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Abstract: We consider a single-machine scheduling problem, in which the processing time of a job can take any value
from a given segment. The criterion is to minimize the sum of weighted completion times of the n jobs, a
positive weight being associated with a job. For a job permutation, we study the stability box, which is a
subset of the stability region. We derive an O(n logn) algorithm for constructing a job permutation with the
largest volume and dimension of a stability box. The efficiency of a permutation with the largest dimension
and volume of a stability box is demonstrated via a simulation on a set of randomly generated instances with
1000≤ n≤ 2000. If several permutations have the largest volume of a stability box, the developed algorithm
selects one of them due to one of three simple heuristics: a lower-point heuristic, an upper-point heuristic or a
mid-point heuristic.
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1 INTRODUCTION

In a real-life scheduling problem, the numerical data are often uncertain. The stochastic method (Pinedo, 2002)
or the fuzzy method (Slowinski and Hapke, 1999) are used when the job processing times may be defined as
random variables or as fuzzy numbers. If the processing times can be defined neither as random variables with
known probability distributions nor as fuzzy numbers with known membership functions, other methods are
needed to solve a scheduling problem under uncertainty (Daniels and Kouvelis, 1995; Sabuncuoglu and Goren,
2009; Sotskov et al., 2010). In particular, the robust method (Daniels and Kouvelis, 1995) assumes that the
decision-maker prefers a schedule hedging against the worst-case scenario among possible realizations of the job
processing times. The stability method (Lai and Sotskov, 1999; Lai et al., 1997; Sotskov et al., 2010) combines a
stability analysis with a multi-stage scheduling decision framework on the basis of the data obtained while some
jobs have been completed.

In this paper, we implement the stability method for a single-machine problem with interval processing times
of the n jobs (Section 2). In Section 3, we derive an O(n logn) algorithm for constructing a job permutation with
the largest volume of a stability box. An example is considered in Subsection 3.1. Computational results are
presented in Section 4. We conclude with Section 5.

2 PROBLEM SETTING

A set of jobs J = {J1, ...,Jn}, n≥ 2, has to be processed on a single machine, a positive weight wi being given for a
job Ji ∈ J . The processing time pi of a job Ji can take any real value from a given segment [pL

i , pU
i ], 0≤ pL

i ≤ pU
i .

The exact value pi ∈ [pL
i , pU

i ] may remain unknown until the completion of job Ji.
Let T = {p ∈ Rn

+ | pL
i ≤ pi ≤ pU

i , i ∈ {1, . . . ,n}} denote the set of vectors p = (p1, . . . , pn) (scenarios) of the
possible job processing times. S = {π1, . . . ,πn!} denotes the set of permutations πk = (Jk1 , . . . ,Jkn) of the jobs J .

Problem 1|pL
i ≤ pi ≤ pU

i |∑wiCi is to find an optimal permutation πt ∈ S:

∑
Ji∈J

wiCi(πt , p) = γ
t
p = min

πk∈S

{
∑

Ji∈J
wiCi(πk, p)

}
. (1)

Hereafter, Ci(πk, p) =Ci is the completion time of job Ji ∈ J in a semi-active schedule defined by πk.
Since a factual scenario p ∈ T is unknown before scheduling, the completion time Ci of a job Ji ∈ J can be

determined only after the execution of the schedule. Therefore, one cannot calculate the value γk
p of the objective

function
γ = ∑

Ji∈J
wiCi(πk, p)

for a permutation πt ∈ S before the realization of the schedule. However, one must somehow define a schedule
before to realize it. So, problem 1|pL

i ≤ pi ≤ pU
i |∑wiCi of finding an optimal permutation πk ∈ S defined in (1) is

not correct. In general, one can find only a heuristic solution (a permutation) to problem 1|pL
i ≤ pi ≤ pU

i |∑wiCi
the efficiency of which may be estimated either analytically or via simulation.

In the deterministic case, when a scenario p ∈ T is fixed before scheduling (i.e., equalities pL
i = pU

i = pi hold
for each job Ji ∈ J ), problem 1|pL

i ≤ pi ≤ pU
i |∑wiCi reduces to the classical problem 1||∑wiCi. In contrast to

the uncertain problem 1|pL
i ≤ pi ≤ pU

i |∑wiCi, problem 1||∑wiCi is called deterministic. Problem 1||∑wiCi is
correct and can be solved exactly in O(n logn) time (Smith, 1956) due to the necessary and sufficient condition
(2) for the optimality of a permutation πk = (Jk1 , . . . ,Jkn) ∈ S:

wk1

pk1

≥ . . .≥ wkn

pkn

, (2)

where pki > 0 for each job Jki ∈ J . Using the sufficiency of condition (2), problem 1||∑wiCi can be solved
to optimality by the weighted shortest processing time rule: process the jobs J in non-increasing order of their
weight-to-process ratios

wki
pki

, Jki ∈ J .
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3 THE STABILITY BOX

In (Sotskov and Lai, 2011), the stability box SB(πk,T ) within a set of scenarios T has been defined for a per-
mutation πk = (Jk1 , . . . ,Jkn) ∈ S. To present the definition of SB(πk,T ), we need the following notations. Let
J (ki) = {Jk1 , . . . ,Jki−1}, J [ki] = {Jki+1 , . . . ,Jkn}. Ski is the set of permutations (π(J (ki)),Jki ,π(J [ki])) ∈ S, π(J ′)
denoting a permutation of the jobs J ′ ⊂ J . Nk is a subset of N = {1, . . . ,n}. The notation 1|p|∑wiCi is used for
indicating an instance with a fixed scenario p ∈ T of the deterministic problem 1||∑wiCi.

Definition 1 (Sotskov and Lai, 2011) The maximal closed rectangular box

SB(πk,T ) =×ki∈Nk [lki ,uki ]⊆ T

is a stability box of permutation πk = (Jk1 , . . . ,Jkn) ∈ S, if permutation πe = (Je1 , . . . ,Jen) ∈ Ski being optimal for
the instance 1|p|∑wiCi with a scenario p = (p1, . . . , pn) ∈ T remains optimal for the instance 1|p′|∑wiCi with a
scenario

p′ ∈ {×n
j=1, j 6=i[pk j , pk j ]}× [lki ,uki ]

for each ki ∈ Nk. If there does not exist a scenario p ∈ T such that permutation πk is optimal for the instance
1|p|∑wiCi, then SB(πk,T ) = /0.

For any scheduling instance, the stability box is a subset of the stability region (Sotskov et al., 1998). However,
we substitute the stability region by the stability box, since the latter is easy to compute.

3.1 Illustrative example

For the sake of simplicity of the calculation, we consider the special case 1|pL
i ≤ pi ≤ pU

i |∑Ci of problem
1|pL

i ≤ pi ≤ pU
i |∑wiCi when each job Ji ∈ J has a weight wi equal to one. From condition (2), it follows that the

deterministic problem 1||∑Ci can be solved to optimality by the shortest processing time rule: process the jobs
in non-decreasing order of their processing times pki , Jki ∈ J . A set of scenarios T for Example 1 of problem
1|pL

i ≤ pi ≤ pU
i |∑Ci is defined in columns 1 and 2 in Table 1.

Table 1: Data for calculating SB(π1,T ) for Example 1.

1 2 3 4 5 6 7 8

i pL
i pU

i
wi
pU

i

wi
pL

i
d−i d+

i
wi
d+i

wi
d−i

1 2 3 1
3 0.5 1 0.5 2 1

2 1 9 1
9 1 1

6
1
3 3 6

3 8 8 1
8

1
8

1
6

1
9 9 6

4 6 10 0.1 1
6 0.1 1

9 9 10
5 11 12 1

12
1
11 0.1 1

11 11 10
6 10 19 1

19 0.1 1
15

1
12 12 15

7 17 19 1
19

1
17

1
15

1
19 19 15

8 15 20 1
20

1
15

1
20

1
19 19 20

In (Sotskov and Lai, 2011), formula (8) has been proven. To use it for calculating the stability box SB(πk,T ),
one has to define for each job Jki ∈ J the maximal range [lki ,uki ] of possible variations of the processing time pki
preserving the optimality of permutation πk (see Definition 1).

Due to the additivity of the objective function

γ = ∑
Ji∈J

wiCi(πk, p),
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the lower bound d−ki
on the maximal range of possible variations of the weight-to-process ratio

wki
pki

preserving the

optimality of permutation πk = (Jk1 , . . . ,Jkn) ∈ S is calculated as follows:

d−ki
= max

{
wki

pU
ki

, max
i< j≤n

{
wk j

pL
k j

}}
, i ∈ {1, . . . ,n−1}, (3)

d−kn
=

wkn

pU
kn

. (4)

The upper bound d+
ki
,Jki ∈ J , on the maximal range of possible variations of the weight-to-process ratio

wki
pki

preserving the optimality of πk is calculated as

d+
ki
= min

{
wki

pL
ki

, min
1≤ j<i

{
wk j

pU
k j

}}
, i ∈ {2, . . . ,n}, (5)

d+
k1
=

wk1

pL
k1

. (6)

For Example 1, the values d−ki
, i ∈ {1, . . . ,8}, defined in (3) and (4) are given in column 5 of Table 1. The

values d+
ki

defined in (5) and (6) are given in column 6.

Theorem 1 (Sotskov and Lai, 2011) If there is no job Jki , i∈ {1, . . . ,n−1}, in permutation πk = (Jk1 , . . . , Jkn)∈ S
such that inequality

wki

pL
ki

<
wk j

pU
k j

(7)

holds for at least one job Jk j , j ∈ {i+1, . . . ,n}, then the stability box SB(πk,T ) is calculated as

SB(πk,T ) =×d−ki
≤d+ki

[
wki

d+
ki

,
wki

d−ki

]
. (8)

Otherwise, SB(πk,T ) = /0.
Using Theorem 1, we can calculate the stability box SB(π1,T ) of permutation π1 = (J1, . . . ,J8) in Example

1. We convince that there is no job Jki , i ∈ {1, . . . ,n−1}, with inequality (7). Due to Theorem 1, SB(π1,T ) 6= /0.
The bounds

wki
d+ki

and
wki
d−ki

on the maximal possible variations of the processing times pki preserving the optimality

of π1 are given in columns 7 and 8 of Table 1. The maximal ranges (segments) of possible variations of the
job processing times within the stability box SB(π1,T ) are dashed in a coordinate system in Fig. 1, where the
abscissa axis is used for indicating the job processing times and the ordinate axis for the jobs from set J .

Using formula (8), we obtain the stability box for permutation π1:

SB(π1,T ) =
[

w2

d+
2
,

w2

d−2

]
×
[

w4

d+
4
,

w4

d−4

]
×
[

w6

d+
6
,

w6

d−6

]
×
[

w8

d+
8
,

w8

d−8

]
= [3,6]× [9,10]× [12,15]× [19,20].

Each job Ji, i ∈ {1,3,5,7}, has an empty range of possible variations of the time pi preserving the optimality of
permutation π1 since d−i > d+

i (see columns 5 and 6 in Table 1). The dimension of the stability box SB(π1,T ) is
equal to 4 = 8−4. The volume of this stability box is equal to 9 = 3 ·1 ·3 ·1.

For practice, the value of the relative volume of a stability box is more useful than its absolute value. Hereafter,
the relative volume of a stability box is defined as the product of the fractions(

wi

d−i
− wi

d+
i

)
:
(

pU
i − pL

i
)

(9)

for the jobs Ji ∈ J having non-empty ranges [li,ui] of possible variations of the time pi (inequality d−i ≤ d+
i must

hold for such a job Ji ∈ J ).
The relative volume of the stability box for permutation π1 in Example 1 is calculated as follows:

3
8
· 1

4
· 3

9
· 1

5
=

1
160

.

The absolute volume of the whole box of the scenarios T is equal to 2880 = 1 · 8 · 4 · 1 · 9 · 2 · 5. The relative
volume of the rectangular box T is defined as 1.
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2 4 6 8 10 12 14 16 18 20

J1

J2

J3

J4

J5

J6

J7

J8

Figure 1: The maximal ranges [li,ui] of possible variations of the processing times pi, i ∈ {2,4,6,8}, within the stability box
SB(π1,T ) are dashed.

3.2 Properties of a stability box

We investigate some properties of a stability box, which allow us to derive an O(n logn) algorithm for finding a
permutation πt ∈ S with the largest volume of a stability box

SB(πt ,T ) =×ti∈Nt [lti ,uti ]⊆ T.

Definition 1 implies the following claim.

Property 1 For any jobs Ji ∈ J and Jv ∈ J , v 6= i,(
wi

ui
,

wi

li

)⋂[
wv

pU
v
,

wv

pL
v

]
=∅.

Let Smax be the set of all permutations in S with the largest volume and dimension of a stability box. Using
Property 1, we shall show how to define the relative order of a job Ji ∈ J with respect to a job Jv ∈ J for any v 6= i
in a permutation πt = (Jt1 , . . . ,Jtn) ∈ Smax. To this end, we have to treat all three possible cases (I)–(III) for the

intersection of the open interval
(

wi
pU

i
, wi

pL
i

)
and the closed interval

[
wv
pU

v
, wv

pL
v

]
.

Case (I) is defined by the inequalities
wv

pU
v
≤ wi

pU
i
,

wv

pL
v
≤ wi

pL
i

(10)

provided that at least one of inequalities (10) is strict.
In case (I), the order of the jobs Jv and Ji in permutation πt ∈ Smax may be defined by a strict inequality from

(10): job Jv proceeds job Ji in permutation πt . Indeed, if job Ji proceeds job Jv, then the maximal ranges [li,ui]
and [lv,uv] of possible variations of the processing times pi and pv preserving the optimality of πk ∈ S are both
empty (it follows from equalities (3) – (6) and (8)). The following property has been proven.

Property 2 For case (I), there exists a permutation πt ∈ Smax, in which job Jv proceeds job Ji.

Case (II) is defined by the equalities
wv

pU
v
=

wi

pU
i
,

wv

pL
v
=

wi

pL
i
. (11)

Property 3 For case (II), there exists a permutation πt ∈ Smax, in which jobs Ji and Jv are located adjacently:
i = tr and v = tr+1.
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Proof: The maximal ranges [li,ui] and [lv,uv] of possible variations of the processing times pi and pv preserving
the optimality of πk ∈ S are both empty. If jobs Ji and Jv are located adjacently, then the maximal range [lu,uu] of
possible variation of the processing time pu for any job Ju ∈ J \{Ji,Jv} preserving the optimality of πk is no less
than that if at least one job Jw ∈ J \{Ji,Jv} is located between jobs Ji and Jv.

If equalities (11) hold, one can restrict the search for a permutation πt ∈ Smax by a subset of permutations in
S with adjacently located jobs Ji and Jv (Property 3). Moreover, the order of such jobs {Ji,Jv} does not influence
the volume of the stability box and its dimension.

Remark 1 Due to Property 3, while looking for a permutation πt ∈ Smax, we shall treat a pair of jobs {Ji,Jv}
satisfying (11) as one job (either job Ji or Jv).

Case (III) is defined by the strict inequalities
wv

pU
v
>

wi

pU
i
,

wv

pL
v
<

wi

pL
i
. (12)

For job Ji ∈ J satisfying case (III), let J (i) denote the set of all jobs Jv ∈ J , for which (12) holds.

Property 4 (i) For a fixed permutation πk ∈ S, job Ji ∈ J may have at most one maximal segment [li,ui] of possible
variations of the processing time pi ∈ [pL

i , pU
i ] preserving the optimality of permutation πk.

(ii) For the whole set of permutations S, only in case (III), a job Ji ∈ J may have more than one (namely:
|J (i)|+1 > 1) maximal segments [li,ui] of possible variations of the time pi ∈ [pL

i , pU
i ] preserving the optimality

of a particular permutation from set S.

Proof: Part (i) of Property 4 follows from the fact that a non-empty maximal segment [li,ui] (if any) is uniquely
determined by the subset J−(i) of jobs located before job Ji in permutation πk and the subset J +(i) of jobs located
after job Ji. The subsets J−(i) and J +(i) are uniquely determined for fixed πk ∈ S and Ji ∈ J .

Part (ii). If the open interval
(

wi
pU

i
, wi

pL
i

)
does not intersect with the closed interval

[
wv
pU

v
, wv

pL
v

]
, Jv ∈ J , then there

exists a permutation πt ∈ Smax with a maximal segment [li,ui] =
[
wi/pU

i ,wi/pL
i
]

preserving the optimality of πt .
Each job Jv ∈ J with a non-empty intersection(

wi

pU
i
,

wi

pL
i

)⋂[
wv

pU
v
,

wv

pL
v

]
6= /0

satisfying inequalities (10) (case (I)) or equalities (11) (case (II)) may shorten the above maximal segment [li,ui]
and cannot generate a new possible maximal segment. In case (III), a job Jv satisfying inequalities (12) may
generate a new possible maximal segment [li,ui] just for job Ji satisfying the same inequalities (12) as job Jv
does. So, the cardinality |L(i)| of the whole set L(i) of such segments [li,ui] is not greater than |J (i)|+1.

Let L denote the set of all maximal segments [li,ui] of possible variations of the processing times pi for all
jobs Ji ∈ J preserving the optimality of permutation πt ∈ Smax. Using Property 4 and induction on the cardinality
|J (i)|, we proved

Property 5 |L | ≤ n.

3.3 A job permutation with the largest volume of a stability box

A job permutation with larger volume and dimension of the stability box seems to be more efficient than one
with a smaller volume and (or) dimension.

Algorithm MAX-STABOX
Input: Segments [pL

i , pU
i ], weights wi, Ji ∈ J .

Output: Permutation πt ∈ Smax, stability box SB(πt ,T ).

Step 1: Construct the lists M (U) = (Ju1 , . . . ,Jun) and W (U) =

(
wu1
pU

u1
, . . . ,

wun
pU

un

)
in non-decreasing order

of wur
pU

ur
. Ties are broken via increasing wur

pL
ur

.

Step 2: Construct the lists M (L) = (Jl1 , . . . ,Jln) and W (L) =
(

wl1
pL

l1

, . . . ,
wln
pL

ln

)
in non-decreasing order of
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wlr
pL

lr
. Ties are broken via increasing wlr

pU
lr

.

Step 3: for j = 1 to j = n do compare Ju j and Jl j .
Step 4: if Ju j = Jl j then job Ju j has to be located in position j in permutation πt ∈ Smax

go to step 8.
Step 5: else job Ju j = Ji satisfies (12). Construct the set J (i) = {Jur+1 , . . . ,Jlk+1} of all jobs Jv

satisfying (12), where Ji = Ju j = Jlk .
Step 6: Choose the largest range [lu j ,uu j ] among those generated for job Ju j = Ji.
Step 7: Partition the set J (i) into the subsets J−(i) and J +(i) generating the largest range [lu j ,uu j ].

Set j = k+1 go to step 4.
Step 8: Set j := j+1 go to step 4.

end for
Step 9: Construct permutation πt ∈ Smax via putting the jobs J in the positions defined in steps 3 – 8.
Step 10: Construct the stability box SB(πt ,T ) using algorithm STABOX from (Sotskov and Lai, 2011).

Stop.

Steps 1 and 2 are based on Property 3 and Remark 1. Step 4 is based on Property 2. Steps 5 – 7 are based on
Property 4, part (ii). Step 9 is based on Property 6.

To prove Property 6, we have to analyze algorithm MAX-STABOX. In steps 1, 2 and 4, all jobs J t = {Ji | Ju j =

Ji = Jl j} having the same position in both lists M (U) and M (L) obtain fixed positions in permutation πt ∈ Smax.
The positions of the remaining jobs J \ J t in permutation πt are determined in steps 5 – 7. The fixed order of the
jobs J t may shorten the original segment [pL

i , pU
i ] of a job Ji ∈ J \ J t as follows: [p̂L

i , p̂U
i ]. So, in steps 5 – 7, the

reduced segment [p̂L
i , p̂U

i ] has to be considered instead of segment [pL
i , pU

i ] for a job Ji ∈ J \ J t . Let I′ denote the
maximal subset of set I including exactly one element from each set I(i), for which job Ji ∈ J satisfies (12).

Property 6 There exists a permutation πt ∈ S with the set I′ ⊆ I of maximal segments [li,ui] of possible variations
of the processing time pi,Ji ∈ J , preserving the optimality of permutation πt .

Proof: Due to Property 2 and steps 1– 4 of algorithm MAX-STABOX, the maximal segments [li,ui] and [lv,uv]
(if any) of jobs Ji and Jv satisfying (10) preserve the optimality of permutation πt ∈ Smax.

Let J ∗ denote the set of all jobs Ji satisfying (12). It is easy to see that⋂
Ji∈J

(p̂L
i , p̂U

i ] =∅.

Therefore, ⋂
Ji∈J

J (i) =∅.

Hence, step 9 is correct: putting the set of jobs J in the positions defined in steps 3 – 8 does not cause any
contradiction of the job orders.

Steps 1 and 2 take O(n logn) time. Due to Properties 4 and 5, steps 6, 7 and 9 take O(n) time. Step 10 takes
O(n logn) time since algorithm STABOX derived in (Sotskov and Lai, 2011) has the same complexity. Thus, the
whole algorithm MAX-STABOX takes O(n logn) time.

Using Algorithm MAX-STABOX, one can show that the permutation π1 = (J1, . . . ,J8) has the largest volume
of a stability box in Example 1.

Next, we compare SB(π1,T ) with the stability boxes calculated for the permutations obtained by three heuris-
tics defined as follows.

The lower-point heuristic generates an optimal permutation πl ∈ S for the instance 1|pL|∑wiCi with

pL = (pL
1 , . . . , pL

n) ∈ T.

The upper-point heuristic generates an optimal permutation πu ∈ S for the instance 1|pU |∑wiCi with

pU = (pU
1 , . . . , pU

n ) ∈ T.

The mid-point heuristic generates an optimal permutation πm ∈ S for the instance 1|pM|∑wiCi, where

pM =

(
pU

1 − pL
1

2
, . . . ,

pU
n − pL

n

2

)
∈ T.
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For Example 1, we obtain πl = (J2,J1,J4,J3,J6,J5,J8,J7) and

SB(πl ,T ) =
[

w2

d+
2
,

w2

d−2

]
×
[

w6

d+
6
,

w6

d−6

]
= [1,2]× [10,11].

The volume of the stability box SB(πl ,T ) is equal to 1.
We obtain πu = (J1,J3,J2,J4,J5,J7,J6,J8) and πm = (J1,J2,J4,J3,J5,J6,J8,J7). The volume of the stability

box

SB(πu,T ) =
[

w8

d+
8
,

w8

d−8

]
= [19,20]× [10,11]

is equal to 1. The volume of the stability box

SB(πm,T ) =
[

w2

d+
2
,

w2

d−2

]
×
[

w6

d+
6
,

w6

d−6

]
= [3,6]× [12,15]

is equal to 9 = 3 ·3. It is the same volume of the stability box as that of permutation π1. Note that the dimension
of the stability box SB(πm,T ) is equal to 2, while the dimension of the stability box SB(π1,T ) is equal to 4.

4 COMPUTATIONAL RESULTS

There might be several permutations with the largest dimension and (or) relative volume of a stability box, e.g.,
since several consecutive jobs in a permutation πk ∈ Smax may have an empty range of possible variations of their
weight-to-process ratios. We break ties in ordering such jobs by adopting one of the three obvious heuristics.
Algorithm MAX-STABOX combined with the lower-point heuristic, the upper-point heuristic and the mid-point
heuristic (see Subsection 3.3) is called Algorithm SL, Algorithm SU and Algorithm SM, respectively.

Note that in the experiments for 10≤ n≤ 1000 conducted in (Sotskov and Lai, 2011), the mid-point heuristic
outperformed the lower-point heuristic and the upper-point heuristic.

Algorithms SL, Algorithm SU and Algorithm SM were coded in C++ and tested on a PC with AMD Athlon
(tm) 64 Processor 3200+, 2.00 GHz, 1.96 GB of RAM. We solved (exactly or approximately) a lot of randomly
generated instances. Some of the computational results obtained are presented in Table 2 for randomly generated
instances of problem 1|pL

i ≤ pi ≤ pU
i |∑wiCi with

n ∈ {1000,1200 . . . ,2000}.

Each series, which is presented in Table 2, contains 10 instances with the same number n and the same
maximal error δ of the random processing times. The number n is given in parenthesis in column 1 in Table 2
before the corresponding set of instances tested.

An integer center C of a segment [pL
i , pU

i ] was generated using the uniform distribution in the range [L,U ]:
L≤C ≤U . The lower bound pL

i was defined as follows:

pL
i =C · (1− δ

100
),

and the upper bound pU
i was defined as follows:

pU
i =C · (1+ δ

100
).

The maximal possible error of the random processing time (in percentages) is equal to δ% given in column 1 in
Table 2.

We tested instances of problem 1|pL
i ≤ pi ≤ pU

i |∑wiCi with

δ% ∈ {0.25%,0.5%,0.75%,1%,2.5%,5%,15%,25%}.
The same range [L,U ] for the varying center C of the segment [pL

i , pU
i ] was used for all jobs Ji ∈ J , namely:

L = 1 and U = 100.
For each job Ji ∈ J , the weight wi ∈ R1

+ was uniformly distributed in the range [1,50].
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In the experiments, we answered the question of how large the relative error ∆ of the value γt
p∗ of the objective

function

γ =
n

∑
i=1

wiCi

was obtained for the permutation πt with the largest dimension and relative volume of a stability box SB(πt ,T )
with respect to the actually optimal objective function value γp∗ calculated for the actual processing times p∗ =
(p∗1, . . . , p∗n) ∈ T :

∆ =
γp∗ − γt

p∗

γp∗
.

In contrast to the weights wi, the actual processing times p∗i ,Ji ∈ J , were assumed to be unknown before
scheduling. Column 2 represents the average largest relative volume of the stability box SB(πt ,T ) (see (9) for
the definition of a relative stability box).

The average (maximum) error ∆ of the value γk
p∗ of the objective function γ = ∑

n
i=1 wiCi obtained for the

permutation πk with the largest relative volume of a stability box are presented in columns 3 – 5 (columns 6 – 8).
Columns 3, 4 and 5 (columns 6, 7 and 8) present the average (maximal) error ∆ for the corresponding series of
instances obtained by Algorithm SL, Algorithm SU and Algorithm SM, respectively.

For all series presented in Table 2, the average error ∆ of the value γk
p∗ of the objective function γ = ∑

n
i=1 wiCi

obtained for the permutation πk with the largest relative volume of a stability box combined with the lower-point
heuristic, the upper-point heuristic and the mid-point heuristic was not greater than 0.012201, 0.012171 and
0.012187, respectively (see series of instances with n = 1400 and δ% = 25%).

The maximum error ∆ of the value γk
p∗ of the objective function γ = ∑

n
i=1 wiCi obtained for the permutation

πk with the largest relative volume of a stability box combined with the lower-point heuristic, the upper-point
heuristic and the mid-point heuristic was not greater than 0.013244, 0.013143 and 0.013169, respectively (see
the series of instances with n = 1400, δ% = 25% and that with n = 1600, δ% = 25%). In most series tested in
our experiments with algorithm MAX-STABOX, Algorithm SM outperformed both Algorithm SL and Algorithm
SU.

The CPU-time (column 9) grows slowly with n, and it was not greater than 52.4 s for each instance tested.

5 CONCLUDING REMARKS

In (Sotskov and Lai, 2011), an O(n2) algorithm has been developed for calculating a permutation πt ∈ S with the
largest volume of a stability box SB(πt ,T ) with respect to interval data T .

In Section 3, we proved Properties 1 – 6 of a stability box SB(πt ,T ) allowing us to derive an O(n logn)
algorithm for calculating a permutation πt . The volume of a stability box is an efficient invariant of uncertain
interval data, as it is shown in computational experiments on a PC (see Section 4 and Table 2).
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Table 2: Computational results for randomly generated instances with [L,U ] = [1,100], wi ∈ [1,50] and n ∈ {1000, . . . ,2000}.

δ% Volume of Average error Maximal error CPU
(Number of jobs) SB(πt ,T ) SL SU SM SL SU SM time

(n = 1000)
0.25% 1 0 0 0 0 0 0 6.1
0.5% 1 0 0 0 0 0 0 6.1
0.75% ≈ 1 0.000038 0.000039 0.000023 0.000044 0.00005 0.000028 6.2

1% ≈ 1 0.00006 0.000057 0.000042 0.000068 0.000061 0.000046 6.1
2.5% 0.2043605 0.000183 0.000176 0.000159 0.000214 0.000207 0.000183 6.2
5% 0.0001695 0.000545 0.000541 0.000524 0.000596 0.000589 0.000578 6.2
15% ≈ 0 0.004294 0.004288 0.004268 0.004805 0.004794 0.004763 6.4
25% ≈ 0 0.01174 0.011709 0.011704 0.012772 0.012727 0.012802 6.7

(n = 1200)
0.25% 1 0 0 0 0 0 0 10.5
0.5% 1 0 0 0 0 0 0 10.5
0.75% ≈ 1 0.000038 0.000038 0.000022 0.000042 0.000041 0.000023 10.7

1% ≈ 1 0.000059 0.000057 0.000041 0.000065 0.000062 0.000043 10.4
2.5% 0.0294795 0.000177 0.000172 0.000154 0.000184 0.000181 0.000163 10.8
5% 0.000009 0.000538 0.000538 0.000518 0.000571 0.000564 0.000554 10.7
15% ≈ 0 0.004200 0.004199 0.004178 0.004641 0.004654 0.004618 10.9
25% ≈ 0 0.012056 0.012065 0.012065 0.012637 0.012698 0.01262 11.3

(n = 1400)
0.25% 1 0 0 0 0 0 0 16.8
0.5% ≈ 1 0 0 0 0.000001 0.000001 0.000001 16.9
0.75% ≈ 1 0.000041 0.000039 0.000023 0.000044 0.000044 0.000029 17.7

1% ≈ 1 0.00006 0.000059 0.000042 0.000067 0.000063 0.000047 16.8
2.5% 0.0231771 0.000176 0.000175 0.000154 0.000188 0.000185 0.000162 17.1
5% 0.0000288 0.00055 0.000537 0.000523 0.000583 0.000573 0.000563 17.1
15% ≈ 0 0.004417 0.004409 0.004394 0.00459 0.004557 0.004559 17.4
25% ≈ 0 0.012201 0.012171 0.012187 0.013244 0.013143 0.013155 17.6

(n = 1600)
0.25% 1 0 0 0 0 0 0 25
0.5% ≈ 1 0 0 0 0.000001 0 0.000001 25.1
0.75% ≈ 1 0.000039 0.000038 0.000022 0.00004 0.000039 0.000024 25

1% ≈ 1 0.00006 0.000058 0.000041 0.000067 0.000062 0.000047 25.1
2.5% 0.0291372 0.00018 0.000177 0.000158 0.000194 0.000188 0.000168 25.2
5% 0.0000068 0.000559 0.000556 0.000539 0.000608 0.000598 0.000574 25.4
15% ≈ 0 0.004348 0.004343 0.00432 0.004646 0.004646 0.004633 25.9
25% ≈ 0 0.012032 0.012009 0.01203 0.013109 0.013135 0.013169 26.7

(n = 1800)
0.25% 1 0 0 0 0 0 0 36.2
0.5% ≈ 1 0 0 0 0.000001 0 0.000001 35.6
0.75% ≈ 1 0.00004 0.00004 0.000023 0.000046 0.000045 0.000026 35.6

1% ≈ 1 0.00006 0.000059 0.000042 0.000064 0.000065 0.000048 35.7
2.5% 0.0103524 0.000177 0.000175 0.000156 0.000189 0.000186 0.000165 35.8
5% 0.0000001 0.000549 0.000541 0.000526 0.000564 0.000575 0.000549 36.1
15% ≈ 0 0.004359 0.004345 0.004323 0.004515 0.004536 0.00451 35.6
25% ≈ 0 0.011928 0.011928 0.011936 0.012493 0.012495 0.012492 38.3

(n = 2000)
0.25% 1 0 0 0 0 0 0 48.9
0.5% 1 0 0 0 0 0 0 49.8
0.75% ≈ 1 0.000039 0.000038 0.000023 0.000042 0.000041 0.000026 48.5

1% ≈ 1 0.000061 0.00006 0.000043 0.000065 0.000065 0.000046 48.9
2.5% 0.0175329 0.000178 0.000178 0.000157 0.000191 0.000188 0.00017 49.3
5% 0.0000001 0.000546 0.000541 0.000523 0.000571 0.000559 0.00054 49.1
15% ≈ 0 0.004444 0.004431 0.004423 0.004744 0.004718 0.004705 49.6
25% ≈ 0 0.012043 0.012026 0.012029 0.012324 0.012296 0.012294 52.4
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