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a b s t r a c t

We consider a single-machine scheduling problem with each job having an uncertain
processing time which can take any real value within each corresponding closed interval
before completing the job. The scheduling objective is to minimize the total weighted flow
time of all n jobs, where there is a weight associated with each job. We establish the
necessary and sufficient condition for the existence of a job permutation which remains
optimal for any possible realizations of these n uncertain processing times. We also
establish the necessary and sufficient condition for another extreme case that for each of
the n! job permutations there exists a possible realization of the uncertain processing times
that this permutation is uniquely optimal. Testing each of the conditions takes polynomial
time in terms of the number n of jobs.We develop precedence–dominance relations among
the n jobs in dealing with the general case of this uncertain scheduling problem. In case
there exist no precedence–dominance relations among a subset of n jobs, a heuristic
procedure to minimize the maximal absolute or relative regret is used for sequencing such
a job subset. Computational experiments for randomly generated instances with n jobs
(5 ≤ n ≤ 1000) show that the established precedence–dominance relations are quite
useful in reducing the total weighted flow time.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Most real-life scheduling problems involve some forms of uncertainty. In dealing with an uncertain parameter (say,
an uncertain processing time) of a scheduling problem, a traditional approach is to assume that the uncertain parameter
is a random variable with a specific probability distribution (see the second part of monograph [1]). It is worthwhile to
mention that in many real-life scheduling situations with an uncertain parameter, we may have no sufficient information
to characterize the probability distribution for the uncertain parameter. Therefore, different approaches and techniques are
needed [2]. A variational inequality approach [3] was proposed with an application to the calculation of dynamic traffic
network. A stability radius with a two-stage (off-line planning and on-line scheduling) scheduling approach [4,5] was
proposed. A robust schedule was proposed [6–11] for a decision-maker who prefers a solution that hedges against theworst
possible scenario.
Two types of robustness have been distinguished for a scheduling problem with uncertain processing times: Quality

robustness and solution robustness [6]. The former is a property of the schedule whose objective function value does
not deviate much from optimality while small changes in the job processing times occur. The latter can be described as
robustness in the solution space. A decision-maker might be forced to modify the original schedule when changes in the
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job processing times occur. Thus, quality robustness is a property of a schedule that is more or less stable with respect to
changes of the job processing times before these changes occur (off-line scheduling), while solution robustness refers to the
schedule stability after changes of the job processing times have occurred (on-line scheduling).
For both types of robustness, it is useful to construct a minimal set of dominant schedules which optimally cover all

possible scenarios (possible realizations of the uncertain job processing times) in the sense that for any possible scenario
there exists at least one schedule in this dominant set which is optimal. If this dominant set consists of one schedule (the
simplest case of off-line scheduling), then this schedulewill remain optimal for any possible scenario. In the general case, the
set of dominance schedules enables a decision-maker to quickly make an on-line scheduling decision whenever additional
local information on a realization of an uncertain job processing time becomes available.
In this paper, we consider a single-machine scheduling problem of n jobs in which each uncertain job processing time

is independent and can take any value within each corresponding (closed) interval. There is a weight associated with each
job. The scheduling objective is to minimize the weighted sum of the job completion times.
The paper is organized as follows. In Section 2, the problem settings and a literature review are given. Section 3 contains

some known results for a single-machine scheduling problem with fixed processing times. Section 4 provides a necessary
and sufficient condition in which one job can precede another in an optimal schedule for any possible realization of the
uncertain job processing times. Section 5 contains a necessary and sufficient condition for an extreme case in which
there exists a job permutation remaining optimal for all possible realizations of the uncertain processing times. Section 5
also contains a necessary and sufficient condition for the other extreme case in which there exists a possible realization
of the uncertain processing times for each of the n! job permutations to be uniquely optimal. Illustrative examples are
discussed in Section 6. Section 7 provides algorithms for robust scheduling, i.e., worst-case absolute or relative deviation
from optimality is minimized. Computational results for randomly generated instances of a single-machine scheduling
problem with uncertain (interval) processing times are given in Section 8. We conclude with Section 9.

2. Problem settings and state-of-the-art

There are n ≥ 2 jobs J = {J1, J2, . . . , Jn} to be processed on a single machine. For each job Ji ∈ J, a positive weight
wi > 0 is given. The processing time pi of job Ji ∈ J is unknown before scheduling and may take any real value between a
given lower bound pLi > 0 and an upper bound p

U
i ≥ p

L
i . In other words, the set T of all possible vectors p = (p1, p2, . . . , pn)

of the uncertain processing times is a rectangular box in the space Rn
+
of non-negative n-dimensional real vectors:

T = {p | p ∈ Rn
+
, pLi ≤ pi ≤ p

U
i }. (1)

Let Ci = Ci(πk, p) denote the completion time of job Ji ∈ J in the semi-active schedule defined by permutation πk of n
jobs from set J, provided that vector p ∈ T of job processing times is fixed. Criterion

∑
wiCi denotes a minimization of the

sum of the weighted completion times:∑
Ji∈J

wiCi(πt , p) = min
πk∈S

{∑
Ji∈J

wiCi(πk, p)

}
,

where S = {π1, π2, . . . , πn!} is a set of all permutations πk = (Jk1 , Jk2 , . . . , Jkn) of n jobs from set J = {J1, J2, . . . , Jn} =
{Jk1 , Jk2 , . . . , Jkn}, and permutation πt ∈ S is optimal. By adopting the three-field notation α|β|γ introduced in [12], we
denote the problem of finding a permutation πt that minimizes the value

∑
Ji∈J

wiCi(πk, p) among permutations πk ∈ S as
1|pLi ≤ pi ≤ p

U
i |
∑
wiCi. Since vector p ∈ T of the processing times is unknown before scheduling, the completion time

Ci of the job Ji ∈ J cannot be calculated before scheduling. Mathematically, the above problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi is

not correct. In OR literature, different approaches for correcting optimization problems like 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi were

proposed. Next, we survey some settings of the scheduling problems with uncertain processing times.
If a vector p ∈ T of the processing times is fixed before scheduling (i.e., equality pLi = p

U
i holds for each job Ji ∈ J), then

problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi reduces to the conventional problem 1 ‖

∑
wiCi with the fixed processing times. The

latter problem 1 ‖
∑
wiCi is mathematically correct and can be solved in O(n log2 n) time [13].

In what follows, we will call the problem α|pLi ≤ pi ≤ p
U
i |γ with objective function γ = f (C1, C2, . . . , Cn) an uncertain

problem in contrast to its deterministic counterpart, problem α ‖ γ . We note that for the uncertain problem α|pLi ≤ pi ≤
pUi |γ , theremaynot exist a single permutation of n jobs that remains optimal for all possible realizations of the job processing
times. Therefore, it is necessary to introduce an additional criterion in dealingwith the uncertain problemα|pLi ≤ pi ≤ p

U
i |γ .

In [8,9], a robust schedule minimizing the worst-case absolute (relative) deviation from optimality was proposed to hedge
against processing time uncertainty. In [8,10,11], the uncertain problem 1|pLi ≤ pi ≤ p

U
i |
∑
Ci of minimizing the total flow

time (i.e., wi = 1 for each job Ji ∈ J) has been considered. In [7,8,10,11,14–16], in contrast with the continuous intervals of
the processing times defined by (1), the processing time uncertainty was described through a finite discrete set T ∗, |T ∗| = m,
of possible processing time vectors (scenarios). Each scenario pj = (pj1, p

j
2, . . . , p

j
n) ∈ T ∗, j ∈ {1, 2, . . . ,m}, represents a set

of fixed processing times for jobs from set J, which can be realized with some positive (but unknown before scheduling)
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probability. For a specific scenario pj ∈ T ∗, the deterministic problem 1 ‖
∑
Ci arises which can be solved using the SPT

rule [13]: Sort the jobs from set J in non-decreasing order of the processing times pji, Ji ∈ J.
Let γ tpj (with p

j
∈ T ∗) denote the optimal value of the objective function γ = f (C1, C2, . . . , Cn) for the deterministic

problem 1 ‖ γ with vector pj of the job processing times. Let permutation πt ∈ S be optimal:

f (C1(πt , pj), C2(πt , pj), . . . , Cn(πt , pj)) = γ tpj = minπk∈S
γ kpj = minπk∈S

f (C1(πk, pj), C2(πk, pj), . . . , Cn(πk, pj)).

For any permutation πk ∈ S and any scenario pj ∈ T ∗, the difference γ kpj−γ
t
pj = r(πk, p

j) is called the regret for permutation
πk with objective function value equal to γ kpj under scenario p

j. For any permutation πk ∈ S, value

Z(πk) = max{r(πk, pj) | pj ∈ T ∗}

is called a worst-case absolute regret. A worst-case relative regret is defined as follows:

Z ′(πk) = max

{
r(πk, pj)
γ tpj

| pj ∈ T ∗
}
,

where γ tpj 6= 0. While the deterministic problem 1 ‖
∑
Ci is computationally simple [13], finding a job permutation of

minimizing the worst-case regret to the uncertain counterpart with discrete set T ∗ of possible scenarios is computationally
hard. In [8], finding a permutation πk ∈ S of minimizing the worst-case absolute regret Z(πk) was shown to be binary
NP-hard even for two possible scenarios: |T ∗| = 2. In [11], it was shown that finding a permutation πk ∈ S of minimizing
the worst-case relative regret Z ′(πk) is binary NP-hard even for two possible scenarios (binary NP-complete two-partition
problemhas beenpolynomially reduced to recognition version ofminimizing Z ′(πk)),while theproblem is unaryNP-hard for
an unbounded numberm of possible scenarios (unary NP-complete three-partition problem has been polynomially reduced
to recognition version of minimizing Z(πk) or Z ′(πk)).
Similarly, worst-case regrets can be defined for a rectangular box T ∈ Rn

+
of vectors p ∈ T of the possible processing

times. We save the same notations Z(πk) and Z ′(πk) for worst-case absolute and relative regrets, respectively, if n (closed)
intervals of possible processing times are assumed to be given:

Z(πk) = max{r(πk, p) | p ∈ T }; (2)

Z ′(πk) = max

{
r(πk, p)
γ tpj

| p ∈ T

}
, γ tpj 6= 0. (3)

In [10], it was proven that minimizing the worst-case absolute regret Z(πk) for problem 1|pLi ≤ pi ≤ p
U
i |
∑
Ci is binary

NP-hard even if the intervals [pLi , p
U
i ] of the possible processing times have the same center in the real axis for all jobs Ji ∈ J.

It should be noted that in [14], it was shown (by example) that there is no direct relationship between a given finite discrete
set T ∗ and infinite continuous set T in the aspect of the complexity of the uncertain problem.
In [17], binary NP-hardness was proven for finding a permutation πk ∈ S that minimizes the worst-case absolute regret

Z(πk) for the uncertain two-machine flow-shop problem with the criterion Cmax of minimummakespan:

max{Cmax(πt , p) | Ji ∈ J} = min
πk∈S
{max{Ci(πk, p) | Ji ∈ J}},

even for two possible scenarios: |T ∗| = 2.
There are a few polynomially solvable cases for the uncertain scheduling problems. In [18], an algorithmwith complexity

O(n4) has been developed for minimizing the worst-case regret for the problem 1|pLi ≤ pi ≤ p
U
i , d

L
i ≤ di ≤ d

U
i |Lmax with the

criterion Lmax of minimizing the maximum lateness:

max{Ci(πt , p)− di | Ji ∈ J} = min
πk∈S
{max{Ci(πk, p)− di | Ji ∈ J}},

when both intervals of the possible processing times pi and the possible due dates di are given as input data. In [10], it was
proven that minimizing Z(πk) for the problem 1|pLi ≤ pi ≤ p

U
i |
∑
Ci can be realized in O(n log2 n) time, if all the given

intervals [pLi , p
U
i ], Ji ∈ J, of the possible processing times have the same center in the real axis and the number n of jobs is

even.
In summary, it is observed that for the most classical polynomially solvable deterministic scheduling problems, their

uncertain counterparts withminimizing the worst-case regret become binary or unary NP-hard. Indeed, even for the simple
case of only two possible scenarios of the job processing times, minimizing Z(πk) or Z ′(πk) implies a time-consuming search
over the set S of n! permutations of n jobs. In order to overcome this computational complexity in some cases, we combine
the worst-case regret concept with the concept of the minimal set of dominant schedules introduced in [4,5] for solving
uncertain job-shop problem J|pLi ≤ pi ≤ p

U
i |Cmax.
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Definition 1. A set of permutations (semi-active schedules) S(T ) ⊆ S is a minimal dominant set for the uncertain problem
α|pLi ≤ pi ≤ p

U
i |γ , if for any fixed vector p ∈ T set S(T ) contains at least one permutation (semi-active schedule), which

is optimal for the deterministic problem α ‖ γ associated with this vector p of the job processing times, provided that any
proper subset of set S(T ) loses such a property.

A minimal dominant set S(T ) was investigated in [5,19–21] for the Cmax criterion, and in [20,22] for the total flow time
criterion

∑
Ci. In particular, article [22] addresses the total flow time criterion in a two-machine flow-shop problem F2|pLi ≤

pi ≤ pUi |
∑
Ci. A geometrical algorithmhas been developed for solving the flow-shop problem Fm|pLi ≤ pi ≤ p

U
i , n = 2|

∑
Ci

withmmachines and two jobs. For an uncertain flow-shop problem with two or three machines, sufficient conditions have
been identified when the transposition of two jobs minimizes the total flow time. The work of [20] deals with the case of
separate setup times with the criterion of minimizing the makespan or the total flow time. Namely, the processing times
were fixed while each setup time was relaxed to be a distribution-free random variable within a given lower and upper
bound. Dominance relations have been identified for an uncertain flow-shop problemwith twomachines. In [19], for a two-
machine flow-shop problem F2|pLi ≤ pi ≤ p

U
i |Cmax sufficient conditions have been identified when the transposition of

two jobs minimizes the makespan. In [21], the necessary and sufficient conditions were proven for the case when a single
semi-active schedule dominates all the others, and the necessary and sufficient conditions were proven for the case when
it is possible to fix the optimal order of two jobs for the makespan criterion with interval processing times.
In contrast to references [4,5], where the exponential algorithms based on an exhaustive enumeration of all semi-

active schedules were derived for constructing a minimal dominant set S(T ) for the uncertain shop scheduling problems,
in Sections 4 and 5, we show how to obtain a minimal dominant set S(T ) for the uncertain single-machine problem
1|pLi ≤ pi ≤ p

U
i |
∑
wiCi in polynomial time. In the next section, Section 3, we first present the auxiliary results for the

deterministic problem 1 ‖
∑
wiCi.

3. Fixed processing times

In [13], it was proven that the deterministic problem 1 ‖
∑
wiCi can be solved in O(n log2 n) time due to the following

sufficient condition for the optimality of permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S:

wk1

pk1
≥
wk2

pk2
≥ · · · ≥

wkn

pkn
. (4)

Hereafter, inequality pki > 0 must hold for each job Jki ∈ J. Note that inequalities (4) are also a necessary condition for the
optimality of permutation πk ∈ S as follows from the following theorem which can be found in [23].

Theorem 1. Permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S is optimal for the problem 1 ‖
∑
wiCi if and only if inequalities (4) hold.

To obtain the corresponding result for the uncertain problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi we need the following two

corollaries from Theorem 1.

Corollary 1. If inequality wupu >
wv
pv
holds, then in all optimal permutations for the problem 1 ‖

∑
wiCi job Ju precedes job Jv .

Proof. By contradiction, we assume that there exists such an optimal permutation πm ∈ S for the problem 1 ‖
∑
wiCi that

inequality wupu >
wv
pv
holds for jobs Ju ∈ J and Jv ∈ J. However, job Ju follows after job Jv in permutation πm.

Necessity of condition (4) in Theorem 1 implies inequalities wvpv ≥
wv+1
pv+1
≥ · · · ≥

wu
pu
, where it is assumed that v < u.

Thus, we obtain inequality wvpv ≥
wu
pu
which contradicts the above condition wu

pu
> wv

pv
. Corollary 1 is proven. �

Corollary 2. If equality wupu =
wv
pv
holds, then the problem 1 ‖

∑
wiCi has both optimal permutation πl ∈ S of the form

πl = (. . . , Ju, Jv, . . .) (5)

and optimal permutation πm ∈ S of the form

πm = (. . . , Jv, Ju, . . .). (6)

Proof. Since the set S is finite, there exists at least one permutation πl of the form either

πl = (. . . , Ju, . . . , Jv, . . .) or πl = (. . . , Ju, Jv, . . .),

or permutation πm of the form either

πm = (. . . , Jv, . . . , Ju, . . .) or πm = (. . . , Jv, Ju, . . .)
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which is optimal for the problem 1 ‖
∑
wiCi under consideration. Since equality wu

pu
=

wv
pv
holds, a part of the necessary

and sufficient condition (4) of optimality of permutation πl looks as follows:

· · · ≥
wu

pu
= · · · =

wv

pv
≥ . . . , (7)

and a part of the necessary and sufficient condition (4) of optimality of permutation πm looks as follows:

· · · ≥
wv

pv
= · · · =

wu

pu
≥ · · · . (8)

Obviously, if condition (7) holds, then condition (8) holds without fail, and vice versa. Hence, for the problem 1 ‖
∑
wiCi

under consideration, there exist both optimal permutation of the form either

πl = (. . . , Ju, . . . , Jv, . . .) or πl = (. . . , Ju, Jv, . . .),

and optimal permutation of the form either

πm = (. . . , Jv, . . . , Ju, . . .) or πm = (. . . , Jv, Ju, . . .).

To complete the proof we have to show that if permutation of the form πl = (. . . , Ju, . . . , Jv, . . .) is optimal, then there
also exists an optimal permutation of the form (. . . , Ju, Jv, . . .). Indeed, if permutation πl = (. . . , Ju, . . . , Jv, . . .) is optimal,
then due to Theorem 1 for any job Jk locating between jobs Ju and Jv in permutation πl the following equalities must hold:
wu
pu
=

wk
pk
=

wv
pv
. Therefore, permutation obtained from permutation πl via rearranging jobs Jk and Jv will be also optimal.

After a finite number of such rearrangements, we obtain an optimal permutation of the form (. . . , Ju, Jv, . . .). This completes
the proof. �

The above results valid for the deterministic problem 1 ‖
∑
wiCi will be used for finding aminimal dominant set S(T ) for

the uncertain problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi in general case (Section 4) and in the two special cases, i.e., when |S(T )| = 1

or |S(T )| = n! (Section 5).

4. Uncertain processing times

A minimal dominant set S(T ) for uncertain problem 1|pLi ≤ pi ≤ pUi |
∑
wiCi will be obtained by constructing a

precedence–dominance relation on the set of jobs J. We define a precedence–dominance relation as follows.

Definition 2. Job Ju dominates job Jv with respect to T (denoted by Ju 7→ Jv) if there exists a minimal dominant set S(T ) for
the problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi such that job Ju precedes job Jv in every permutation of set S(T ).

From Definition 2, it follows that a minimal dominant set S(T ) constructed for the deterministic problem 1 ‖
∑
wiCi

associated with the vector p ∈ T of the job processing times is a singleton: S(T ) = {πk}, where set T is also a singleton,
T = {p}. As a result precedence–dominance relations Jk1 7→ Jk2 7→ Jk3 7→ · · · 7→ Jkn−1 7→ Jkn with respect to set T = {p}
hold for the deterministic problem 1 ‖

∑
wiCi.

For an uncertain problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi, we prove the following claim.

Theorem 2. For the problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi, job Ju dominates job Jv with respect to T if and only if the following

inequality holds:

wu

pUu
≥
wv

pLv
. (9)

Proof. Sufficiency. Let inequality (9) hold. Then we need to prove that job Ju dominates job Jv with respect to T , i.e., there
exists a minimal dominant set S(T ) for the problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi such that job Ju precedes job Jv in every

permutation πk ∈ S(T ).
Since the set S is finite, we can construct a minimal dominant set S ′(T ) ⊆ S for the problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi

via consecutively deleting redundant permutations from set S. Let us take any vector p ∈ T of the job processing times.
Inequalities pLu ≤ pu ≤ p

U
u imply

wu

pLu
≥
wu

pu
≥
wu

pUu
. (10)

Inequalities pLv ≤ pv ≤ p
U
v imply

wv

pLv
≥
wv

pv
≥
wv

pUv
. (11)
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From inequalities (9)–(11) we obtain inequalities

wu

pu
≥
wu

pUu
≥
wv

pLv
≥
wv

pv
,

i.e., for any possible processing times pu ∈ [pLu, p
U
u ] and pv ∈ [p

L
v, p

U
v ], it follows:

wu

pu
≥
wv

pv
. (12)

If at least one of the three strict inequalities pu < pUu , p
L
v < pv , or wupu > wv

pv
holds, then (12) also becomes a strict

inequality: wupu >
wv
pv
. Then due to Corollary 1 job Ju precedes job Jv in any optimal permutation πk ∈ S for the deterministic

problem 1 ‖
∑
wiCi associatedwith the vector p ∈ T of the job processing times. Hence set S ′(T ) has to include permutation

πk ∈ S of the form either πk = (. . . , Ju, . . . , Jv, . . .) or πk = (. . . , Ju, Jv, . . .).
If for a vector p = (p1, p2, . . . , pn) all three equalities pu = pUu , p

L
v = pv , and

wu
pu
=

wv
pv
hold, then due to Corollary 2

there exist both optimal permutation πl ∈ S of the form πl = (. . . , Ju, Jv, . . .) and optimal permutation πm ∈ S of the form
πm = (. . . , Jv, Ju, . . .) for the deterministic problem 1 ‖

∑
wiCi associated with the vector p ∈ T of the job processing

times. If for all such vectors p ∈ T set S ′(T ) contains permutation πl ∈ S of the form (5): πl = (. . . , Ju, Jv, . . .), then set
S ′(T ) is a desired set: S ′(T ) = S(T ). Otherwise if for some vector p ∈ T set S ′(T ) contains permutation πm ∈ S of the
form (6): πm = (. . . , Jv, Ju, . . .), then we replace the permutation of the form (6) by the permutation of the form (5). Due to
Corollary 1, the later permutation is also an optimal one for the deterministic problem 1 ‖

∑
wiCi associatedwith the vector

p ∈ T of the job processing times. Having done such replacement of the permutation πm ∈ S by the permutation πl ∈ S
for all specified equalities pu = pUu , p

L
v = pv , and

wu
pu
=

wv
pv
, we transform the set S ′(T ) to the desired minimal dominant set

S(T ) for the problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi. Thus, job Ju precedes job Jv in each permutation πk ∈ S(T ). In other words,

job Ju dominates job Jv with respect to T . Sufficiency of condition (9) is proven.

Necessity.Weprove necessity of condition (9) by contradiction. Let job Ju dominate job Jv with respect to T , i.e., let there exist
a minimal dominant set S(T ) for the problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi such that job Ju precedes job Jv in each permutation

πk ∈ S(T ). However, let condition (9) be violated, i.e., let opposite inequality wu
pUu
< wv

pLv
hold. Let us show that there exist

such possible processing times p′u (with p
L
u ≤ p

′
u ≤ p

U
u ) and p

′
v (with p

L
v ≤ p

′
v ≤ p

U
v ) for which inequality

wu
p′u
< wv

p′v
holds.

Indeed, we can set p′u = p
U
u and p

′
v = p

L
v and obtain

wu

p′u
=
wu

pUu
<
wv

pLv
=
wv

p′v
.

Thus, for these processing times p′u and p
′
v , inequality

wu
p′u
< wv

p′v
holds. Due to Corollary 1, there is no optimal permutation

πl ∈ S(T ) to the deterministic problem 1 ‖
∑
wiCi with such processing times p′u and p

′
v such that job Ju precedes job Jv

in permutation πl. Hence, the above set S(T ) cannot be a minimal dominant set for the uncertain problem 1|pLi ≤ pi ≤
pUi |

∑
wiCi under consideration (since this set S(T ) does not contain an optimal permutation for the possible vector of the

job processing times with components p′u = p
U
u and p

′
v = p

L
v). Theorem 2 is proven. �

Theorem 2 allows us to find a minimal dominant set S(T ) for the problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi in a compact

manner. To this end, we check condition (9) for each pair of jobs Ju and Jv from set J and construct a digraph (J,A) of
precedence–dominance relation on set J as follows: Arc (Ju, Jv) belongs to setA if and only if dominance relation Ju 7→ Jv
holds. Set of arcsA ⊆ J×J of digraph (J,A) defines the transitive binary relation on set J. To construct a digraph (J,A)
takes O(n2) time. If for all jobs Ji ∈ J inequality pLi < p

U
i holds, then the digraph (J,A) defines the strict order relation on

set J.
On the other hand, if there are two jobs Ju ∈ J and Jv ∈ J (or more than two such jobs) for which their given intervals of

the possible processing times degenerate into a point:

wu

pLu
=
wu

pUu
=
wv

pLv
=
wv

pUv
, (13)

then contour (contours) arises in the digraph (J,A). It is clear that the order of such jobs Ju and Jv has no influence on the
value of the objective function γ =

∑n
i=1wiCi. Therefore one can fix an order of these two jobs. For example, to exclude

contours from digraph (J,A) we accept the following agreement: If equalities (13) hold and u < v, then arc (Jv, Ju) is
deleted from the set of arcsA. Having done such deletions of arcs for all specified equalities (13), we obtain the strict order
relationA∗ ⊂ A ⊆ J × J on the set of jobs J. Let digraph (J,A∗) be denoted as G: G = (J,A∗). If digraph (J,A) has no
contour, we denote it as G, too. Note that instead of using digraph G, it is often useful to adopt a reduction G0 = (J,A0) of
digraph G. Digraph G0 is obtained from G via deleting transitive arcs.
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5. Extreme cases of an uncertain problem

The cardinality of the minimal dominant set S(T ) may be considered as a measure of the uncertainty of the problem
1|pLi ≤ pi ≤ p

U
i |
∑
wiCi: The uncertainty in the problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi is less, if the cardinality of set S(T ) is

smaller.
Inclusion S(T ) ⊆ S implies inequalities 1 ≤ |S(T )| ≤ n!. In this section, we present the characterizations of two extreme

cases of a minimal dominant set.

5.1. Dominant singleton: |S(T )| = 1

The simplest case of an uncertain problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi arises, when equality |S(T )| = 1 holds. In such a

case, a minimal dominant set for the uncertain problem is a singleton: {πk} = S(T ) (as well as an ordinary solution to a
deterministic problem 1 ‖

∑
wiCi).

Theorem 3. For an existence of a dominant singleton S(T ) = {πk} = {(Jk1 , Jk2 , . . . , Jkn)} for the problem 1|p
L
i ≤ pi ≤

pUi |
∑
wiCi, it is necessary and sufficient that the following set of inequalities holds:

wk1

pUk1
≥
wk2

pLk2
,
wk2

pUk2
≥
wk3

pLk3
, . . . ,

wkn−1

pUkn−1
≥
wkn

pLkn
. (14)

Proof. Sufficiency. Let condition (14) hold. In this case, sufficiency of condition (9) in Theorem 2 implies the following
precedence–dominance relation: Jk1 7→ Jk2 7→ Jk3 7→ · · · 7→ Jkn−1 7→ Jkn with respect to T . Hence, according to Definition 2,
there exists a minimal dominant set S(T ) for the problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi in which all permutations look as follows:

(Jk1 , Jk2 , Jk3 , . . . , Jkn−1 , Jkn). As a result, we obtain a singleton: S(T ) = {πk}.

Necessity. Let a singleton {πk} be a minimal dominant set S(T ) for the uncertain problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi, i.e., for

any fixed vector p ∈ T permutation πk is optimal for the deterministic problem 1 ‖
∑
wiCi associated with the vector p of

the job processing times. Let us show that inequalities (14) should hold.
First, we show that the first inequality from (14) should hold. For this purpose, as a vector p ∈ T , we take a vector with

the first and second components defined as follows: p1 := pUk1 and p2 := p
L
k2
. Other components pi, i ∈ {3, 4, . . . , n}, of the

vector p can be arbitrary: pLi ≤ pi ≤ p
U
i . Since permutationπk is optimal for the deterministic problem1 ‖

∑
wiCi associated

with the vector p of the job processing times, the necessity of condition (4) in Theorem 1 implies the first inequality in (14):
wk1

pUk1
≥
wk2

pLk2
.

After (n− 1) steps, we can obtain other inequalities from condition (14):
wkj

pUkj
≥
wkj+1

pLkj+1
,

via fixing consecutive components pj := pUkj and pj+1 := p
L
kj+1
, j ∈ {2, 3, . . . , n − 1}, in the vector p ∈ T . Theorem 3 is

proven. �

Obviously, if a dominant singleton S(T ) = {πk} for the problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi exists, then a dominant singleton

can be obtained using Theorem 2 in O(n2) time. Next, we show that as an application for this purpose Theorem 3 allows us
either to find a singleton S(T ) (if it exists) faster or to prove that a dominant singleton does not exist.
For a fast checking of condition (14) of Theorem 3, we sort jobs of setJ in non-increasing order of the fractions

wkj
pkj
, where

pkj denotes the midpoint of the segment [p
L
kj
, pUkj ]:

pkj =
pUkj − p

L
kj

2
.

As a result, we obtain a permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S in O(n log2 n) time. Due to sufficiency in Theorem 3, if
condition (14) holds, then this permutation πk defines a dominant singleton S(T ) = {πk} for the problem 1|pLi ≤ pi ≤
pUi |

∑
wiCi.

On the other hand, it is easy to show that if conditions (14) does not hold for all pairs of consecutive jobs in permutation
πk = (Jk1 , Jk2 , . . . , Jkn), then a dominant singleton for the problem 1|p

L
i ≤ pi ≤ p

U
i |
∑
wiCi does not exist. It takes O(n)

time to check conditions (14) for a fixed permutation πk of n jobs. Thus, the asymptotic complexity of checking condition of
Theorem 3 is estimated by O(n log2 n).
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5.2. Minimal dominant set with the maximal cardinality: |S(T )| = n!

The most uncertain case (in the sense of Definition 1) of the problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi arises when |S(T )| = n!.

Theorem 4. Let pLi < p
U
i , Ji ∈ J. For an existence of a minimal dominant set S(T ) for the problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi with

the maximal cardinality |S(T )| = n!, it is necessary and sufficient that the following inequality holds:

max
{
wi

pUi
| Ji ∈ J

}
< min

{
wi

pLi
| Ji ∈ J

}
. (15)

Proof. Sufficiency. We denote a = max{ wi
pUi
| Ji ∈ J} and b = min{wi

pLi
| Ji ∈ J}. Let inequality (15) hold: a < b. We

choose any permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S of n jobs and show that this permutation has to belong to any minimal
dominant set S(T ) constructed for the problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi under consideration.

To this end, we show that there exists a vector p∗ = (p∗1, p
∗

2, . . . , p
∗
n) ∈ T such that the following inequalities hold:

wk1

p∗k1
>
wk2

p∗k2
> · · · >

wkn

p∗kn
. (16)

Indeed, due to the strict inequality (15), the length of the segment [a, b], a < b, is strictly positive, and moreover, the
segment [a, b] is equal to the intersection of n segments[

wi

pUi
,
wi

pLi

]
, i ∈ {1, 2, . . . , n}, namely: [a, b] =

n⋂
i=1

[
wi

pUi
,
wi

pLi

]
.

Therefore, since segment [a, b], a < b, of non-negative real numbers is dense everywhere, it is possible to find n real numbers
p∗ki , Jki ∈ J, which satisfy all inequalities (16). Thus, due to Corollary 1, in any optimal permutation for the deterministic
problem 1 ‖

∑
wiCi associatedwith the vector p∗ of the job processing times, job Jk1 precedes job Jk2 , job Jk2 precedes job Jk3 ,

and so on, job Jkn−1 precedes job Jkn . Therefore, permutationπk is the unique optimal permutation for the problem1 ‖
∑
wiCi

associated with the vector p∗ of the job processing times. Hence, according to Definition 1 any minimal dominant set S(T )
constructed for the uncertain problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi necessarily contains permutation πk. Since permutation πk

has been chosen arbitrarily in set S, anyminimal dominant set S(T ) contains all permutations of set S, i.e., set S(T ) coincides
with set S. As a result we obtain |S(T )| = |S| = n!.
Necessity. Let |S(T )| = n!. Hence |S(T )| = |S|. We have to show that inequality (15) holds. By contradiction, we assume that
inequality (15) does not hold.
Hence, there exist at least two jobs Ju ∈ J and Jv ∈ J such that inequality
wu

pUu
≥
wv

pLv
holds. Then from the sufficiency of condition (9) in Theorem 2, it follows that jobs Ju dominates jobs Jv with respect to
T , i.e., there exists a minimal dominant set S ′(T ) for the problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi such that all permutations in

S ′(T ) look like (. . . , Ju, . . . , Jv, . . .) or (. . . , Ju, Jv, . . .). We obtain a contradiction: The above set S(T ) = S is not a minimal
dominant set for the uncertain problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi under consideration since S(T ) is not a minimal set with

respect to inclusion (it is possible to remove any permutation πk ∈ S \ S ′(T ) 6= ∅ from set S(T ) = S, and the remaining set
S(T ) \ {πk} still satisfies Definition 1). Theorem 4 is proven. �

The above proof of Theorem 4 implies the following claim.

Corollary 3. Let pLi < p
U
i , Ji ∈ J. For any permutation πk ∈ S there exists a vector p ∈ T such that permutation πk is the unique

optimal permutation for the problem 1 ‖
∑
wiCi associated with the vector p of the job processing times if and only if inequality

(15) holds.

Proof. The proof of the sufficiency of condition (15) in Corollary 3 is entirely contained in that of Theorem 4. For a proof of
the necessity of condition (15) in Corollary 3, we note that if for any permutation πk ∈ S there exists a vector p ∈ T such that
permutation πk is the unique optimal permutation for the deterministic problem 1 ‖

∑
wiCi associated with the vector p of

the job processing times, then (due to Definition 1) equality S(T ) = S holds for any minimal dominant set S(T ) constructed
for the uncertain problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi. Hence, |S(T )| = n! and the necessity of condition (15) in Corollary 3

follows from the necessity of condition (15) in Theorem 4. �

It takesO(n) time to check the condition (15) of Theorem4 sinceO(n) is the complexity of finding amaximum (minimum)
in the set { wi

pUi
| Ji ∈ J} of real numbers (set {wi

pLi
| Ji ∈ J}, respectively).
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Table 1
Input data for Example 1.

i pLi pUi wi
wi
pLi

wi
pUi

1 5 6 30 6 5
2 4 8 8 2 1
3 1 3 18 18 6
4 3 4 12 4 3
5 4 5 20 5 4

Table 2
Data for Example 2.

i pLi pUi wi
wi
pLi

wi
pUi

wi
pLi
+

wi
pUi

wi
pLi
·
wi
pUi

1 5 6 30 6 5 11 30
2 4 6 24 6 4 10 24
3 6 14 42 7 3 10 21
4 2 7 14 7 2 9 14
5 10 14 70 7 5 12 35

6. Illustrative examples

One can check the conditions of Theorems 2–4 in polynomial time. However, only Theorem 2 is of direct practical
importance: If the condition (9) holds, then it is possible to construct an optimal permutation for the uncertain problem
1|pLi ≤ pi ≤ pUi |

∑
wiCi, which remains optimal for any possible realization of the job processing times. Next, we

demonstrate the applications of the theorems proven in Sections 4 and 5 by three illustrative examples.

6.1. Example 1

Let the input data for Example 1 of the problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi be given in columns 2–4 of Table 1. We test the

condition (14) of Theorem 3 as follows:
w3

pU3
= 6 ≥ 6 =

w1

pL1
;

w1

pU1
= 5 ≥ 5 =

w5

pL5
;

w5

pU5
= 4 ≥ 4 =

w4

pL4
;

w4

pU4
= 3 ≥ 2 =

w2

pL2
.

Thus, for Example 1 of the uncertain problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi, the condition (14) holds. Hence due to Theorem 3,

the minimal dominant set S(T ) for Example 1 is a singleton: S(T ) = {πk}, where πk = (J3, J1, J5, J4, J2).

6.2. Example 2

We illustrate an application of Theorem 4 by Example 2 with the input data given in columns 2–4 of Table 2. We check
the validity of condition (15):

max
{
wi

pUi
| Ji ∈ J

}
= 5 < 6 = min

{
wi

pLi
| Ji ∈ J

}
.

Therefore, for Example 2 of the problem1|pLi ≤ pi ≤ p
U
i |
∑
wiCi the condition (15) holds. Hence, according to Theorem4, the

minimal dominant set for this uncertain problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi has the maximal cardinality: |S(T )| = 5! = 120,

i.e., a minimal dominant set S(T ) coincides with the set of all permutations of five jobs of set J: S(T ) = S.

6.3. Example 3

We illustrate an application of Theorem 2 by Example 3. Let the input data for Example 3 be given in columns 2–4 of
Table 3. For each pair of jobs Ju ∈ J and Jv ∈ J we check the validity of condition (9) of Theorem 2. The following relations
hold:

w1

pU1
= 6 ≥ 6 =

w2

pL2
;

w2

pU2
= 5 ≥ 5 =

w3

pL3
;

w2

pU2
= 5 ≥ 4 =

w4

pL4
;

w3

pU3
= 2 ≥ 2 =

w5

pL5
;

w4

pU4
= 3 ≥ 2 =

w5

pL5
;

w2

pU2
= 5 ≥ 5 =

w7

pL7
;

w5

pU5
= 1 ≥ 1 =

w6

pL6
;

w7

pU7
= 1.5 ≥ 1 =

w6

pL6
;

w6

pU6
= 0.5 ≥ 0.5 =

w8

pL8
;

w6

pU6
= 0.5 ≥ 0.4 =

w9

pL9
;

w6

pU6
= 0.5 ≥ 0.5 =

w10

pL10
;

w8

pU8
=
1
3
≥ 0.3 =

w11

pL11
;

w9

pU9
=
1
3
≥ 0.3 =

w11

pL11
;

w10

pU10
= 0.4 ≥ 0.3 =

w11

pL11
.
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Table 3
Data for Example 3.

i pLi pUi wi
wi
pLi

wi
pUi

wi
pLi
+

wi
pUi

wi
pLi
·
wi
pUi

1 1 3 18 18 6 24 84
2 5 6 30 6 5 11 30
3 4 10 20 5 2 7 10
4 3 4 12 4 3 7 12
5 4 8 8 2 1 3 2
6 10 20 10 1 0.5 1.5 0.5
7 3 10 15 5 1.5 6.5 7.5
8 10 15 5 0.5 1

3
5
6

1
6

9 5 6 2 0.4 1
3

11
15

2
15

10 20 26 10 0.5 5
13 0.5 5

26

11 10 20 3 0.3 0.15 0.45 9
200

Fig. 1. Digraph G0 = (J,A0) constructed for Example 3.

Thus, for Example 3 of the problem 1|pLi ≤ pi ≤ pUi |
∑
wiCi, the condition (9) of Theorem 2 is satisfied

for the following pairs of ordered jobs: (J1, J2), (J2, J3), (J2, J4), (J3, J5), (J4, J5), (J2, J7), (J5, J6), (J7, J6), (J6, J8), (J6, J9),
(J6, J10), (J8, J11), (J9, J11), (J10, J11). Hence due to Theorem 2 the following precedence–dominance relations hold: Job
J1 dominates job J2; job J2 dominates jobs J3, J4 and J7; job J3 dominates job J5; job J4 dominates job J5; job J5
dominates job J6; job J7 dominates job J6; job J6 dominates jobs J8, J9 and J10; job J8 dominates job J11; job J9
dominates job J11; and job J10 dominates job J11. No job from set {J3, J4, J7} dominates another one from this set. No
job from set {J5, J7} dominates another one from this set. No job from set {J8, J9, J10} dominates another one from this
set. Thus, a minimal dominant set S(T ) for Example 3 is defined by the digraph G0 = (J,A0) (Fig. 1) with the
following set of non-transitive arcs: A0 = {(J1, J2), (J2, J3), (J2, J4), (J2, J7), (J3, J5), (J4, J5), (J5, J6), (J7, J6), (J6, J8), (J6, J9),
(J6, J10), (J8, J11), (J9, J11), (J10, J11)}.

7. Robust scheduling based on the minimal dominant set

In this section, we present heuristic algorithms for solving problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi based on Theorem 2 and on

the optimality conditions derived for the two-job schedule minimizing the worst-case absolute regret (2) or relative regret
(3). Similar conditions have been used in [8] for a branch-and-bound algorithm developed for the problem 1|pLi ≤ pi ≤
pUi |

∑
Ci, wherewi = 1 for each job Ji ∈ J.

If the condition (9) holds for jobs Ju ∈ J and Jv ∈ J or the symmetric condition wv
pUv
≥

wu
pLu
holds, then the optimal ordering

of jobs Ju and Jvmay be obtained due to Theorem2. Therefore, it is sufficient to consider only the casewhere both inequalities
wu
pUu
< wv

pLv
and wv

pUv
< wu

pLu
hold. To order jobs Ju and Jv in the latter case we will use additional criterion of robust scheduling

[8,9]. Permutation πk ∈ S is called absolute (relative) robust, if permutation πk minimizes the worst-case absolute (relative)
deviation from optimality, i.e., permutation πk minimizes the value Z(πk) defined in (2) (value Z ′(πk) defined in (3)) among
permutations of set S.
It is easily verified that the worst-case for absolute or relative deviation is defined by processing times pu := pUu and

pv := pLv for sequence (Ju, Jv), and by the processing times pu := p
L
u and pv := p

U
v for the opposite sequence (Jv, Ju). Thus,

the worst-case absolute deviation from optimality for sequence (Ju, Jv)with respect to sequence (Jv, Ju) can be calculated as
follows:

r((Ju, Jv), pUu , p
L
v) =

(
2
wu

pUu
+
wv

pLv

)
−

(
2
wv

pLv
+
wu

pUu

)
=
wu

pUu
−
wv

pLv
.

On the other hand, the worst-case absolute deviation from optimality for sequence (Jv, Ju)with respect to sequence (Ju, Jv)
can be calculated as follows:

r((Jv, Ju), pLu, p
U
v ) =

(
2
wv

pUv
+
wu

pLu

)
−

(
2
wu

pLu
+
wv

pUv

)
=
wv

pUv
−
wu

pLu
.
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Therefore, sequence (Ju, Jv) is the absolute robust sequence with respect to sequence (Ju, Jv) if and only if inequality
wu

pUu
−
wv

pLv
≤
wv

pUv
−
wu

pLu
holds, or equivalently:

wu

pLu
+
wu

pUu
≤
wv

pLv
+
wv

pUv
. (17)

Similarly, the worst-case relative deviation from optimality for sequence (Ju, Jv)with respect to sequence (Jv, Ju) can be
calculated as follows:

r((Ju, Jv), pUu , p
L
v)

γ ∗
=

2wu
pUu
+

wv

pLv

2wv
pLv
+

wu
pUu

,

where γ ∗ denotes theminimal value of the objective function γ =
∑n
i=1wiCi for the best sequence of these two jobs, either

(Ju, Jv) or (Jv, Ju), calculated for the actual job processing times. Inequalities n ≥ 2, wi > 0 and pLi > 0 for each job Ji ∈ J
imply γ ∗ > 0. (We remind that the actual processing time of job Ji ∈ J becomes known only after completing job Ji.)
On the other hand, theworst-case relative deviation fromoptimality for sequence (Jv, Ju)with respect to sequence (Ju, Jv)

can be calculated as follows:

r((Jv, Ju), pLu, p
U
v )

γ ∗
=

2wv
pUv
+

wu
pLu

2wu
pLu
+

wv

pUv

.

Therefore, sequence (Ju, Jv) is the relative robust sequence with respect to sequence (Jv, Ju) if and only if inequality

2wu
pUu
+

wv

pLv

2wv
pLv
+

wu
pUu

≤

2wv
pUv
+

wu
pLu

2wu
pLu
+

wv

pUv

,

holds or equivalently:
wu

pLu
·
wu

pUu
≤
wv

pLv
·
wv

pLv
. (18)

As a result, two heuristics for solving problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi can be derived from the two-job optimality

conditions represented by inequalities (17) and (18). The first heuristic called SUM computes sum
wu

pLu
+
wu

pUu
for each job Ju ∈ J, and sorts set of jobs J in non-decreasing order of this sum.
The second heuristic called PROD computes product
wu

pLu
·
wu

pUu
for each job Ju ∈ J, and sorts set of jobs J in non-decreasing order of this product. Before presenting a formal algorithm for
solving (exactly or heuristically) problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi, we demonstrate its procedure on Examples 1, 2, and 3.

7.1. Exact solution to Example 1

Testing the condition (9) of Theorem 2 for each pair of jobs from set J of Example 1 gives a completely ordered set of
jobs: J3 7→ J1 7→ J5 7→ J4 7→ J2.
Thus, permutation πk = (J3, J1, J5, J4, J2) ∈ S provides an exact solution to Example 1 of the uncertain problem

1|pLi ≤ pi ≤ p
U
i |
∑
wiCi. In other words, for any vector p of the possible processing times defined in columns 2–4 of Table 1,

permutation πk is optimal for the deterministic problem 1 ‖
∑
wiCi associated with the vector p ∈ T of the job processing

times.

7.2. Heuristic solutions to Example 2

Testing the condition (9) of Theorem 2 for each pair of jobs from set J = {J1, J2, J3, J4, J5} in Example 2 gives the
digraph G = (J,A) = G0 with an empty set of arcs: A = ∅. Thus, Example 2 is the most uncertain case of the problem
1|pLi ≤ pi ≤ p

U
i |
∑
wiCi with five jobs and so one can only find a heuristic solution to Example 2.

Having applied the heuristic SUM for set J, we obtain permutation πk = (J4, J2, J3, J1, J5) ∈ S(T ) = S, which provides a
heuristic solution to Example 2. Having applied the heuristic PROD for set J, we obtain permutation πl = (J4, J3, J2, J1, J5) ∈
S(T ) = S, which provides another heuristic solution to Example 2.
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7.3. Heuristic solutions to Example 3

Testing the condition (9) of Theorem 2 for each pair of jobs from set J = {J1, J2, J3, J4, J5} in Example 3 gives the digraph
G0 = (J,A0) representing a minimal dominant set S(T ) (see Fig. 1). Let Pi denote the list of predecessors of vertex Ji in the
digraph G0. We obtain P1 = ∅, P2 = {J1}, P3 = {J1, J2}, P4 = {J1, J2}, P5 = {J1, J2, J3, J4}, P6 = {J1, J2, J3, J4, J5, J7}, P7 = {J1, J2},
P8 = {J1, J2, J3, J4, J5, J6, J7}, P9 = {J1, J2, J3, J4, J5, J6, J7}, P10 = {J1, J2, J3, J4, J5, J6, J7}, P11 = {J1, J2, J3, J4, J5, J6, J7, J8, J9, J10}.
Since only job J1 has an empty set P1 of predecessors in the digraphG0, job J1 occupies the first position in the desired optimal
permutation πk = (Jk1 , Jk2 , . . . , Jk10) ∈ S(T ). We fix the first position for job J1 in permutation πk as follows: J1 = Jk1 , and
delete job J1 from all lists of predecessors. As a result, we obtain the following modified lists of predecessors: Pi := Pi \ {J1},
i ∈ {2, 3, . . . , 11}.
Now, only job J2 has an empty modified list of predecessors. Therefore, job J2 occupies the second position in the desired

optimal permutation πk ∈ S(T ). We fix the second position for job J2 in permutation πk as follows: J2 = Jk2 , and delete
job J2 from all the other lists of predecessors. As a result, we obtain the modified lists of predecessors: Pi := Pi \ {J2},
i ∈ {3, 4, . . . , 11}.
Now, each of the three jobs J3, J4, and J7 has an empty modified list of predecessors and we cannot find the optimal

positions for jobs J3, J4, and J7 in the desired optimal permutation πk ∈ T . Let us order these three jobs using heuristic PROD.
As a result, we obtain the sequence (J7, J3, J4). (Note that the same sequence is obtained due to heuristic SUM.) Thus, job J7
occupies the third position, job J3 occupies the forth position, and job J4 occupies the fifth position in permutationπk ∈ S(T ).
(Note that the above sequence (J7, J3, J4)was not optimally chosen, and so permutation πkmay be not optimal for the actual
processing times that are unknown before completing the corresponding jobs).We delete jobs J3, J4, and J7 from all the other
lists of predecessors and obtain the following modified lists of predecessors: Pi := Pi \ {J3, J4, J7}, i ∈ {5, 6, 8, 9, 10, 11}.
Now, only job J5 has an empty modified list of predecessors. Therefore, job J5 occupies the sixth position in the desired

optimal permutationπk ∈ S(T ): J5 = Jk6 .We delete job J5 from all the other lists of predecessors, i.e., we obtain the following
modified lists of predecessors: Pi := Pi \ {J5}, i ∈ {6, 8, 9, 10, 11}.
Now, only job J6 has an emptymodified list of predecessors. Therefore, job J6 occupies the seventh position in the desired

optimal permutationπk ∈ S(T ): J6 = Jk7 .We delete job J6 from all the other lists of predecessors, i.e., we obtain the following
modified lists of predecessors: Pi := Pi \ {J6}, i ∈ {8, 9, 10, 11}.
Now, each of three jobs J8, J9, and J10 has an emptymodified list of predecessors andwe cannot find the optimal positions

of jobs J8, J9, and J10 in the desired optimal permutation πk ∈ T . We can order these three jobs using heuristic PROD and
obtain sequence (J9, J8, J10). Thus, due to the heuristic PROD, job J9 occupies the eighth position, job J8 occupies the ninth
position, and job J10 occupies the tenth position in the permutation πk ∈ S(T ).
Another sequence (J9, J10, J8) can be obtained using heuristic SUM. Due to the heuristic SUM job J9 occupies the eighth

position, job J10 occupies the ninth position, and job J8 occupies the tenth position in permutation πk ∈ S(T ). In both cases,
we delete jobs J8, J9, and J10 from the list of predecessors of job J11 and obtain the following modified list of predecessors:
P11 := P11 \ {J8, J9, J10} = ∅. As a result, job J11 occupies the last position in the desired optimal permutation.
Thus, having applied Theorem 2 and the heuristic PROD for unordered subsets of jobs from set J, we obtain permutation

πk = (J1, J2, J7, J3, J4, J5, J6, J9, J8, J10, J11) ∈ S(T ), which provides a heuristic solution to Example 3. On the other hand,
having applied Theorem 2 and the heuristic SUM for unordered subsets of jobs from set J, we obtain permutation
πl = (J1, J2, J7, J3, J4, J5, J6, J9, J10, J8, J11) ∈ S(T ), which provides another heuristic solution to Example 3. It should be
reminded that before completing all jobs J, one cannot calculate the exact values

∑n
i=1wiCi(πk, p) and

∑n
i=1wiCi(πl, p) of

the objective function γ =
∑n
i=1wiCi since the vector p ∈ T remains unknown: The actual vector p

∗
∈ T of job processing

times will be known after completing the last job from set J.

7.4. Algorithms for solving problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi

We will use the following notations in the formal description of the above algorithm used for solving (exactly or
heuristically) Examples 1, 2, and 3.
Let πmk denote the subsequence of the first m jobs (with 1 ≤ m ≤ n) in the desired permutation πk ∈ S(T ): π

1
k = (Jk1),

π2k = (Jk1 , Jk2), . . . , π
n
k = πk.

π0k denotes an empty subsequence of permutation πk.
J denotes the subset of jobs, J ⊆ J, still undetermined in the constructed subsequence πmk of the desired permutation πk.
C denotes the subset of jobs of set J, C ⊆ J,without predecessors in the set J .
The following Algorithm S(T )&SUM is based on Theorem 2 and the heuristic SUM for the unordered subsets of vertices

from set J in digraph G0.
Algorithm S(T )&SUM

Input: Segments [pLi , p
U
i ] and weightswi for all jobs Ji ∈ J.

Output: Permutation πk ∈ S(T ) ⊆ S providing a heuristic solution
to the problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi.

Step 1: Setm := 0 and J := J;
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FOR i = 1 to n DO
set Pi := ∅;

END FOR
step 2: FOR u = 1 to n DO

FOR v = 1 to n, v 6= u, DO
test condition (9) for the pair of jobs Ju ∈ J and Jv ∈ J;
IF condition (9) holds THEN set Pv := Pv ∪ {Ju};

END FOR
END FOR

step 3: Set C := ∅;
FOR Ji ∈ J DO
IF Pi = ∅ THEN set C := C ∪ {Ji};

END FOR
step 4: IF |C | = 1 THEN set πm+1k := (Jk1 , Jk2 , . . . , Jkm , Jr),

where πmk = (Jk1 , Jk2 , . . . , Jkm) and C = {Jr};
FOR Ji ∈ J DO
set Pi := Pi \ {Jr}, J := J \ {Jr};

END FOR
setm := m+ 1 GOTO step 3;

ELSE
step 5: FOR Ji ∈ C DO

compute h(Ji) =
wi
pLi
+

wi
pUi
;

END FOR
create sequence (Ji1 , Ji2 , . . . , Ji|C |) by sorting all jobs in set C
in non-decreasing order of the values h(Jit ), t ∈ {1, 2, . . . , |C |}.

step 6: Set πm+|C |k := (Jk1 , Jk2 , . . . , Jkm , Ji1 , Ji2 , . . . , Ji|C |),
where πmk = (Jk1 , Jk2 , . . . , Jkm);
IFm+ |C | = n THEN STOP
ELSE
FOR Ji ∈ J DO
set Pi := Pi \ C , J := J \ C;

END FOR
setm := m+ |C | GOTO step 3.

To obtain Algorithm S(T )&PROD based on Theorem 2 and the heuristic PROD, it is sufficient to substitute equality

h(Ji) =
wi

pLi
+
wi

pUi
by equality h(Ji) =

wi

pLi
·
wi

pUi
at step 5 of Algorithm S(T )&SUM . If either the condition (17) or condition (18) turns out to be an equality, then job Ju precedes
job Jv in permutationπk ∈ S(T )while the other condition (18) (condition (17), respectively) holds as strict inequality. If both
conditions (17) and (18) turn out to be equalities and u < v, then job Ju precedes job Jv in permutationπk ∈ S(T ) constructed
by heuristic SUM (by heuristic PROD).
Both Algorithm S(T )&SUM and Algorithm S(T )&PROD takeO(n2) time. This complexity is defined by step 2. In the general

case of the problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi Algorithm S(T )&SUM (Algorithm S(T )&SUM , respectively) generates a heuristic

solution for absolute (relative) robust scheduling. However, there is a special case of the problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi in

which each of these algorithms provides an exact solution for robust scheduling.
Let the set of jobs J in the problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi be decomposed into r ≤ n subsets J = J1 ∪ J2 ∪ · · · ∪ Jr

such that the following conditions hold:

(i) |Jk| ≤ 2 for each k ∈ {1, 2, . . . , r};
(ii) precedence–dominance relation Ju 7→ Jv holds for each pair of jobs Ju ∈ Jk and Jv ∈ Js with k < s.

Proposition 1. If for the problem1|pLi ≤ pi ≤ p
U
i |
∑
wiCi both conditions (i) and (ii)hold, thenAlgorithmS(T )&SUM (Algorithm

S(T )&PROD, respectively) generates an absolute (relative) robust permutation for this problem.

Proof. Due to conditions (i) and (ii), at each iteration of Algorithm S(T )&SUM (Algorithm S(T )&PROD) the cardinality of set
C is not greater than 2. If |C | = 1, then the position of job Jr ∈ J ∈ J in the constructed permutation πk ∈ S(T ) is chosen
in an optimal way due to Theorem 2. If |C | = 2, then sequence (Ji1 , Ji2) of jobs Ji1 ∈ C and Ji2 ∈ C is the absolute (relative)
robust sequence with respect to the opposite sequence (Ji2 , Ji1) due to the sufficient condition (17) (the sufficient condition
(18), respectively). Thus, each local decision for selecting a job from the set J to be processed next is realized in an optimal
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Fig. 2. Digraph G0 = (J,A0) constructed for Example 4.

way (in the sense of robustness). Therefore, the final permutation obtained by Algorithm S(T )&SUM (Algorithm S(T )&SUM)
is an absolute (relative) robust permutation for the problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi due to the additivity of the objective

function γ =
∑n
i=1wiCi. �

It is easy to convince that for Example 4 of the problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi with the digraph G0 = (J,A0)

represented in Fig. 2 both conditions (i) and (ii) of Proposition 1 hold. Therefore, Algorithm S(T )&SUM (Algorithm S(T )&SUM ,
respectively) generates an absolute (relative) robust permutation for Example 4. Note that the level of the uncertainty (with
respect to Definition 1) of Example 4 may be evaluated as follows: |S(T )| = 25 = 32.

8. Computational results

Via the testing of randomly generated instances of the problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi we answer (by experiments on

PC) the question of how many pairs of jobs from the set J satisfies the condition (9) of Theorem 2. We estimate how many
randomly generated instances satisfies condition (14) of Theorem3, condition (15) of Theorem4, and both conditions (i) and
(ii) of Proposition 1.We estimate also how large the relative error∆ (in percentage) of the value γ kp∗ of the objective function
γ =

∑n
i=1wiCi is obtained for the scheduleπk constructed due to Algorithm S(T )&SUM (due to Algorithm S(T )&PROD) with

respect to the actually optimal objective value γ tp∗ calculated for the actual processing times p
∗
= (p∗1, p

∗

2, . . . , p
∗
n) ∈ T :

∆ =
γ kp∗ − γ

t
p∗

γ tp∗
· 100%. (19)

The actual processing times p∗i , Ji ∈ J, are assumed to be unknown before constructing a schedule πk by Algorithm
S(T )&SUM (by Algorithm S(T )&PROD). In fact, an actual processing time p∗i was uniformly distributed in the range [p

L
i , p

U
i ].

And the actually optimal permutation πt ∈ S defining the optimal objective value γ tp∗ for the deterministic problem
1 ‖

∑
wiCi associated with the actual job processing times p∗i , Ji ∈ J, was calculated using the optimality condition (4)

of Theorem 1.
For the computational experiments, we used a Pentium IVwith 2.80 GHz processor and 248MBmainmemory. Generator

from [24] has been used for (pseudo) random generating instances of the problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi. Algorithm

S(T )&SUM and Algorithm S(T )&PROD have been coded in C++.
Note that if Algorithm S(T )&SUM (Algorithm S(T )&PROD) detects a precedence relation Ju 7→ Jv , i.e., inclusion (Ju, Jv) ∈ A

holds (provided that u < v), then the algorithm does not test the validity of the opposite relation: Jv 7→ Ju, i.e., (Jv, Ju) 6∈ A.
Otherwise, if Algorithm S(T )&SUM (Algorithm S(T )&PROD) detects that the precedence relation Ju 7→ Jv does not hold (and
u < v), then the algorithm tests the validity of the opposite relation: Jv 7→ Ju. In this case, if relation Jv 7→ Ju holds, then
(Jv, Ju) ∈ A and (Ju, Jv) 6∈ A. Otherwise, (Jv, Ju) 6∈ A and (Ju, Jv) 6∈ A. Consequently, if equality

|A| =
n(n− 1)
2

(20)

holds, then Algorithm S(T )&SUM (Algorithm S(T )&PROD) constructs a permutation πk ∈ S(T ) that is optimal for any vector
p ∈ T of job processing timeswithout fail, i.e., equality γ kp∗ = γ

t
p∗ must hold. Indeed, in such a case if equality (20) holds, then

digraph G turns out to be a tournament (a complete circuit-free digraph), and so the condition (15) of Theorem 4 necessarily
holds.
Tables 4 and 5 represent the computational results of testing randomly generated instances of the problem 1|pLi ≤ pi ≤

pUi |
∑
wiCi with n ∈ {5, 10, 25, 50, 75, 100, 200, 400, 700, 1000}. In fact, we tested series of instances for integer n from

the range [5, 100]with step 5 and for integer n from the range [100, 1000]with step 50 (among others). However for brevity,
we did not present the intermediate results in Tables 4 and 5 since they do not change the general sense of the results of the
experiments. An integer lower bound pLi and integer upper bound p

U
i of the possible real values pi ∈ R+ of the job processing

times, pi ∈ [pLi , p
U
i ], have been generated as follows. First, an integer center C of the closed interval [p

L
i , p

U
i ] was generated

using a uniform distribution in the given range [L,U]: L ≤ C ≤ U . Then the lower bound pLi of a possible processing time
was defined using equality pLi = C · (1−

δ
100 ). And an upper bound p

U
i was defined using equality p

U
i = C · (1+

δ
100 ). As a

result, a maximal possible relative error of the uncertain processing time was equal to 2δ%.
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Table 4
Randomly generated instances with [L,U] = [1, 200],wi ∈ [1, 50] and δ ∈ {0.1, 0.5, 1, 5, 10}.

n δ (%) |A| (%) Error∆ for S(T )&SUM Error∆ for S(T )&PRO |S(T )| = 1 |S(T )| = n! Z(πk) = 0 CPU-time (s)

1 2 3 4 5 6 7 8 9 10

1 5 0.1 100 0.000000 0.000000 10 0 0 0
2 10 0.1 100 0.000000 0.000000 10 0 0 0
3 25 0.1 99.800000 0.000346 0.000346 7 0 0 0
4 50 0.1 99.910204 0.000054 0.000054 3 0 0 0
5 75 0.1 99.909910 0.000110 0.000110 1 0 0 0
6 100 0.1 99.890909 0.000027 0.000027 0 0 0 0.1
7 200 0.1 99.909045 0.000072 0.000072 0 0 0 0.3
8 400 0.1 99.890100 0.000172 0.000172 0 0 0 3.3
9 700 0.1 99.902923 0.000149 0.000150 0 0 0 37.5
10 1000 0.1 99.895776 0.000156 0.000156 0 0 0 226.4

11 5 0.5 99.000000 0.000000 0.000000 9 0 0 0
12 10 0.5 99.777778 0.000000 0.000000 9 0 0 0
13 25 0.5 99.533333 0.000731 0.000731 2 0 0 0
14 50 0.5 99.420408 0.001109 0.001109 0 0 0 0
15 75 0.5 99.473874 0.000563 0.000563 0 0 0 0
16 100 0.5 99.466667 0.000679 0.000679 0 0 0 0
17 200 0.5 99.481407 0.000604 0.000604 0 0 0 0.2
18 400 0.5 99.500125 0.000619 0.000622 0 0 0 3.3
19 700 0.5 99.479542 0.000667 0.000666 0 0 0 44.2
20 1000 0.5 99.479600 0.000659 0.000658 0 0 0 209.6

21 5 1 98.000000 0.000000 0.000000 8 0 0 0
22 10 1 99.333333 0.000398 0.000398 7 0 0 0
23 25 1 98.700000 0.000616 0.000616 1 0 0 0
24 50 1 99.085714 0.001731 0.001731 0 0 0 0
25 75 1 99.012613 0.001632 0.001632 0 0 0 0
26 100 1 99.010101 0.002142 0.002142 0 0 0 0
27 200 1 98.923618 0.001992 0.001992 0 0 0 0.2
28 400 1 98.937719 0.002084 0.002073 0 0 0 3.2
29 700 1 98.967668 0.002089 0.002086 0 0 0 38.6
30 1000 1 98.953554 0.002085 0.002081 0 0 0 220.8

31 5 5 91.000000 0.129772 0.129772 4 0 2 0
32 10 5 95.111111 0.084177 0.084177 3 0 0 0
33 25 5 95.033333 0.041485 0.041485 0 0 0 0
34 50 5 94.546939 0.054941 0.054941 0 0 0 0
35 75 5 94.781982 0.044395 0.044254 0 0 0 0
36 100 5 94.632323 0.044177 0.044327 0 0 0 0
37 200 5 94.765829 0.048270 0.048372 0 0 0 0.2
38 400 5 94.854762 0.048875 0.048896 0 0 0 2.9
39 700 5 94.790170 0.046831 0.046897 0 0 0 38.9
40 1000 5 94.790170 0.047052 0.047036 0 0 0 199.7

41 5 10 90.000000 0.114561 0.114561 2 0 1 0
42 10 10 90.444444 0.154431 0.154431 0 0 0 0
43 25 10 89.533333 0.199577 0.199577 0 0 0 0
44 50 10 88.873469 0.153312 0.153312 0 0 0 0
45 75 10 90.061261 0.180604 0.181736 0 0 0 0
46 100 10 89.664646 0.204054 0.203940 0 0 0 0
47 200 10 89.246231 0.193124 0.192861 0 0 0 0.1
48 400 10 89.685088 0.186289 0.186374 0 0 0 2.5
49 700 10 89.483630 0.190972 0.191143 0 0 0 24.5
50 1000 10 89.559079 0.190070 0.190204 0 0 0 168.8

In the experiments, we tested instances of the problem1|pLi ≤ pi ≤ p
U
i |
∑
wiCiwith the relative errors 2δ% of the random

processing times defined by the following values of δ ∈ {0.1, 0.5, 1.0, 5.0, 10.0, 15.0, 25.0, 50.0, 75.0, 100.0}. Table 4
represents the computational results for small relative errors of the job processing times: δ ∈ {0.1, 0.5, 1.0, 5.0, 10.0}, while
Table 5 represents the computational results for large relative errors of the job processing times: δ ∈ {15.0, 25.0, 50.0,
75.0, 100.0}. In both Tables 4 and 5, the same range [L,U] for varying center C of the closed interval [pLi , p

U
i ] was used,

namely: L = 1 and U = 200. For each job Ji ∈ J, the real weight wi ∈ R+ was uniformly distributed in the same range
[1, 50]. Of course, the weight wi is assumed to be known exactly before scheduling (in contrast to job processing time pi
which is assumed to be unknown before completion time Ci).
Tables 4 and 5 represent the computational results for 100 series of the randomly generated instances of the problem

1|pLi ≤ pi ≤ p
U
i |
∑
wiCi. Each series includes 10 instances with the same combination of n and δ. The series number is

given in column 1. The number n of jobs in an instance is given in column 2. The half of the maximal possible error δ of the
random processing times (in percentage) is given in column 3. Column 4 represents the average relative number |A| of arcs
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Table 5
Randomly generated instances with [L,U] = [1, 200],wi ∈ [1, 50] and δ ∈ {15, 25, 50, 75, 100}.

n δ (%) |A| (%) Error∆ for S(T )&SUM Error∆ for S(T )&PRO |S(T )| = 1 |S(T )| = n! Z(πk) = 0 CPU-time (s)

1 2 3 4 5 6 7 8 9 10

51 5 15 90.000000 0.464456 0.464456 4 0 2 0
52 10 15 85.555556 0.259672 0.259672 0 0 0 0
53 25 15 85.466667 0.358869 0.361898 0 0 0 0
54 50 15 84.269388 0.385431 0.385431 0 0 0 0
55 75 15 84.079279 0.364014 0.363045 0 0 0 0
56 100 15 84.947475 0.399651 0.399766 0 0 0 0.1
57 200 15 84.289447 0.398092 0.398966 0 0 0 0.2
58 400 15 84.044236 0.421430 0.422301 0 0 0 2.1
59 700 15 84.508441 0.415488 0.415682 0 0 0 26.3
60 1000 15 84.467067 0.417893 0.417752 0 0 0 141.7

61 5 25 78.000000 0.923429 0.923429 0 0 0 0
62 10 25 79.555556 0.223605 0.223605 0 0 0 0
63 25 25 74.866667 0.911780 0.911780 0 0 0 0
64 50 25 73.991837 1.037238 1.038106 0 0 0 0
65 75 25 73.545946 1.092398 1.095871 0 0 0 0
66 100 25 74.135354 1.165435 1.164930 0 0 0 0
67 200 25 74.912060 1.188814 1.188926 0 0 0 0.1
68 400 25 74.483960 1.162628 1.162578 0 0 0 1.6
69 700 25 74.243205 1.200619 1.200902 0 0 0 15.1
70 1000 25 73.998458 1.207374 1.206891 0 0 0 94.9

71 5 50 51.000000 0.737772 0.737772 0 0 0 0
72 10 50 44.222222 3.906967 3.934715 0 0 0 0
73 25 50 47.566667 4.718102 4.658379 0 0 0 0
74 50 50 51.134694 3.829368 3.843392 0 0 0 0
75 75 50 45.924324 5.013883 5.017818 0 0 0 0
76 100 50 47.822222 4.806553 4.792812 0 0 0 0
77 200 50 49.427638 4.740232 4.745235 0 0 0 0.1
78 400 50 49.316917 4.929315 4.926666 0 0 0 0.6
79 700 50 49.085469 5.149548 5.151449 0 0 0 5.3
80 1000 50 49.439179 5.008964 5.009273 0 0 0 27.8

81 5 75 31.000000 4.354902 4.354902 0 2 0 0
82 10 75 18.666667 5.992706 5.992706 0 1 0 0
83 25 75 25.100000 11.896708 11.914977 0 0 0 0
84 50 75 25.183673 11.070877 11.024420 0 0 0 0
85 75 75 28.580180 11.075583 11.078941 0 0 0 0
86 100 75 23.569697 10.408500 10.411961 0 0 0 0
87 200 75 25.677889 11.435902 11.437732 0 0 0 0
88 400 75 25.797870 11.308924 11.318648 0 0 0 0.1
89 700 75 25.222481 12.108815 12.113248 0 0 0 1.1
90 1000 75 25.445586 11.837250 11.845775 0 0 0 5.1

91 5 100 1.000000 13.576332 23.720536 0 9 0 0
92 10 100 0.444444 19.100562 27.841165 0 9 0 0
93 25 100 0.600000 21.785152 49.358878 0 5 0 0
94 50 100 0.848980 26.782155 60.921893 0 2 0 0
95 75 100 0.893694 29.136338 56.236835 0 0 0 0
96 100 100 0.894949 27.903204 53.457656 0 0 0 0
97 200 100 0.356281 29.813504 57.447367 0 0 0 0
98 400 100 0.562155 27.955208 55.066314 0 0 0 0
99 700 100 0.468056 28.982720 52.711515 0 0 0 0
100 1000 100 0.480160 28.709586 53.917875 0 0 0 0.1

in the digraph G = (J,A) constructed using the condition (9) of Theorem 2 (in percentage of the arc number in a complete
circuit-free digraph of order n):

|A| :

(
n(n− 1)
2

)
· 100%.

The average relative error∆ of the objective function value γ kp∗ calculated for permutation πk constructed by Algorithm
S(T )&SUM (by Algorithm S(T )&PROD) with respect to the optimal objective function value γ tp∗ defined for actual job
processing times is given in columns 5 (in column 6, respectively). Definition of ∆ is given by equality (19). Column 7
represents the number of instances (from 10 ones in a series) for which the condition (14) of Theorem 3 holds, i.e., in such
an instance there exists a single dominant permutationπk ∈ S that is optimal for any possible vector p ∈ T of job processing
times: |S(T )| = 1. Column 8 represents the number of instances (from 10 ones in a series) for which the condition (15)
of Theorem 4 holds, i.e., |S(T )| = n!. Column 9 represents the number of instances (from 10 ones in a series) for which
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both conditions (i) and (ii) of Proposition 1 hold, i.e., permutation πk constructed by Algorithm S(T )&SUM (by Algorithm
S(T )&PROD) is an absolute (relative) robust permutation for the considered instance of the problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi.

The average CPU-time (in seconds) used by the 2.80 GHz processor for solving one instance (exactly of heuristically) and for
conducting the whole of the above analysis is given in columns 10.
From the experiments, it follows that the condition (14) of Theorem 3 holds only for some instances with small number

of jobs (5 ≤ n ≤ 75) and rather small relative error 2δ% of job processing times (see column 7 for series with numbers
1–5, 11–13, 21–23, 31, 32, 41, 51). Moreover, only two series of instances (with numbers 1 and 2) were completely solved
(i.e., γ kp∗ = γ

t
p∗ ) due to the validity of condition (14). Both conditions (i) and (ii) of Proposition 1 hold only for two instances

from the series with number 51 (see column 8). The condition (15) of Theorem 4 holds only for a few instances with a small
number of jobs (5 ≤ n ≤ 50) and large relative error (δ ∈ {75, 100}) of job processing times (see column 8 for series
with numbers 81, 82, 91–94). Note that a lot of pairs of jobs from set J satisfy the condition (9) of Theorem 2. Due to the
large number of arcs A (see column 4) each of the both Algorithms S(T )&SUM and S(T )&PROD generate a permutation πk
with very low average relative error ∆ of the actually optimal value γ tp∗ of the objective function (see columns 5 and 6 for
series with numbers 1–82). In particular, for instance series 1–63, the average values∆ are less than 1%. For instance series
64–78, average values ∆ are less than 5%. The average quality of the schedules obtained depends of the error 2δ% of the
job processing times and remains rather close for the instances with different number of jobs provided that they have the
same δ of the uncertain processing times. For δ ∈ {0.1, 0.5, 1.0, 5.0, 10.0, 15.0, 25.0, 50.0, 75.0}, the quality of solutions
obtained by Algorithm S(T )&SUM is closed to that obtained by Algorithm S(T )&PROD while for δ = 100 when only a few
arcs are in set A (see column 4), the quality of solutions obtained by Algorithm S(T )&SUM is essentially better than that
obtained by Algorithm S(T )&PROD.
The lowest average relative number of arcs A, i.e., 0.444444%, was constructed for the instance series with number

92. The lowest average solution quality, i.e., ∆ = 60.921893%, was obtained by Algorithm S(T )&PROD for the series with
number 94.
The CPU-time depends both on the number of jobs n and on the number of arcs A. The latter dependence is provided

by testing the conditions (i) and (ii) of Proposition 1. For example, the largest average CPU-time, 226.4 s, is obtained for
the series with number 10 since the number of jobs is the largest, n = 1000, and the number of arcs is large, 99.895776,
as well.

9. Concluding remarks

For the uncertain problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi, the necessary and sufficient condition is proven for the existence of a

single permutation of the n jobs which remains optimal for all possible processing times (the simplest case of an uncertain
problem). The necessary and sufficient condition is also proven for the case that for any permutation of the n jobs there
exists such a vector of possible processing times that this permutation is uniquely optimal (the hardest case of an uncertain
problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi). Both the necessary and sufficient conditions proven may be tested in polynomial time

of the number n of jobs. For the general case of the problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi, the precedence–dominance relations

are developed. If there is no precedence–dominance relation within some jobs, the worst-case regret criterion was used for
sequencing such a subset of jobs. A special case of the problem 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi is identified when a permutation

minimizing the absolute (relative) worst-case regret may be calculated in polynomial time.
The main issue of this paper is to show how to use a minimal dominant set of permutations S(T ), S(T ) ⊆ S, for an

optimal realization of the process in a special case of the problem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi and for minimizing the worst-

case regret. We estimate the strength of using a minimal dominant set S(T ) by extensive computational experiments for
randomly generated problems 1|pLi ≤ pi ≤ p

U
i |
∑
wiCi with the number n of jobs from the range [5, 1000]. In particular, it

was shown by experiments on PC that by using a minimal dominant set one can find a permutation πk ∈ S(T )with a rather
small relative error∆ of the actually optimal value γ kp∗ of the objective function γ =

∑n
i=1wiCi.

The obtained results may be used in the hierarchical method to scheduling adopted over the last decade and corresponds
to industrial practices [2]. In the static phase (off-line scheduling), when the level of uncertainty of the input data is high, a
scheduler can find aminimal dominant set S(T ) to the uncertain problem1|pLi ≤ pi ≤ p

U
i |
∑
wiCi. In order to find an optimal

schedule, the subset of schedules from the set S(T ) to the uncertain subproblem 1|pLi ≤ pi ≤ p
U
i |
∑
wiCi obtained after each

decision being made in the dynamic phase (on-line scheduling) has to remain a minimal dominant one for the remaining
subset of jobs. In [25], it was shown by experiments that such an hierarchical approach based on a minimal dominant set
S(T ) is very efficient for the uncertain two-machine flow-shop problem F2|pLi ≤ pi ≤ p

U
i |Cmax with Cmax criterion.
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