СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА Се-СОДЕРЖАЩИХ ХАНТИТОПОДОБНЫХ ПОЛИКРИСТАЛЛОВ И СТЕКОЛ

¹Малашкевич Г.Е., ¹Хотченкова Т.Г., ¹Райчёнок Т.Ф., ²Шевченко Г.П., ²Бокшиц Ю.В., ³Сигаев В.Н., ³Голубев Н.В., ³Зиятдинова М.З., ⁴Прусова И.В., ⁵Сергеев И.И.

 ¹ГНУ «Институт физики им. Б.И. Степанова НАН Беларуси», 220072 РБ, г. Минск, пр. Независимости, 68, e-mail: <u>g.malashkevich@ifanbel.bas-net.by</u>
² НИИ физико-химических проблем БГУ, 220030 РБ, г. Минск, ул. Ленинградская, 14
³Российский химико-технологический университет им. Д.И. Менделеева, 125480 Россия, г. Москва, ул. Героев Панфиловцев, 20
⁴Белорусский национальный технический университет, 220013 РБ, г. Минск, пр. Независимости, 65
⁵Белорусский государственный университет информатики и радиоэлектроники, 220013 РБ, г. Минск, ул. Бровки, 6

Измерены спектры поглощения, спектры люминесценции, спектры возбуждения люминесценции, а также кинетика и времяразрешенные спектры люминесценции Сесодержащих хантитоподобных поликристаллов и стекол. Полученные результаты объясняются на основе формирования в поликристаллических образцах подавляющей доли однотипных центров Ce³⁺, а в стекловидных – двух типов центров.

Кристаллы YAl₃(BO₃)₄:Ln³⁺ со структурой хантита [1] привлекают внимание причине относительно слабого концентрационного по исследователей тушения люминесценции редкоземельных активаторов из-за большого значения минимального расстояния Ln–Ln (≈ 0,59 нм) [2]. Благодаря большому содержанию бора расплав таких кристаллов характеризуется высокой стеклообразующей способностью, что позволяет получать стекла идентичного состава. Недавно [3] было показано, что минимальное расстояние Ln³⁺–Ln³⁺ в таких стеклах ещё больше – 0,67 нм. Это может, помимо ослабления эффективности концентрационного тушения люминесценции, вести и к снижению кластеризации ионов активатора. Последняя характерна для Ln-содержащих стекол и при Ln = Се проявляется в виде относительно интенсивного поглощения в видимой области спектра и соответствующего тушения люминесценции [4]. Поэтому исследование кинетических и спектральных характеристик люминесценции ионов Ce³⁺ в хантитоподобных поликристаллах и стеклах представляет несомненный интерес.

Поликристаллические образцы готовились путём растворения в соответствии со стехиометрией соединений иттрия, алюминия и церия, добавлении раствора борной кислоты в избытке по отношению к стехиометрии, перемешивании, выделении осадка и его термообработке до формирования фазы хантита. Для получения стекол использовался твердофазный синтез при избытке бора, как наиболее летучего компонента, а плавка осуществлялась в платиновых тиглях на воздухе при $T \approx 1450$ °C.

Спектры поглощения стёкол регистрировались с использованием спектрофотометра "Cary-500". Спектры люминесценции и спектры возбуждения люминесценции записывались на спектрофлуориметре СДЛ – 2 и исправлялись с учётом спектральной чувствительности системы регистрации и распределения спектральной плотности возбуждающего излучения соответственно. Кинетика и времяразрешенные спектры люминесценции исследовались с помощью спектрофлуориметра HORIBA Jobin Yvon с модулем пикосекундного счёта фотонов.

На рис. 1 изображены спектры оптической плотности и интегральные спектры люминесценции и её возбуждения ряда исследованных образцов. Видно, что граница фундаментального поглощения нелегированного стекла, измеренная при $k = 100 \text{ см}^{-1}$, соответствует $\lambda_{rp} \approx 210$ нм (рис. 1*a*, кривая *1*). При легировании церием (образец 6 в табл. 1) λ_{rp} сдвигается к 370 нм и появляется поглощение в видимой области спектра (рис. 1*a*, кривая *2*). Легирование этого стекла сурьмой (образец 7) сопровождается значительным коротковолновым сдвигом УФ-полосы поглощения ($\lambda_{rp} \approx 330$ нм), повышением её крутизны и исчезновением поглощения в видимой области спектра (рис. 1*a*, кривая *3*). Спектр люминесценции Се–Sb-содержащего стекла представлен широкой полосой с максимумом при $\lambda_{max} \approx 350$ нм (рис. 1*б*, кривая *4*), которая возбуждения образцов спектральные полосы люминесценции (рис. 1*б*, кривая *5*). Для поликристаллических образцов спектральные полосы люминесценции (рис. 1*б*, кривая *6*) и её возбуждения (рис. 1*б*, кривая *7*) значительно сужаются, при этом в спектре люминесценции проявляются индивидуальные полосы, соответствующие переходам ионов Се³⁺ из метастабильного состояния смешанной $4f^05d^1$ конфигурации в оба состояния ${}^2F_{7/2}$ и ${}^2F_{5/2}$ основного терма.

Рисунок 1 – Спектры оптической плотности (1–3), люминесценции (4, 6) и её возбуждения (5, 7) хантитоподобных стекол (1–5) и поликристаллов (6, 7). $\lambda_{возб} = , \lambda_{per} =$

кинетики Исследование затухания люминесценции синтезированных образцов что при длинах малолегированных показало, всех волн регистрации для поликристаллических и стекловидных образцов она описывается функцией, близкой к одноэкспоненциальной с постоянной $\tau = 21,3$ нс и 31,5–36 нс соответственно (см. табл. 1). Для высоколегированных образцов кинетика затухания аппроксимируется ДВУМЯ экспоненциальными кривыми с

Табл.	1.	Coo	став	образцов	и кинети	ические	характерист	тики л	юминесц	енции С	'e ³⁺ ,
					$\lambda_{\text{bogg}} = 2$	80 нм, 7	_{рег} = 370 нм	ſ .			

N⁰	Состав (мол. % для стекла)	$ au_1,$	$ au_2,$	A ₁ ,	A ₂ ,
образца		нс	нс	%	%
1	$Ce_{0,01}Y_{0,99}Al_3(BO_3)_4$	21,3	_	100	-
2	$Ce_{0,05}Y_{0,95}Al_3(BO_3)_4$	5,4	22,1	10	90
3	$Ce_{0,1}Y_{0,9}Al_3(BO_3)_4$	3,5	21,0	8	92
4	0,5CeO ₂ -9,5Y ₂ O ₃ -30Al ₂ O ₃ -60B ₂ O ₃ +0,5Sb ₂ O ₃	32,0	_	100	_

5	3,0CeO ₂ -7,0Y ₂ O ₃ -30Al ₂ O ₃ -60B ₂ O ₃ +1,0Sb ₂ O ₃	4,3	26,2	15	85
6	3,0CeO ₂ -7,0Y ₂ O ₃ -30Al ₂ O ₃ -60B ₂ O ₃	3,4	15,4	31	69
7	3,0CeO ₂ -7,0Y ₂ O ₃ -30Al ₂ O ₃ -60B ₂ O ₃ +2,0Sb ₂ O ₃	4,7	24,0	21	79
8	$1,0CeO_2-9,0Y_2O_3-30Al_2O_3-60B_2O_3+0,5Sb_2O_3$	31,5		100	
9	$0,02 CeO_2 - 9,98 Y_2O_3 - 30 Al_2O_3 - 60 B_2O_3 + 0,005 Sb_2O_3$	35,6	_	100	_

Примечание: A_i – относительные концентрации возбуждений, которые экспоненциально высвечиваются с постоянной *т*_i.

 $\tau_1 = 3,5-5,5$ нс и $\tau_2 = 15-26$ нс при, причём для поликристаллических вклад первой экспоненты в 2–3 раза меньше. С увеличением λ_{per} с 370 до 420 нм значение τ_2 для стекловидных образцов возрастает, а τ_1 уменьшается. Анализ времяразрешённых спектров люминесценции, записанных с длительностью регистрации 4,4 нс, свидетельствуют, что для поликристаллических образцов зависимость положения и формы полосы люминесценции от t_{3ad} отсутствует, а для стекловидных полоса люминесценции также принимает двугорбый характер и по мере увеличения t_{3ad} имеет место перераспределение относительной интенсивности в пользу длинноволновой составляющей, см. рис. 2.

Рисунок 2 – Времяразрешённые спектры люминесценции хантитоподобного стекла (образец 6). *t*_{зад}, нс: 9,8 (*1*); 17,6 (*2*); 30,8 (*3*); 44 (*4*); 83,6 (*5*). $\lambda_{возб} = 280$ нм.

Изложенные результаты объясняются на основе формирования в поликристаллических образцах подавляющей доли однотипных центров Ce^{3^+} , а в стекловидных – двух типов центров. Первый тип образуется при замещении ионов Y^{3^+} в полиэдрах [YO₈] ионами Ce^{3^+} , а второй – при замещении ионов Al^{3^+} в полиэдрах [AlO₆] преимущественно ионами Ce^{4^+} и компенсации избыточного заряда структурными дефектами. В пользу такой ситуации свидетельствует поглощение высоколегированного образца в видимой области спектра, обусловленное образующимися кластерами разнозарядных ионов церия, и заметное сокращение τ_1 и τ_2 (ср. образцы 5 и 6 из табл. 1) из-за тушения этими кластерами люминесценции Ce^{3^+} . Введение в хантитоподобные стекла сурьмы ведёт к эффективному восстановлению Ce^{4^+} до люминесцирующего состояния Ce^{3^+} . Центры второго типа присутствуют также в высоколегированных поликристаллических образцах, однако исходя из практически неизменного значения τ_2 в этом случае замещение ионов Al^{3^+} в полиэдрах [AlO₆] осуществляется лишь ионами Ce^{3^+} .

- [1] S. Tanabe, K. Hirao, N. Soga, T. Hanada. J. Solid State Chem. 97, 481 (1992).
- [2] H.Y.-P. Hong, K. Dwight, Mater. Res. Bull. 9, 1661 (1974).
- [3] G.E. Malashkevich, V.N. Sigaev, N.V. Golubev, E.Kh. Mamadzhanova, A.A. Sukhodola, A. Paleari, P.D. Sarkisov, A.N. Shimko. Materials Chemistry and Physics **137**, 48 (2012).
- [4] G.E. Malashkevich, E.N.Poddenezhny, I.M.Melnichenko, A.A.Boiko. J. Non-Crystalline Solids. 188, 107 (1995).