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SEQUENCING JOBS WITH UNCERTAIN PROCESSING TIMES  
AND MINIMIZING THE WEIGHTED TOTAL FLOW TIME 

Yuri Sotskov, Natalja Egorova 

Abstract: We consider an uncertain version of the scheduling problem to sequence set of jobs J on a single 
machine with minimizing the weighted total flow time, provided that processing time of a job can take on any real 
value from the given closed interval. It is assumed that job processing time is unknown random variable before 
the actual occurrence of this time, where probability distribution of such a variable between the given lower and 
upper bounds is unknown before scheduling. We develop the dominance relations on a set of jobs J. The 
necessary and sufficient conditions for a job domination may be tested in polynomial time of the number n = |J| 
of jobs. If there is no a domination within some subset of set J, heuristic procedure to minimize the weighted total 
flow time is used for sequencing the jobs from such a subset. The computational experiments for randomly 
generated single-machine scheduling problems with n ≤ 700 show that the developed dominance relations are 
quite helpful in minimizing the weighted total flow time of n jobs with uncertain processing times.  

Keywords: Scheduling, robustness and sensitivity analysis. 

ACM Classification Keywords: F.2.2 Nonnumerical algorithms and problems: Sequencing and scheduling. 

Conference: The paper is selected from XIVth International Conference "Knowledge-Dialogue-Solution" KDS 2008, Varna, 
Bulgaria, June-July 2008 

Introduction 

There are scheduling problems in real life, where job processing times may be evaluated with high reliability 
before scheduling, and the vast majority of academic research assumes that job processing times are either 
deterministic (see book [Tanaev, Sotskov, Strusevich, 1994] and the first part of book [Pinedo, 1995]) or random 
variables with known probability distributions (the second part of [Pinedo, 1995]). However, it is not realistic to 
assume all the job processing times have known probability distribution for many other practical scheduling 
problems. For the most scheduling environments, job processing times are unknown variables and the only 
information that can be certainly obtained before scheduling is about lower and upper bounds for a job processing 
time. As such, a schedule obtained by assuming a certain probability distribution may not be close to the optimal 
schedule in practical realization of the process. Due to this reason, methods of construction of optimal and 
approximate schedules are practically important for scheduling problems with uncertain (interval) processing 
times [Kouvelis, Yu, 1997; Sotskov, Sotskova, 2004].  
In this paper, we address a scheduling problem when it is impossible to obtain reliable probability distributions for 
the job processing times. Namely, it is assumed that the processing time of a job can take any real value from the 
given interval of uncertainty, regardless of the values taken by the processing times of other jobs. More precisely, 
we consider the non-preemptive single-machine sequencing problem with interval processing times to minimize 
the weighted sum of the job completion times.  
The paper is organized as follows. In the second section, problem setting is given. The third section contains a 
literature review. The forth section reminds a known-result for a single-machine scheduling problem with the fixed 
processing times and the weighted total flow time criterion. The fifth section contains the necessary and sufficient 
condition over which a job dominates another one (i.e., for each set of possible processing times there exists an 
optimal permutation with the same order of these two jobs). An illustrative example is given in the sixth section. 
Computational results for randomly generated instances with interval processing times are given in the seventh 
section. The last section presents a brief conclusion.  
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Problem Setting  

There are n ≥ 2 jobs },...,,{ 21 nJJJJ =  to be processed on a single machine. For each job J Ji ∈ , positive 
weight 0>iw  is given. Processing time ip  of a job J Ji ∈  may take any real value between given lower bound 

0≥ia  and upper bound ib , ii ab ≥ , which are only known before scheduling. Real number iC  is equal to the 

completion time of the job JJi ∈  and criterion ∑ iiCw = ∑
=

n

i
iiCw

1
 denotes minimization of sum of the weighted 

completion times of n jobs. Let },...,,{ !21 nS πππ=  denote a set of all permutations ),...,,(
21 niiii JJJ=π  of n 

jobs from the set },...,,{ 21 nJJJJ = . By adopting the three-field notation γβα ||  introduced in [Graham et al., 
1976], we denote the scheduling problem of searching an optimal permutation within set S that minimizes the 

value ∑
=

n

i
iiCw

1
 as ∑≤≤ iiiii Cwbpa ||1 . A set },:{ JJbpa    pT iiii ∈≤≤=  of vectors ),...,,( 21 npppp =  

of the processing times is a rectangular box in the space of non-negative n-dimensional real vectors. If a vector p 
of the processing times is known before scheduling (i.e., JJba iii ∈= , ), then problem ∑≤≤ iiiii Cwbpa ||1  
becomes conventional problem ∑ iiCw||1  with the fixed job processing times. As it is proven in [Smith, 1956], 
the latter problem can be solved in )log( 2 nnO  time. We call sequencing problem ∑≤≤ iiiii Cwbpa ||1  an 
uncertain (sequencing) problem in contrast to problem ∑ iiCw||1 , called a deterministic one. 

Literature Review and Definition 

In case of the uncertain problem ∑≤≤ iiiii Cwbpa ||1 , there may not exists a unique schedule that remains 
optimal for all possible realizations of the job processing times. Therefore, in [Daniels, Kouvelis, 1995], so-called 
robust schedule minimizing the worst-case absolute or relative deviation from optimality (called worst-case regret) 
was proposed to hedge against processing time uncertainty. In [Daniels, Kouvelis, 1995; Yang, Yu, 2002], 
uncertain problem ∑≤≤ iiii Cbpa ||1  with minimizing total flow time (i.e., it was assumed that 1=iw  for each 
job J Ji ∈ ) has been considered. In [Averbakh, 2000; Averbakh, 2001; Daniels, Kouvelis, 1995; Yang, Yu, 2002; 
Lebedev, Averbakh, 2006] along with continuous intervals of possible processing times defined by the above set 
T, the processing time uncertainty was described through a finite discrete set ,||, ** hTT =  of possible 

processing time vectors (called scenarios). Each scenario *Tp∈  represents fixed processing times for job set J, 
which can be realized with some positive (but unknown before scheduling) probability. For a specific scenario 

*Tp∈ , deterministic problem ∑ iC||1  arises which can be solved using optimal job permutation defined due to 
the following SPT rule: Sort the jobs J according to non-decreasing order of their processing times. 

While deterministic problem ∑ iC||1  is computationally simple, finding a permutation which minimizes the worst-

case regret to the uncertain counterpart with discrete set of possible scenarios ,||, ** hTT = is computationally 
hard problem. E.g., in [Daniels, Kouvelis, 1995], it was proven that to find a permutation 

SJJJ niiii ∈= ),...,,( 21π  minimizing the worst-case absolute regret is binary NP-hard problem (see [Garey, 
Johnson, 1979] for definition) even for two possible scenarios: h = 2. In [Yang, Yu, 2002], it was proven that to 
find a permutation SJJJ niiii ∈= ),...,,( 21π  minimizing the worst-case relative regret is binary NP-hard 
problem for two possible scenarios as well. In [Yang, Yu, 2002], it was proven that to find a permutation 

SJJJ niiii ∈= ),...,,( 21π  minimizing the worst-case absolute (relative) regret is unary NP-hard problem [Garey, 
Johnson, 1979] for unbounded number h of possible scenarios.  
Worst-case regret is also defined for the processing time uncertainty described through a rectangular box T of 
possible vectors p. In [Lebedev, Averbakh, 2006], it was proven that minimizing the worst-case absolute regret for 
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problem ∑≤≤ iiii Cbpa ||1  is binary NP-hard problem if intervals of the processing times have the same 
center for all jobs J. In [Averbakh, 2001], it was shown by an example that there is no direct relationship between 
the complexity of the uncertain problem with the given finite discrete set of possible scenarios ,||, ** hTT =  and 
the complexity of the uncertain problem with the given set T of n continuous intervals of possible scenarios. 

Summarizing this overview, we can observe that for the most classical polynomially solvable deterministic 
scheduling problems, their uncertain counterparts with the worst-case regret criterion become binary or unary NP-
hard problems. In fact, even for existence of only two scenarios of possible processing times (h=2), to minimize 
the absolute or relative regret implies a time-consuming search over set S of n! permutations of n jobs. In order to 
overcome this computational complexity in some special cases, we propose to use searching the minimal set of 
dominant schedules (permutations) introduced in [Lai, Sotskov, 1999] for solving the uncertain job-shop problem 

max|| CbpaJ iii ≤≤  with the makespan objective function: }:max{max JJCC ii ∈= . 

Definition 1: Set of permutations (schedules) S(T) ⊆  S is a minimal dominant set for the uncertain problem 
γα || iii bpa ≤≤ , if for any vector p ∈ T set S(T) contains at least one permutation (schedule), which is 

optimal for the deterministic problem γα ||  with vector p of the job processing times provided that any proper 
subset of set S(T) loses such a property.  

A minimal dominant set S(T) was investigated in [Allahverdi, Sotskov, 2003; Allahverdi, Aldowaisan, Sotskov, 
2003; Lai, Sotskov, 1999; Leshchenko, Sotskov, 2007] for the makespan criterion maxC , and in [Allahverdi, 
Aldowaisan, Sotskov, 2003; Sotskov, Allahverdi, Lai, 2004] for the total flow time criterion ∑ iC . In particular, 
work of [Sotskov, Allahverdi, Lai, 2004] was addressed to the total flow time in a two-machine flow-shop with the 
interval processing times: max||2 CbpaF iii ≤≤ . A geometrical algorithm has been developed for solving the 
flow-shop problem ∑≤≤= iiii CbpanFm |,2|  with m machines and two jobs. For uncertain flow-shop 
problems with two or three machines, sufficient conditions have been identified when the transposition of two jobs 
minimizes the total flow time. Work of [Allahverdi, Aldowaisan, Sotskov, 2003] was addressed to the case of 
separate setup times with the criterion maxC  or ∑ iC . Namely, the processing times were fixed while each setup 
time was relaxed to be a distribution-free random variable within given lower and upper bounds. Dominance 
relations have been identified for an uncertain flow-shop problem with two machines. In [Allahverdi, Sotskov, 
2003], for a two-machine flow-shop problem max||2 CbpaF iii ≤≤ , sufficient conditions have been identified 
when the transposition of two jobs minimizes the makespan maxC . In [Leshchenko, Sotskov, 2007], the 
necessary and sufficient conditions were used for the case when a single schedule dominates all the others, and 
the necessary and sufficient conditions were used for the case when it is possible to fix the optimal order of two 
jobs for the makespan criterion maxC  with interval job processing times.  

The formula for calculating stability radius of an optimal schedule (i.e., the largest value of independent variations 
of the job processing times for the schedule to remain optimal) has been provided in [Sotskov, Sotskova, Werner, 
1997] for a job-shop problem max|| CbpaJm iii ≤≤  with m machines. Stability radius of an optimal schedule 
was investigated for problem max|| CbpaJm iii ≤≤  in [Lai, Sotskov, 1999; Sotskov, Wagelmans, Werner, 
1998], and for problem ∑≤≤ iiii CbpaJm || in [Brasel, Sotskov, Werner, 1996]. In contrast to references 
[Brasel, Sotskov, Werner, 1996; Lai, Sotskov, 1999; Sotskov, Sotskova, Werner, 1997; Sotskov, Wagelmans, 
Werner, 1998], where exponential algorithms based on exhausting enumeration of the semi-active schedules 
(see p. 284 in [Tanaev, Sotskov, Strusevich, 1998]) were derived for constructing minimal dominant set S(T) for 
uncertain job-shop problems, in this paper, we show how to find set S(T) for the problem ∑≤≤ iiii Cbpa ||1  
in polynomial time. Next, we present an auxiliary result for the deterministic problem ∑ iiCw||1 . 
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Deterministic Sequencing Problem  

In [Smith, 1956], it was proven that problem ∑ iiCw||1  can be solved in )log( 2 nnO  time due to the following 
sufficient condition for optimality of permutation SJJJ

niiii ∈= ),...,,(
21

π :  

n

n

i

i

i

i

i

i

p
w

p
w

p
w

≥≥≥ ...
2

2

1

1 .                                                                                   (1) 

It is easy to prove that inequalities (1) are also necessary conditions for optimality of permutation 
SJJJ

niiii ∈= ),...,,(
21

π  for the problem ∑ iiCw||1 . 

Theorem 1: Permutation SJJJ niiii ∈= ),...,,( 21π  is optimal for the problem ∑ iiCw||1  if and only if 
inequalities (1) hold. 
Proof: Sufficiency of condition (1) for optimality of permutation iπ  was proven in [Smith, 1956]. 

Next, we prove necessity of condition (1) for optimality of permutation iπ  by contradiction method.  

Let permutation SJJJJJJJ
nrrrr iiiiiiii ∈=

++−
),...,,,,,...,,(

21121
π  be optimal for the problem ∑ iiCw||1 . 

However, for the latter permutation at least one inequality from condition (1) is violated, e.g., we assume that the 
following opposite inequality holds:  

1

1

+

+<
r

r

r

r

i

i

i

i

p
w

p
w

,                                                                                                   (2) 

where }1,...,2,1{ −∈ nr . Let us consider permutation SJJJJJJJ
nrrrr iiiiiiii ∈=′

++−
),...,,,,,...,,(

21121
π , which 

defers from permutation iπ  by transposition of jobs 
riJ  and 

1+riJ . We obtain the following equalities provided 

that notation ki

n

k kiniiii CwJJJ ∑==
=121 ),...,,()( ΦπΦ  is used: 

∑∑=
==

q

k ki

n

q qii pw
11

)(πΦ , ∑∑∑∑∑∑
=+=

−

=+

−

=+=

−

=
++++=′

q

k ki

n

rq qi

r

k kiriri

r

k kiri

q

k ki

r

q qii pwpwppwpw
12

1

11

1

111

1

1
)()(πΦ . 

Let us calculate the difference of the objective function values defined for permutation iπ  and permutation iπ′ : 

.)(

)()(

11111

1

1

1

11

1

11

1

11

1

11

1

111
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1

11

1

11

1

1 1

12

1

111

1

1 1

12

1

11

1

1

1

1 1 11 1

+++++

−

=

+

=
+

+

==

+

=
+

−

=
+

+

=
+

=

=+=

+

=
+

−

=
+

−

= =

=+=

+

=
+

=

−

= =

=+=

+

=
+

−

=

−

= =
+

= =

−=+−=⎟
⎠
⎞

⎜
⎝
⎛ −∑−∑+⎟

⎠
⎞

⎜
⎝
⎛ ∑−∑=

=∑−⎟
⎠
⎞

⎜
⎝
⎛ +∑−∑+∑=

=⎥⎦

⎤
⎢⎣

⎡
∑∑+∑+⎟

⎠
⎞

⎜
⎝
⎛ +∑+∑ ∑−

−∑∑+∑+∑+∑ ∑=

=⎥⎦

⎤
⎢⎣

⎡
∑∑+∑+⎟

⎠
⎞

⎜
⎝
⎛ +∑∑ ∑ +−∑ ∑=′−

ririririririririri

r

k ki

r

k kiri

r

k ki

r

k kiri

r

k kiriri

r

k kiri

r

k kiri

r

k kiri

q

k ki

n

rk qi

r

k kiriri

r

k kiri

r

q

q

k kiqi

q

k ki

n

rk qi

r

k kiri

r

k kiri

r

q

q

k kiqi

q

k ki

n

rk qi

r

k kiriri

r

k ki

r

q

q

k rikiqi

n

q

q

k kiqiii

pwpwpwpwpppwppw

pwppwpwpw

pwpwppwpw

pwpwpwpw

pwpwppwpwpwπΦπΦ

 

Thus, the following equality holds: 
11

)()(
++

−=′Φ−Φ
rrrr iiiiii pwpwππ . If we multiply both left-hand side and 

right-hand side of the latter inequality by factor 1+riri pp , we obtain inequalities 
rrrr iiii pwpw

11 ++
<  and 

0
11
>−

++ rrrr iiii pwpw  which implies: )()( ii ππ Φ<′Φ . The latter inequality contradicts to the above assumption 
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that permutation iπ  is optimal for the problem ∑ iiCw||1 . The contradiction obtained implies the necessity of 
condition (1) for optimality of permutation iπ  for the problem ∑ iiCw||1 . Theorem 1 is proven.  ■ 

Uncertain Sequencing Problem  

Search of the minimal dominant set S(T) for an uncertain problem ∑≤≤ iiiii Cwbpa ||1  may be based on 
constructing a dominance relation on the set of jobs J. To this end, we define a dominance relation as follows. 
Definition 2: Job uJ  dominates job vJ  with respect to T (i.e., uJ  → vJ ), if there exists a minimal dominant set 
S(T) for the problem ∑≤≤ iiiii Cwbpa ||1  that each permutation from set S(T) has either the form (…, uJ , vJ , 
…) or the form (…, uJ , …, vJ , …) (i.e., in a permutation )(TSk ∈π , job uJ  precedes job vJ ). 

From Definition 2 it follows that minimal dominant set S(T) for the deterministic problem ∑ iiCw||1  is a singleton: 
)(}{ TSk =π . As a result the following dominance relations hold: nkkk JJJ →→→ ...21 . For a general case 

of the problem ∑≤≤ iiiii Cwbpa ||1 , the following claim may be proven using Theorem 1. 

Theorem 2: For the problem ∑≤≤ iiiii Cwbpa ||1 , job uJ  dominates job vJ  with respect to T if and only if 
the following inequality holds: 

v

v

u

u

a
w

b
w

≥ .                                                                                                       (3) 

Due to Theorem 2, if job uJ  dominates job vJ  and job vJ  dominates job iJ , then job uJ  dominates job iJ  as 
well. Thus, dominance relation uJ  → vJ  is transitive. Theorem 2 allows us to find a minimal dominant set S(T) 
for the uncertain problem ∑≤≤ iiiii Cwbpa ||1  and to present set S(T) in compact form. Indeed via checking 
condition (3) for each pair of jobs uJ  and vJ  from the set J, we construct digraph ),( AJG =  of dominance 
relation on the set J: Arc ),( vu JJ belongs to set A if and only if dominance relation uJ  → vJ  holds. Obviously, 

it takes )( 2nO  time to construct digraph ),( AJG = . If due to Theorem 2, linearly ordered set of jobs J, 

nkkk JJJ →→→ ...21 , will be constructed, then set S(T) for the problem ∑≤≤ iiiii Cwbpa ||1  will be a 

singleton: )(}{ TSk =π . And permutation Sk ∈π  will be optimal for any possible scenario Tp∈ . It is easy to 

convince that in the case of )(}{ TSk =π , inequality 
2

)1(|| −
≥

nnA  must hold for the digraph ),( AJG = .  

Illustrative Example  

Let input data for the instance of the problem ∑≤≤ iiiii Cwbpa ||1  be given in columns 1−4 of Table 1.  

Table 1. Input data for the problem ∑≤≤ iiiii Cwbpa ||1  

i  ia  ib  iw  ii aw /  ii bw /  

1 1 3 18 18 6 
2 5 6 30 6 5 
3 4 10 20 5 2 
4 3 4 12 4 3 
5 4 4 8 2 2 
6 5 10 10 2 1 
7 2 2 3 1.5 1.5 
8 7 10 14 2 1.4 
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Via testing condition (3) of Theorem 2 for each pair of jobs JJu ∈  and JJv ∈  we obtain the following relations: 

2

2

1

1 66
a
w

b
w

=≥= ; 
3

3

2

2 55
a
w

b
w

=≥= ; 
4

4

2

2 45
a
w

b
w

=≥= ; 
5

5

3

3 22
a
w

b
w

=≥= ; 
5

5

4

4 23
a
w

b
w

=≥= ;  

6

6

5

5 22
a
w

b
w

=≥= ; 
7

7

5

5 5.12
a
w

b
w

=≥= ; 
8

8

5

5 22
a
w

b
w

=≥= . 

Thus, condition (3) holds for the following ordered pair of jobs: 1J  and 2J ; 2J  and 3J ; 2J  and 4J ; 3J  and 

5J ; 4J  and 5J ; 5J  and 6J ; 5J  and 7J ; 5J  and 8J . Due to Theorem 2, the following dominance relations 
hold: job 1J  dominates job 2J ; job 2J  dominates jobs 3J  and 4J ; job 3J  dominates job 5J ; job 4J  
dominates job 5J ; job 5J  dominates jobs 6J , 7J , and 8J . It is easy to verify that there are no other dominance 
relations except those that are transitive to the above ones. Therefore, minimal dominant set )(TS  for this 
instance of the problem ∑≤≤ iiiii Cwbpa ||1  consists of 2!⋅3! = 12 permutations.  

 
Fig. 1. Digraph ),( AJG =  without transitive arcs 

Digraph ),( AJG =  defining set },...,,{)( 1221 πππ=TS  is represented in Fig. 1 (for simplicity, the transitive 
arcs are omitted). Thus, while searching optimal permutation for this instance of the uncertain problem 

∑≤≤ iiiii Cwbpa ||1 , it is sufficient to test only 12 permutations (instead of 8! = 256 feasible ones). 

Computational Results 

In this section, we describe the testing of randomly generated problems ∑≤≤ iiiii Cwbpa ||1  and answer (by 
experiments on PC) the question of how many pairs of jobs from set J  satisfy condition (3) and how large errors 

of the optimal values of the criterion ∑ iiCw  are for the schedules constructed using digraph ),( AJG = .  

The computational algorithm was coded in C++. If relation uJ  → vJ  was fulfilled provided that vu < , our 
algorithm did not tested the validity of the opposite relation: vJ  → uJ . Therefore, an optimal permutation was 

obtained without fail, if equality 
2

)1(|| −
=

nnA  was fulfilled for the constructed digraph ),( AJG = .  

For the experiments, we used an AMD 3000 MHz processor with 1024 MB main memory. We tested random 
instances of the uncertain problem ∑≤≤ iiiii Cwbpa ||1  with the following numbers of jobs: n ∈ {10, 25, 50, 
100, 150, …, 700}. The given integer lower and upper bounds of the possible integer processing times were 
uniformly distributed in the range [1, 100]. We tested the following errors L% of the uncertain job processing 
times: L ∈ {0.1, 0.5, 1.0, 5.0, 10.0, 15.0, 20.0}. For each job JJi ∈ , the given lower bound of a job processing 
time was randomly generated in the range [1, 100] and the upper bound was computed as follows: 

%)100/%1( Lab ii += . For each job JJi ∈ , the weight 0>iw  was randomly generated in the range [1, 50].  

Table 2 represents the computational results for 80 series of the randomly generated instances. Each series 
included 10 instances with the same combination of the above n and L. The left-hand side of Table 2 (columns 1 

J1 J2 

J3 

J4 

J5 

J6 

J7 

J8 
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– 6) represents the computational results for instances with the numbers of jobs from set {10, 25, 50, 100, 150,…, 
300}. The right-hand side of Table 2 (columns 7 – 12) represents the computational results for instances with the 
number of jobs from set {350, 400,…, 700}. The number of series is given in column 1 (for series numbered from 
1 to 40), and in column 7 (for series numbered from 41 to 80). The number of jobs in one instance is given in the 
corresponding column 2 or 8. The error L of the uncertain job processing times (in percentage) is given in the 

corresponding columns 3 or 9. The average error of the objective function value ∑=
=

n

i
iiCw

1

00Φ  calculated for the 

heuristic schedules constructed due to Theorem 2 and digraph ),( AJG = , with respect to optimal objective 

function value ∑=
=

n

i
iiCw

1

**Φ , is given in the corresponding columns 4 or 10 (namely, values **0 :)( ΦΦΦ −  

are given in columns 4 and 10). The average relative number of arcs || A  (in percentage) constructed due to 
validity of condition (3), with respect to the number of arcs in the complete circuit-free digraph, is given in the 

corresponding columns 5 or 11 (namely, values %100)
2

)1(|:(| −nnA  are given in columns 5 and 11). The 

average CPU-time (in seconds) used by the processor AMD 3000 MHz for solving one instance (approximately or 
exactly) is given in the corresponding columns 6 or 12.  
From the experiments, it follows that dominance relation stated in Theorem 2 allow us to solve exactly all the 
instances from the series with numbers 1 – 10 and 14 (see column 5). The lowest relative number of arcs, i.e. 
78.81069%, was constructed for the series with number 75. The lowest average quality of the schedules, i.e. 

759582.0:)( **0 =− ΦΦΦ , was obtained for the series with the largest number 80. The largest CPU-time, 
37.1 s, was obtained for the series with number 48. The average quality of the schedules obtained depends of the 
error L of the job processing times and remains almost the same for the instances with different number of jobs 
provided that they have the same error L% of the uncertain processing times. Increasing simultaneously both 
numbers n and L decreases the number of instances solved exactly due to Theorem 2. 

Table 2. Computational results for randomly generated instances ∑≤≤ iiiii Cwbpa ||1  

 n Error L 
% 

Objective 
error 

Number 
of arcs,% 

CPU- 
time,s 

 n Error 
L % 

Objective 
error 

Number 
of arcs,% 

CPU- 
time,s  

1 2 3 4 5 6 7 8 9 10 11 12 
1 10 0.1 0.000000 100.00000 0 41 350 1.0 0.004562 99.181989 1.9 
2 25 0.1 0.000000 100.00000 0 42 400 1.0 0.004622 99.160902 3.3 
3 50 0.1 0.000000 100.00000 0 43 450 1.0 0.004386 99.175452 5.3 
4 100 0.1 0.000000 100.00000 0 44 500 1.0 0.004430 99.179559 8.2 
5 150 0.1 0.000000 100.00000 0.1 45 550 1.0 0.004539 99.179467 11.9 
6 200 0.1 0.000000 100.00000 0.2 46 600 1.0 0.004494 99.202282 17.1 
7 250 0.1 0.000000 100.00000 0.5 47 650 1.0 0.004504 99.197867 24.8 
8 300 0.1 0.000000 100.00000 1.1 48 700 1.0 0.004738 99.174290 37.1 
9 10 0.5 0.000000 100.00000 0 49 350 5.0 0.051612 94.942939 1.7 
10 25 0.5 0.000000 100.00000 0 50 400 5.0 0.052478 94.784712 3.0 
11 50 0.5 0.000058 99.991837 0 51 450 5.0 0.052236 94.871171 4.8 
12 100 0.5 0.000000 99.997980 0 52 500 5.0 0.052704 94.917756 7.3 
13 150 0.5 0.000000 99.996421 0 53 550 5.0 0.051536 95.060772 10.9 
14 200 0.5 0.000000 100.00000 0.3 54 600 5.0 0.054459 94.834780 15.2 
15 250 0.5 0.000006 99.998394 0.7 55 650 5.0 0.053217 94.908475 21.2 
16 300 0.5 0.000033 99.996210 1.7 56 700 5.0 0.050923 94.883303 29.3 

Би
бл
ио
те
ка

 БГ
УИ
Р



International Book Series "Information Science and Computing" 
 

 

 

95

17 10 1.0 0.000374 98.888889 0 57 350 10.0 0.196527 89.868522 1.5 
18 25 1.0 0.004613 99.333333 0 58 400 10.0 0.189964 89.885965 2.5 
19 50 1.0 0.003874 99.412245 0 59 450 10.0 0.199014 89.876169 4.2 
20 100 1.0 0.003450 99.236364 0 60 500 10.0 0.198004 89.393587 6.3 
21 150 1.0 0.005091 99.314541 0.1 61 550 10.0 0.182142 89.829641 9.4 
22 200 1.0 0.004504 99.190452 0.2 62 600 10.0 0.192427 89.771786 13.3 
23 250 1.0 0.004385 99.178474 0.5 63 650 10.0 0.191777 89.593694 18.9 
24 300 1.0 0.004397 99.196433 0.1 64 700 10.0 0.197116 89.578500 26.9 
25 10 5.0 0.010130 92.666667 0 65 350 15.0 0.416224 84.606631 1.3 
26 25 5.0 0.044132 95.033333 0 66 400 15.0 0.421506 84.389724 2.2 
27 50 5.0 0.033901 95.346939 0 67 450 15.0 0.419705 84.949567 3.6 
28 100 5.0 0.049146 95.032323 0 68 500 15.0 0.450631 84.497074 5.5 
29 150 5.0 0.050174 94.741834 0 69 550 15.0 0.432102 84.505647 8.1 
30 200 5.0 0.050892 95.029648 0.2 70 600 15.0 0.447372 84.360045 11.4 
31 250 5.0 0.054236 94.993092 0.5 71 650 15.0 0.418753 84.208131 15.6 
32 300 5.0 0.049330 94.978595 0.9 72 700 15.0 0.454469 84.130922 21.6 
33 10 10.0 0.129524 89.111111 0 73 350 20.0 0.747840 79.328530 1.2 
34 25 10.0 0.124472 89.400000 0 74 400 20.0 0.779839 79.001754 1.8 
35 50 10.0 0.179310 90.889796 0 75 450 20.0 0.775389 78.810690 3.0 
36 100 10.0 0.201273 89.715152 0 76 500 20.0 0.749320 79.445210 4.7 
37 150 10.0 0.199625 89.681432 0.1 77 550 20.0 0.767790 79.044080 6.8 
38 200 10.0 0.185334 89.533668 0.1 78 600 20.0 0.755315 79.437340 9.8 
39 250 10.0 0.197567 89.108112 0.4 79 650 20.0 0.779930 79.073272 13.4 
40 300 10.0 0.190829 89.575920 0.8 80 700 20.0 0.759582 79.465195 18.4  

Conclusion 

The main issue of this paper is to show how to construct a minimal dominant set S(T) in polynomial time via 
constructing digraph ),( AJG =  as a compact presentation of set S(T) of dominant permutations. We estimated 
a strength of using minimal dominant set S(T) by extensive computational experiments for randomly generated 
problems ∑≤≤ iiiii Cwbpa ||1  with number n of jobs from the range [10, 700]. 
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