000176	0.000175	0.000154	0.000188	0.000185	0.000162	17.1
5\%	0.0000288	0.00055	0.000537	0.000523	0.000583	0.000573	0.000563	17.1
15\%	≈ 0	0.004417	0.004409	0.004394	0.00459	0.004557	0.004559	17.4
25\%	≈ 0	0.012201	0.012171	0.012187	0.013244	0.013143	0.013155	17.6
($n=1600$)								
0.25\%	1	0	0	0	0	0	0	25
0.5\%	≈ 1	0	0	0	0.000001	0	0.000001	25.1
0.75\%	≈ 1	0.000039	0.000038	0.000022	0.00004	0.000039	0.000024	25
1\%	≈ 1	0.00006	0.000058	0.000041	0.000067	0.000062	0.000047	25.1
2.5\%	0.0291372	0.00018	0.000177	0.000158	0.000194	0.000188	0.000168	25.2
5\%	0.0000068	0.000559	0.000556	0.000539	0.000608	0.000598	0.000574	25.4
15\%	≈ 0	0.004348	0.004343	0.00432	0.004646	0.004646	0.004633	25.9
25\%	≈ 0	0.012032	0.012009	0.01203	0.013109	0.013135	0.013169	26.7
($n=\mathbf{1 8 0 0}$)								
0.25\%	1	0	0	0	0	0	0	36.2
0.5\%	≈ 1	0	0	0	0.000001	0	0.000001	35.6
0.75\%	≈ 1	0.00004	0.00004	0.000023	0.000046	0.000045	0.000026	35.6
1\%	≈ 1	0.00006	0.000059	0.000042	0.000064	0.000065	0.000048	35.7
2.5\%	0.0103524	0.000177	0.000175	0.000156	0.000189	0.000186	0.000165	35.8
5\%	0.0000001	0.000549	0.000541	0.000526	0.000564	0.000575	0.000549	36.1
15\%	≈ 0	0.004359	0.004345	0.004323	0.004515	0.004536	0.00451	35.6
25\%	≈ 0	0.011928	0.011928	0.011936	0.012493	0.012495	0.012492	38.3
($n=2000$)								
0.25\%	1	0	0	0	0	0	0	48.9
0.5\%	1	0	0	0	0	0	0	49.8
0.75\%	≈ 1	0.000039	0.000038	0.000023	0.000042	0.000041	0.000026	48.5
1\%	≈ 1	0.000061	0.00006	0.000043	0.000065	0.000065	0.000046	48.9
2.5\%	0.0175329	0.000178	0.000178	0.000157	0.000191	0.000188	0.00017	49.3
5\%	0.0000001	0.000546	0.000541	0.000523	0.000571	0.000559	0.00054	49.1
15\%	≈ 0	0.004444	0.004431	0.004423	0.004744	0.004718	0.004705	49.6
25\%	≈ 0	0.012043	0.012026	0.012029	0.012324	0.012296	0.012294	52.4

