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Abstract:
A geometric concept of the world (W ) is considered where the manifold W is identified with a
locally trivial fibre bundle pr: W ! U of so–called crystal spheres over a manifold U called the
universal time. For every point p 2 U, Mn = pr�1 (p) is a n–dimensional crystal sphere and close
crystal spheres are called the parallel universes. There exists a geometric black hole on the
smooth manifold M

n. Tensor fields, fibre bundles, operators (physical structures and equations)
can be deformed towards the black hole into continuous and sectionally smooth those, further,
they can be retracted together with the black hole into a small black ball to initiate the Big Bang.
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1. INTRODUCTION

The celestial spheres were the fundamental entities of the cosmological models developed by Plato,
Eudoxus, Aristotle, Ptolemy and others [1]. Our concept of the world can be considered as a modern
interpretation of ideas of ancient greeks or, perhaps, of more old sources which we do not know.

Example. A sphere bundle is a fiber bundle whose fiber is a n–sphere. Given a vector bundle E with
a metric (such as the tangent bundle to a Riemannian manifold) one can construct the associated unit
sphere bundle for which the fiber over a point x is the set of all unit vectors in Ex. When the vector bundle
is the tangent bundle T(M), the unit sphere bundle is known as the unit tangent bundle, and is denoted
UT(M).

It is well known that a n–sphere is identified by the stereographic projection with Rn S{•} where {•}
is a singular point.

Definition. A n–dimensional, connected, simply connected, compact, closed, smooth manifold Mnis
called a crystal sphere if there exists such a finite smooth triangulation on Mn which is coordinated
with the smoothness structure of the manifold Mn i.e. every simplex (crystal) of the triangulation is an
embedded smooth submanifold of Mn with a boundary.

Theorem [2]. A crystal sphere Mn is homeomorphic to the n–sphere.

Further, we consider only one crystal sphere Mn ⇢W with a smooth triangulation considered above.
We can fix some Riemannian metric g on the manifold Mn which defines the length of arc of a piecewise
smooth curve and the continuous function r (x;y) of the distance between two points x, y 2 Mn. The
topology defined by the function of distance (metric) r is the same as the topology of the manifold Mn,
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[3].
For any n–simpex d n the diameter d (d n) is defined by the formula d (d n) = max r (x;y), x,y 2 d n. The

diameter of the triangulation is called the maximal value among the diameters of the n– simplexes. It
seems that the diameter of the triangulation can be very small (subatomic).

In section 2, using a smooth triangulation above and the function of distance we consider an algorithm
of extension of coordinate neighborhood (inner part of the canonical polyhedron) constructed in [2, 4].
The beginning of the algorithm we call the geometric Big Bang. The inner part of the canonical polyhedron
is painted white and the boundary of the canonical polyhedron is painted black every step, the other part
of the manifold which has not been still painted assumes to be grey (three kinds of matter from a physical
point of view). A small closed neighborhood of the boundary of the canonical polyhedron we repaint
black and call a geometric black hole [4].

In section 3, we consider deformation of tensor fields, fiber bundles and operators (physical structures
and equations) towards the black hole. These deformations are continuous and sectionally smooth and they
have a very simple constructions on a white neighborhood where a parameter t (g) of the deformations
of structures can be considered as a local time along every piecewise smooth broken line g . We have
got only one black point x0 2 Mn at the end of all considered algorithms (other part of the manifold is
white). Let B̄(x0) be a small black closed ball with the center x0. All the resulting parts of the deformed
structures have been concentrated into B̄(x0). We consider an inversion (Big Bang) painting inner part of
B̄(x0) white and other points of Mn grey and begin again the process above where the initial simplex is a
subset of B̄(x0). Thus, Big Bangs have a cyclical nature.

We remark that all the algorithms considered in the article are based on the mathematical methodology
¡¡step by step¿¿. From a physical point of view the processes must have explosive characters i.e. a big
number of the steps of the algorithms must be produced almost simultaneously.

2. ON ALGORITHM OF EXTENSION OF COORDINATE NEIGHBORHOOD

1�. In this section, we consider some standart facts on a triangulation of a manifold.
Let Mn be a connected, compact, closed and smooth manifold of dimension n and Cn be a cell

(coordinate neighborhood) on Mn. A standard simplex Dn of dimension n is the set of points x=(x1, x2, ...,
xn) 2 Rn defined by conditions

0  xi  1, i = 1,n, x1 + x2 · · ·+ xn  1.

We consider the interval of a straight line connected the center of some face of Dn and the vertex
which is opposite to this face. It is clear that the center of Dn belongs to the interval. We can decompose
Dn as a set of intervals which are parallel to that mentioned above. If the center of Dn is connected
by intervals with points of some face of Dn then a subsimplex of Dn is obtained. All the faces of Dn

considered, Dn is seen as a set of all such subsimplexes. Let U(Dn) be some open neighborhood of Dn in
Rn. A diffeomorphism j : U (Dn)! Mn (d n = j (Dn)) is called a singular n–simplex on the manifold
Mn. Faces, edges, the center, vertexes of the simplex d n are defined as the images of those of Dn with
respect to j .

The manifold Mn is triangulable [5]. It means that for any l, 0  l  n such a finite set Fl of
diffeomorphisms j : Dl ! Mn is defined that

1. Mn is a disjunct union of images j
�
IntDl� , j 2 Fl ;

2. if j 2 Fl then j � ei 2 Fl�1 for every i where ei : Dk�1 ! Dk is the linear mapping transferring
the vertexes v0, · · · , vk�1 of the simplex Dk�1 in the vertexes v0, · · · , v̂i, · · · vk of the simplex Dk.
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We suppose that there exists a smooth finite triangulation on Mn which is coordinated with the
smoothness structure of Mn and fix the triangulation. Such triangulations exist for manifolds of dimension
2 or 3.

2�. In this section, we consider an algorithm of extension of white coordinate neighborhood. It reminds
us an extension of the universe from a physical point of view. We have got the decomposition described
in the Theorem 1 at the end where C n is a white cell.

Let d n
0 be some simplex of the fixed triangulation of the manifold Mn. We paint the inner part Intd n

0
of the simplex d n

0 white and the boundary ∂d n
0 of d n

0 black. There exist coordinates on Intd n
0 given by

diffeomorphism j0. A subsimplex d n�1
01 ⇢ d n

0 is defined by a black face d n�1
01 ⇢ d n

0 and the center c0

of d n
0 . We connect c0 with the center d0 of the face d n�1

01 and decompose the subsimplex d n
01 as a set of

intervals which are parallel to the interval c0d0. The face d n�1
01 is a face of some simplex d n

1 that has not
been painted. We draw an interval between d0and the vertex v1 of the subsimplex d n

1 which is opposite to
the face d n�1

01 then we decompose d n
1 as a set of intervals which are parallel to the interval d0v1. The set

d n
01

S
d n

1 is a union of such broken lines every one from which consists of two intervals where the endpoint
of the first interval coincides with the beginning of the second interval (in the face d n�1

01 ) the first interval
belongs to d n

01 and the second interval belongs to d n
1 . We construct a homeomorphism (extension) j1

01:
Intd n

01 ! Int
�
d n

01
S

d n
1
�
. Let us consider a point x 2 Intd n

01 and let x belong to a broken line consisting
of two intervals the first interval is of a length of s1and the second interval is of a length of s2and let x
be at a distance of s from the beginning of the first interval. Then we suppose that j1

01 (x) belongs to the
same broken line at a distance of s1+s2

s1
· s from the beginning of the first interval. It is clear that j1

01 is a
homeomorphism giving coordinates on Int

�
d n

01
S

d n
1
�
. We paint points of Int

�
d n

01
S

d n
1
�

white. Assuming
the coordinates of points of white initial faces of subsimplex d n

01 to be fixed we obtain correctly introduced
coordinates on Int

�
d n

0
S

d n
1
�
. The set s1 = d n

0
S

d n
1 is called a canonical polyhedron. We paint faces of

the boundary ∂s1 black.
We describe the contents of the successive step of the algorithm of extension of coordinate neighborhood.

Let us have a canonical polyhedron sk�1 with white inner points (they have introduced white coordinates)
and the black boundary ∂sk�1. We look for such an n–simplex in sk�1, let it be d n

0 that has such a black
face, let it be d n�1

01 that is simultaneously a face of some n–simplex, let it be d n
1 , inner points of which

are not painted. Then we apply the procedure described above to the pair d n
0 , d n

1 . As a result we have a
polyhedron sk with one simplex more than sk�1 has. Points of Intsk are painted white and the boundary
∂sk is painted black. The process is finished in the case when all the black faces of the last polyhedron
border on the set of white points (the cell) from two sides.

After that all the points of the manifold Mn are painted black or white, otherwise we would have that
Mn = Mn

0
S

Mn
1 (the points of Mn

0 would be painted and those of Mn
1 would be not) with Mn

0 and Mn
1 being

unconnected, which would contradict of connectivity of Mn.
Thus, we have proved the following
Theorem 1. Let Mn be a connected, compact, closed, smooth manifold of dimension n. Then Mn=

Cn SKn�1, Cn TKn�1 =?, where Cn is an n–dimensional cell and Kn�1 is a union of some finite number
of (n-1)–simplexes of the triangulation.

3�. The main results of this section are based on the representation of Cn as a set of piecewise smooth
broken lines connecting the initial point c0 with all black points of the complex Kn�1. It reminds us the
theory of strings in physics.

We consider the initial simplex d n
0 of the triangulation and its center c0. Drawing intervals between the
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point c0 and points of all the faces of d n
0 we obtain a decomposition of d n

0 as a set of the intervals. In 2�

the homeomorphism Y: Int d n
0 ⇢ d n

0 was constructed and Y evidently maps every interval above on a
piecewise smooth broken line g in Cn. We denote M̃n=Mn/{c0}. M̃n is a connected and simply connected
manifold if Mn is that. Let I= [0;1], we define a homotopy F:M̃n ⇥ I ! M̃n : (x; t) 7! y = F(x; t) in the
following way

a) F(z; t)=z for every point z2Kn�1;
b) if a point x belongs to the broken line g in Cn and the distance between x and its limit point z 2 Kn�1

is s(x) then y=F(x;t) is on the same broken line g at a distance (1� t)s(x) from the point z.
It is clear that F(x;0)=x, F(x;1)=z and we have obtained the following

Theorem 2. The spaces M̃n and Kn�1 are homotopy–equivalent, in particular, the groups of singular
homologies Hk

�
M̃n� and Hk

�
Kn�1� are isomorphic for every k.

Corollary 2.1. The space Kn�1 is connected and if Mn is simply connected then Kn�1 is simply
connected too.

Remark 1. The white coordinates are extended from the simplex d n
0 in the simplex d n

1 through the face
d n�1

01 hence Intd n�1
01 has also the white coordinates. On the other hand there exist two linear structures

(intervals, the center etc) on d n
01 induced from d n

0 and d n
1 respectively. Further, we set that the linear

structure of d n�1
01 is the structure induced from d n

0 .

Remark 2. In the process of getting of Cn in 2� we can construct a maximal tree L connecting by
intervals all the centers of the n–simplexes of the triangulation via the centers of some white faces.

Conversely, if we have such a maximal tree L connecting by intervals all the centers of the n–simplexes
of the triangulation via the centers of some faces(any from two possible centers of a face can be choosed)
then we can extend white coordinates from any simplex d n

0 on the maximal cell Cn as it was shown in 2�.
Thus, the maximal tree L defines the maximal cell C3 and white faces.

4�. We can retract the complex Kn�1 to a unique black point x0. The set of piecewise smooth broken lines
transforms in that every step of algorithms considered in [2].

Definition 1. a) A simplex d k 2 Kn�1 �k = 1,n�1
�

is called free if it has at least one free face d k�1

i.e. such a face that it is not a face of any other k–simplex from Kn�1.
b) An edge d 1 = x0x1 is called semi–isolated if it is not an edge of any simplex from Kn�1. A semi-

isolated edge d 1 is called isolated if it is free.
Let us have a free simplex d k 2 Kn�1 with some free face d k�1. We consider such a polyhedron s that

s is the set of all n–simplexes having common point with d k�1.

Theorem 3. We can redistribute coordinates of white points of the polyhedron d (retract the free
simplex d k) i.e. construct the corresponding mapping js in such a way that the following conditions are
fulfilled:

a) all the points of Ints are painted white i.e. have new white coordinates,
b) white coordinates of points of boundary faces of the polyhedron s are not changed.
c) js maps broken lines having boundary black points on d k onto broken lines having boundary black

points on the boundary of the polyhedron s .
Proof of a) and b) can be found in [2] (Proposition 3).
Proof of c) follows from n–dimensional version of proposition 3 considered in [6].
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Let s k be a canonical polyhedron at any step of the algorithm above. Points of Intsk are painted white
and the boundary ∂s k is painted black, the other part of the manifold which has not been still painted
assumes to be grey. In 2� the homeomorphism Y: Intd n

0 ! Intsk was constructed and Y evidently maps
every interval from Intd n

0 on a piecewise smooth broken line in Intsk. It is easy to see that any procedure
considered in [2] brings to a transformation such a broken line into another broken line connecting the
center c0 of d n

0 with some black point of the ∂s k (by a analogy with c) of the theorem 3). At the end
of all the algorithms considered in [2] we obtain a representation Mn = Cn S{x0} where C n has white
painting and x0 is an unique black point in Mn i.e. we have a set piecewise smooth broken lines connecting
c0andx0.

3. DEFORMATION OF A TENSOR FIELD AND A FIBRE BUNDLE TO-
WARDS A GEOMETRIC BLACK HOLE

1�. In this section, we consider the process of extension vector fields corresponding that of extension of
the white coordinate neighborhood.

Let s k be a canonical polyhedron at any step of the algorithm from 1 and L(Mn), L(Intsk) be the
principal fibre bundles of linear frames of the manifolds Mn and Intsk. The diffeomorphism j0 (where
d n

0 = j0 (Dn)) defines the coordinates (x1, ..., xn) in some neighborhood of the simplex d n
0 and the

corresponding vector fields ∂
∂x1

, ..., ∂
∂xn

on this neighborhood (a local cross–section of L(Mn)). Similarly,
the diffeomorphism j1 (where d n

1 = j1 (Dn)) defines the coordinates (y1, ..., yn) in some neighborhood of
the simplex d n

1 and the vector fields ∂
∂y1

, ..., ∂
∂yn

on this neighborhood. We have assumed that the white
face d n�1

01 has the equation: y1=0 (it can always be obtained by corresponding linear change of variables
in Rn� Dn). The vector fields Xi =

∂
∂xi

, ∂
∂y j

, i, j = 1,n, are defined on the face d n�1
01 therefore for any

point x 2 d n�1
01 we have Xi = Ân

j=1 fi j (x) ∂
∂yi

where the functions fi j (x) are smooth. We decompose d n
1 as

a union of the intervals having the following equations: y1=t, y2=c2, y3=c3,. . . , yn=cn, where 0, c2,. . . , cn

are the coordinates of the beginning y0 of the corresponding interval. For any point y 2 d n
1 we assume

fi j (y) = fi j (y0) where y0 2 d n�1
01 is the beginning of the interval where the point y is situated. The vector

fields Xi, i= 1,n, are defined on d n
1 by the formula Xi =Ân

j=1 fi j (y) ∂
∂yi

. It is obvious that the constructed
vector fields Xi, i = 1,n, are continuous on d n

0
S

d n
1 and smooth in any point x 2 d n

0
S

d n
1 , x /2 d n�1

01 .
For the process of the extension of a coordinate neighborhood (1, 2�) we can consider the process of

the extension of the vector fields X1,. . . , Xn. If these fields are defined on a polyhedron sk�1 and in order
to get a polyhedron sk we use simplexes d n

0 , d n
1 then we apply the procedure described above to obtain

the vector fields on sk. As a result we obtain correctly defined vector fields X1,. . . , Xn on Intsk i.e. a
cross–section of L(Intsk).

So, we come to the following

Proposition 4. There exists a continuous cross–section of L(Intsk): x! (X1,. . . , Xn)x, x 2 Intsk. If a
point x 2 Intsk does not belong to the subsimplexes of the triangulation then the cross–section above is
smooth at the point x.

We consider a tensor of type (r, s) on Rn:

K0 = Âkl1...lr
µ1...µs (0) el1 ⌦ ...⌦ elr ⌦ eµ1 ⌦ ...⌦ eµs ,

where e1,. . . ,en is the standard basic of Rnande1,. . . ,en is the dual basis of Rn*.
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A tensor field of type (r, s) is defined on Intsk:

K0 = Âkl1...lr
µ1...µs (0) Xl1 ⌦ ...⌦Xlr ⌦X µ1 ⌦ ...⌦X µs (1)

Since the functions kl1...lr
µ1...µs are constant on Intsk we obtain that the tensor field K0 is O–deformable on

Intski.e. some G–structure on Intsk is defined by K0 (see [7, 8]). If the cross–section (X1,. . . , Xn)x is
smooth at a point x2Intskthen the tensor field K0 is also smooth at the point.

2�. We define a geometric black hole as a small closed neighborhood of the black boundary of the canonical
polyhedron. Then we consider deformations of tensor fields and operators towards the geometric black
hole.

For any point z2∂sk we can consider the closed geodesic ball B(z,e) of a small radius e > 0. Let
Tb(∂sk, e)=

S
z2∂sk

B(z,e) = GBH(e).

Definition 2. We call the set GBH(e) a geometric black hole of radius e>0 of the manifold Mn if
sk\GBH(e) is a cell (it is true for some small e). We paint the points of GBH(e) black.

Any piecewise smooth broken line g considered in 1, 4� can be represented as g=g0
S

g1 where
g1 = g

T
GBH (e), g0 = g\g1. The points of g0are painted white and the points of g1 are painted black.

Let the segment g0 have a length s0 and the segment g1 have a length s1 then (s0+s1) is a length of the
broken line g from c0 to z2∂sk.

Let K(x), x2 M n, be a tensor field of type (r, s) and K0=K(c0) where c0 is the center of the initial
simplex d n

0 of the triangulation of Mn. Also, deformations of structures were considered in [9]. So, we
construct a deformation K(x) of the tensor field K(x)on the manifold M n.

1. If a point z2 M n \Intsk then K(z)=K(z).

2. If a point x2sk\GBH(e) then K = K0 = K(c0) where K0 is defined by the formula (1).

3. We assume that K(x) = Âkl1...lr
µ1...µs (x) X1 ⌦ ...⌦Xlr ⌦X µ1 ⌦ ...⌦X µs , x 2 Intsk, where X1,. . . , Xr

are the vector fields from the proposition 4, a point x belongs a broken line g and s(x) is the distance
from x to c0 along the broken line g . For any point y 2 g1 we define the tensor field

K̄(y) = Â k̄l1...lr
µ1...µs (y) X1 ⌦ ...⌦Xlr ⌦X µ1 ⌦ ...⌦X µs

in the following way: k̄l1...lr
µ1...µs (y) = kl1...lr

µ1...µs (x) where s(x) = s(y)�s0
s1

(s0 + s1), s(y) is the distance from y to
c0 along the broken line g .

It is easy to see that the constructed tensor field K̄ is continuous and sectionally smooth, K̄ is not
smooth on the boundary of GBH(e) and in the points of Intsk where the cross–section (X1,. . . , Xn)x is not
smooth.

Let L be some operator defined on the algebra (or some subalgebra) of all the tensor fields on the
manifold Mn and L(K)=K1 for a tensor field K.

Definition 3. An operator L̄ is called a deformation of L towards GBH(e) if it is defined by condition
L̄(K)= K̄1.

3�. Some standarts facts about fibre bundles are considered. We follow [10, 11].
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A fiber bundle (E, p , Mn, F) consists of manifolds (spaces) E, Mn, F and a smooth (continuous)
mapping p : E ! Mn, furthemore each x 2 Mn has an open neighborhood U such that E |u ⇠= p�1(U) is
diffeomorphic (homeomorphic) to U ⇥F via a fiber respecting diffeomorphism (homeomorphism):

E is called the total space, Mn is called the base space, p is called the projection, F is called standard
fiber, (U,y) is called a fiber chart.

A collection of fiber charts (Ua ,ya), such that {Ua} is an open cover of Mn, is called a fiber bundle atlas.
If we fix such an atlas, then ya �y�1

b (x,a) =
�
x,yab (x,a)

�
, where yab :

�
Ua ⇥Ub

�
⇥F ! F is smooth

(continuous) and yab (x, ...)is a diffeomorphism (homeomorphism) of F for each x 2Uab : =Ua
T

Ub .
Thus, we may consider the mappings yab : Uab ! G(F) with values in the group G(F), G(F)=Diff (F)
is the group of all diffeomorphisms of F or G(F)=Homeo(F) is the group of all homeomorphisms of
F. Mappings yab are called the transition functions of the bundle. They satisfy the cocycle conditions:
yab (x)�ybg (x) = yag (x) for x 2Uabg and yaa (x) = IdF for x 2Ua . The collection {yab}is called a
cocycle of transition functions.

Given an open cover {Ua} of manifold Mn and cocycle of transition functions we may construct a fiber
bundle (E, p , Mn, F).

Principal fiber bundles and vector bundles are the most important cases of fibre bundles.

4�. In this section, we consider deformation of fiber bundles towards the geometric black hole.

If Y :Intsn
0 ! Intsk, W = sk\GBH (e) and W0 = Y�1 (W ) then W0 ⇢ Intd n

0 . We consider any piece-
wise smooth broken line g = g0

S
g1 from 2�. If g01 = Y�1 (g0) and g02 = g0\g01 then g = g01

S
g02

S
g1.

We define a homeomorphism Ȳ : Mn ! Mn by the following conditions:
a) Ȳ|W0 = Y|W0 i.e. Ȳ(g01) = g0 and Ȳ(W0) =W ;
b) Ȳ maps every segment g02

S
g1 on the segment g1 by the length as it was shown above;

c) Ȳ(z)= z for every z 2 Mn\Intsk.
It is evident that Ȳ is a sectionally–smooth homeomorphism.
Let (E, p , M n, F) be a smooth fibre bundle with a collection fibre charts (Ua , Ya). We can choose such

a triangulation, let it be initial one, that W0 ⇢U0. We define Ūa = Ȳ(Ua) and Ȳab (x) = Yab
�
Ȳ�1 (x)

�
.

The open cover {Ūa}of the manifold M n and the cocycle {Ȳab} defines a continuons and sectionally–
smooth fiber bundle (Ē, p̄,Mn,F).

Since Ū0 = Ȳ(U0)�W it follows that the fiber bundle (Ē, p̄,Mn,F) is trivial over W i.e.

Definition 4. The fiber bundle (Ē, p̄,Mn,F) is called a deformation of the fibre bundle (E, p , Mn, F)
towards the GBH (e).

Such characteristics of (E, p , M n, F) as connections, curvatures etc play an important role in the gauge
theory [11].

Problem. It seems to be interesting to consider good defined deformations of the characteristics above
towards the GBH (e)i.e. to obtain some similar characteristics of (Ē, p̄,Mn,F).
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Remark 3. At the end of all the algorithms considered in this article and in [2] we have got a
representation M n = Cn S{x0} where Cn has white painting and x0 is a black point i.e. GBH (e) =
B(x0,e) and the resulting parts of the deformed structures are concentrated into B(x0,e). We consider
an inversion called Big Bang painting IntB(x0,e) white and begin again the processes of extension
of coordinate neighborhood and deformations of structures where the initial simplex d n

0 is a subset of
B(x0,e).

The set Mn\d n
0 is painted grey after this inversion.

Thus, Big Bangs have a cyclycal nature.

4. CONCLUSION

We consider a crystal sphere as a geometric model of an universe where the world is identified with a
fibre bundle of crystal spheres. The following mathematical notions are considered which are close to
those studied in physics.

1. Extension of white coordinate neighborhood – extension of the universe.

2. Three paintings – three kinds of matter.

3. The set of piecewise smooth broken lines – strings.

4. A parameter of deformations along a line – a local time along the line.

5. Geometric black hole – black holes (It seems that black holes observed in astronomy are presenta-
tions of one big black object).

6. Deformations of tensor fields, operators, fibre bundle towards the geometric black hole – corre-
sponding situations in physics.

7. Geometric Big Bang – Big Bang.

References

[1] M. J. Crowe, Theories of the World from Antiquity to the Copernican Revolution. Courier Dover
Publications, 2001.

[2] A. A. Ermolitski, “New Approach to the Generalized Poincare Conjecture,” Applied Mathematics,
vol. 4, no. 9, pp. 1361–1365, 2013.

[3] D. Gromoll, W. Klingenberg, and W. Meyer, Riemannsche Geometrie im Grossen. Springer, 1968.
[4] A. Ermolitski, “On a geometric black hole of a compact manifold,” Intellectual Archive, mathematics

(ID 180), 2012.
[5] J. R. Munkres, Elementary differential topology. Princeton University Press, 1966.
[6] A. A. Ermolitski, “Three-dimensional compact manifolds and the Poincare conjecture,” arXiv

preprint arXiv:0807.0577, 2008.
[7] A. A. Ermolitsky, “Riemannian manifolds with geometric structures,” arXiv preprint

arXiv:0805.3497, 2008.
[8] S. Kobayashi, Transformation groups in differential geometry. Springer, 1972.

73

Би
бл
ио
те
ка

 БГ
УИ
Р 



OPEN JOURNAL OF MODERN PHYSICS

[9] B. CENTER, “Deformations of structures, embedding of a Riemannian manifold in a Kaehlerian one
and geometric antigravitation Alexander A. Ermolitski,” Banach Center Publ, vol. 76, pp. 505–514,
2007.

[10] D. Husemoller, Fibre bundles. Springer, 1966.
[11] P. W. Michor, Gauge theory for fiber bundles. Amer Inst of Physics, 1991.

74

Би
бл
ио
те
ка

 БГ
УИ
Р 



About This Journal 
 
MPHY is an open access journal published by Scientific Online Publishing. This journal focus on the 
following scopes (but not limited to): 
 
¾ Applied String Theory 
¾ Astrophysics 
¾ Atomic and Molecular Physics 
¾ Biophysics 
¾ Chaos 

¾ Computational Physics 
¾ Condensed Matter Physics 
¾ Cosmical Physics 
¾ Dark Energy and Dark Matter 
¾ Geophysics 
¾ General Relativity and Cosmology 
¾ High Energy Physics 

¾ Interdisciplinary Physics 
¾ Material Physics 
¾ Mathematical Physics 
¾ Medical Physics 
¾ Metamaterials 

¾ Nuclear and Radiation Physics 
¾ Optics 
¾ Physics of Nanostructures 
¾ Plasma Physics 
¾ Quantum Physics 
¾ Relativity 

 
Welcome to submit your original manuscripts to us. For more information, please visit our website: 
http://www.scipublish.com/journals/MPHY/ 
 
You can click the bellows to follow us: 
� Facebook:  https://www.facebook.com/scipublish  
� Twitter:  https://twitter.com/scionlinepub  
� LinkedIn: https://www.linkedin.com/company/scientific-online-publishing-usa 
� Google+:  https://google.com/+ScipublishSOP  

 
 
SOP welcomes authors to contribute their research outcomes under the following rules: 
¾ Although glad to publish all original and new research achievements, SOP can’t bear any 

misbehavior: plagiarism, forgery or manipulation of experimental data. 
¾ As an international publisher, SOP highly values different cultures and adopts cautious attitude 

towards religion, politics, race, war and ethics. 
¾ SOP helps to propagate scientific results but shares no responsibility of any legal risks or harmful 

effects caused by article along with the authors. 
¾ SOP maintains the strictest peer review, but holds a neutral attitude for all the published articles. 
¾ SOP is an open platform, waiting for senior experts serving on the editorial boards to advance the 

progress of research together. 

Би
бл
ио
те
ка

 БГ
УИ
Р 

http://www.scipublish.com/journals/MPHY/
https://www.facebook.com/scipublish
https://twitter.com/scionlinepub
https://www.linkedin.com/company/scientific-online-publishing-usa
https://google.com/+ScipublishSOP

	INTRODUCTION
	ON ALGORITHM OF EXTENSION OF COORDINATE NEIGHBORHOOD
	DEFORMATION OF A TENSOR FIELD AND A FIBRE BUNDLE TOWARDS A GEOMETRIC BLACK HOLE
	CONCLUSION
	References



