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Abstract:
In this paper, the problem of forecasting of quantitative features of the weather (atmospheric temperature,
atmospheric pressure, direction and velocity of wind, relative humidity of the air and some other) is
considered. The problem is formulated as a task of linear extrapolating a vector random sequence. Such
forecast with statistical estimations of parameters of predictive algorithm was named as linear statistical
forecast. Empirical data about precision of linear statistical forecast of the atmospheric temperature
in comparison with precision of the official numerical forecast and climatological forecast is given and
analyzed. The experience of forecasting shows that statistical forecast is more accurate than climatological
forecast and a little less accurate than numerical forecast.
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1. INTRODUCTION

Analysis of the literary sources shows that the deterministic approach prevails in the problem of the weather
forecasting. That approach is based on the hydrodynamic model of atmosphere expressed as differential equations
which describe atmospheric processes. It is known as Numerical Weather Prediction (NWP) [1, 2] because the
realization of hydrodynamic model is produced using numerical techniques. The NWP is so successful that “modern
weather services completely rely on NWP models for their operational weather forecasting over time scales ranging
from a few hours to a few weeks” [2].

There is a certain level of interest in, and attention to, in statistical techniques of the weather forecast [3, 4],
including research separate from professional meteorologists [5]. In recent years, professionals in the field of weather
forecasting come to the conclusion that, perhaps, the deterministic approach has reached its limits of predictability,
and there has been a trend towards greater use of statistical techniques [2]. One of the ways to use statistical methods
is in the servicing of the output of numerical weather forecast models. This pertains to the statistical post-processing
of model output, data assimilation, ensemble forecasting techniques and others [2, 6].

There are some examples of “independent” or “pure” application of statistical methods in weather forecasting
[5, 7]. However, they are difficult to reproduce for comparison because of different formulations, predictands, solution
methods, regions considered, insufficiently detailed description of the algorithms used and their parameters, etc.

Purely theoretical developments available in the statistical literature often do not lead to any practical application
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and comparison (to prediction algorithms and estimation of their parameters, performed calculations in relation to
meteorology, comparative analysis of the results of the calculations).

In author’s opinion, statistical methods in weather forecasting and climate change deserve more attention and
development. This paper outlines the use of “pure” application of statistical methods to predict the temperature of the
atmosphere. The problem is considered as a task of extrapolating a random sequence. The analysis of the results for
the statistical forecasting of the atmospheric temperature at the Minsk weather station will be compared with the
available results of other weather forecasts.

2. ALGORITHM OF LINEAR STATISTICAL EXTRAPOLATING OF VECTOR RAN-
DOM SEQUENCE

The following algorithm is based on the work of A. N. Kolmogorov [3] regarding the interpolation and extrapolation
of stationary random sequence.

The problem of linear extrapolation of scalar stationary random sequence γ(t) with zero mean value E(γ(t)) = 0,
according to A. N. Kolmogorov [3], consists in the selection under given s > 0 and m≥ 0 such real coefficients ai, in
which a linear combination;

L = a1γ(t−1)+a2γ(t−2)+ ...+asγ(t− s) (1)

gives the most exact approximation to the random variable γ(t +m). As measure of the accuracy of the approxima-
tion is an accepted value

σ
2 = E(γ(t +m)−L)2 = B(0)−2

n

∑
s=1

B(m+ s)as +
n

∑
p=1

n

∑
q=1

B(p−q)apaq, (2)

where B(k) = E(x(t + k)x(t)), E is the mathematical expectation. If the moments of the second order B(k) are
known, that can be obtained such values of the coefficients as, under which σ2 reaches the lowest value σ2

E(n,m).

In Kolmogorov [3] the algorithm used for the calculation of these coefficients (extrapolating algorithm) is not
presented, and attention is focused on the analysis of value σ2

E(n,m).

This problem has such particularities as 1) linearity of the algorithm, 2) scalar and stationary sequence, 3)
extrapolation on one fixed moment of time t +m, 4) enough general types of sequences.

The first of these three allows the execution of a generalized problem in different ways and the fourth is attractive
for use in practical applications.

The solution of the problem generalized on vector, non-stationary, random sequence with extrapolation on any set
of moments in time is given below [8].

The vector (n-variate) random sequence γ(ti) = (γ1(ti), ...,γn(ti)), i = 1,2, ..., is considered. The observed part of
sequence is denoted as two-dimensional (n× s)-matrix

ξ = (ξi1,i2) = (γi1(ti2)), i1 = 1,n, i2 = 1,s, (3)

and the forecasted part as two-dimensional (n× (k2− k1 +1))-matrix

η = (ηi1,i2) = (γi1(ti2+s+k1−1)), i1 = 1,n, i2 = 1,k2− k1 +1,1≤ k1 ≤ k2. (4)
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Here s is the number counts of the observed part of the sequence, k1, k2 , and these are accordingly the minimum
and maximum number of time periods in the forecast. The task of extrapolating is that upon observation x = (xi1,i2)

of the matrix ξ and in order to find estimation
_
y= (

_
y j1, j2) the matrix η must be solved in a manner that minimizes

the average risk under quadratic loss function,

r = E(0,2(
_
y −y)2). (5)

Here 0,2(
_
y −y)2 = 0,2((

_
y −y)(

_
y −y)) is the (0,2)-convolute square of matrix (

_
y −y) [8].

A decision on that problem is a linear estimation based on observations x = (xi1,i2):

_
y= Aη + 0,2(0,2 (Rη ,ξ

0,2D−1
ξ
)(x−Aξ )), (6)

and the variance matrix of the estimation is defined by expression,

Dη/ξ = Dη − 0,2(0,2(Rη ,ξ
0,2D−1

ξ
)Rξ ,η). (7)

Here Aξ = E(ξ ), Aη = E(η), are the expected mathematical solutions, Dξ = E(0,0(ξ −Aξ )
2), Dη = E(0,0(η−

Aη)
2), are the matrixes of variance, Rξ ,η = E(0,0((ξ −Aξ )(η−Aη))) the mutual matrix of variance of the matrixes

ξ and η accordingly, 0,2D−1
ξ

–(0,2)-inverse to Dξ matrix [8], Rη ,ξ = RT
ξ ,η , T is a symbol for the transpose of matrix

Rξ ,η in accordance with substitution T [8],

T =

(
i1, i2, i3, i4
i3, i4, i1, i2

)
. (8)

The necessary proof is found in the work [9]. Marking in equation (6) C = 0,2 (Rη ,ξ
0,2D−1

ξ
), we will get a more

high-speed algorithm

_
y= Aη + 0,2(C(x−Aξ )), (9)

where C is defined as decision following multidimensional-matrix equation

0,2 (C Dξ ) = Rη ,ξ . (10)

In algorithm (9), (10), in contrast with algorithm (6), (7), we avoid inverting the matrix Dξ , but herewith we lose
the possibility of the calculation for the a posteriori matrix of variance Dη/ξ from the estimation (7).

We will name the matrices Aξ , Aη , Dξ , Dξ , Rη ,ξ parameters of the extrapolation algorithm. In element form these
parameters are defined as follows:

Aξ = (aξ ,i1,i2) = (E(ξi1,i2)), i1 = 1,nξ , i2 = 1,sξ , (11)

Aη = (aη , j1, j2) = (E(η j1, j2)), j1 = 1,nη , j2 = 1,sη , (12)

Dξ = (dξ ,i1,i2,i3,i4) = (E(
◦
ξ

i1,i2

◦
ξ

i3,i4
)), i1 = 1,nξ , i2 = 1,sξ , i3 = 1,nξ , i4 = 1,sξ , (13)
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Dη = (dη , j1, j2, j3, j4) = (E(
◦
η

j1, j2

◦
η

j3, j4
)), j1 = 1,nη , j2 = 1,sη , j3 = 1,nη , j4 = 1,sη , (14)

Rξ ,η = (rξ ,η ,i1,i2,i3,i4) = (E(
◦
ξ

i1,i2

◦
η

i3,i4
)), i1 = 1,nξ , i2 = 1,sξ , i3 = 1,nη , i4 = 1,sη . (15)

The circle overhand symbol marks the centered random variable, for instance,

◦
ξ

i1,i2
= ξi1,i2 −aξ ,i1,i2 . (16)

The parameters of the algorithm can be received by moment functions from a random sequence. Let the mean

value Aγ(t) = (aγ,i(t)) = (E(γi(t))) and the covariance function Rγ(t,u) = (rγ,i, j(t,u)) = (E(
◦
γ
i
(t)
◦
γ
j
(u))) of the vector

random process γ(t) be known. Then necessary matrix parameters can be received on the following formulas:

Aξ = (aξ ,i1,i2) = (aγ,i1(ti2)), i1 = 1,n, i2 = 1,s, (17)

Aη = (aη ,i1,i2) = (aγ,i1(ti2+s+k1−1)), i1 = 1,n, i2 = 1,k2− k1 +1, (18)

Dξ = (dξ ,i1,i2,i3,i4) = (E(
◦
ξ

i1,i2

◦
ξ

i3,i4
)) = (E(

◦
γ
i1
(ti2)

◦
γ
i3
(ui4)) = (rγ,i1,i3(ti2 ,ui4)),

i1, i3 = 1,n, i2, i4 = 1,s, (19)

Dη = (dη ,i1,i2,i3,i4) = (E(
◦
η

i1,i2+s+k1−1

◦
η

i3,i4+s+k1−1
)) =

= (E(
◦
γ
i1
(ti2+s+k1−1)

◦
γ
i3
(ui4+s+k1−1))) = (rγ,i1,i3(ti2+s+k1−1,ui4+s+k1−1)),

i1, i3 = 1,n, i2, i4 = 1,k2− k1 +1, (20)

Rξ ,η = (rξ ,η ,i1,i2,i3,i4) = (E(
◦
ξ

i1,i2

◦
η

i3,i4+s+k1−1
)) =

= (E(
◦
γ
i1
(ti2)

◦
γ
i3
(ui4+s+k1−1))) = (rγ,i1,i3(ti2 ,ui4+s+k1−1)),

i1, i3 = 1,n, i2 = 1,s, i4 = 1,k2− k1 +1. (21)

For a stationary random process γ(t) we have the variables, Aγ(t) = (aγ,i), Rγ(t,u) = Rγ(t−u) = Rγ(u− t), and
from the previous formulas take the following type:

Aξ = (aξ ,i1,i2) = (aγ,i1), i1 = 1,n, i2 = 1,s, (22)
4

Би
бл
ио
те
ка

 БГ
УИ
Р



Experience in Statistical Forecasting of the Atmospheric Temperature

Aη = (aη ,i1,i2) = (aγ,i1), i1 = 1,n, i2 = 1,k2− k1 +1, (23)

Dξ = (dξ ,i1,i2,i3,i4) = (rγ,i1,i3(ti2 −ui4)), i1, i3 = 1,n, i2, i4 = 1,s, (24)

Dη = (dη ,i1,i2,i3,i4) = (rγ,i1,i3(ti2+s+k1−1−ui4+s+k1−1)), i1, i3 = 1,n, i2, i4 = 1,k2− k1 +1, (25)

Rξ ,η = (rξ ,η ,i1,i2,i3,i4) = (rγ,i1,i3(ti2 −ui4+s+k1−1)), i1, i3 = 1,n, i2 = 1,s, i4 = 1,k2− k1 +1. (26)

In practice the parameters of the algorithm, in accordance with statistical substitution rule, can be replaced their
estimations.

The practical application of the algorithm (9) and (10) consists of two stages: 1) obtain estimates of the parameters
of the prediction algorithm and, 2) direct forecasting. The estimates can be received from a long prehistory of a
random sequence. For direct forecasting a relatively short prehistory is used, directly converging to moment of the
forecasting.

Obtaining estimates of the parameters in the prediction algorithm for non-stationary sequences is associated with
great difficulty. Therefore its use should be limited to stationarity in the covariance function sequences, but allowing
for the possibility of non-stationarity in the mathematical expectation.

3. AN EMPIRICAL ANALYSIS OF THE ACCURACY OF PREDICTING THE TEM-
PERATURE OF ATMOSPHERIC AIR

The quantitative features of the weather (the temperature of the atmosphere, atmospheric pressure, direction and
velocity of the wind, relative humidity of the air, and any other) are measured at meteorological stations with a
periodicity of three hours beginning at 0000 UTC/GMT (Greenwich Time). Using these measurements one can
consider as the realization of a vector random sequence. As presented above algorithm (9), (10) was used for marginal
(separate) forecasting of the air temperature at the meteorological station 26850 Minsk (algorithm (9), (10) with
n = 1). The air temperature was assumed stationary in the covariance function during a certain period, but for
the mathematical expectation it was allowed non-stationary. A visual depiction of the random sequences of the
atmospheric temperature there is on the figure 1 for 4 years.

The parameters of the algorithm were calculated using a prehistory of not less than 9 years. The actual numbers of
those years are provided in Table 1 in the last line for each year. For example, meteorological data for the previous 11
years was used to calculate the forecast for the period of January – April 2011.

In Mukha [9, 10] there are some details of obtaining estimates of the parameters of the prediction algorithm (9),
(10).

The prehistory from the 112 values was used for forecasting, and the prediction was also performed at a length
of 112 values (in (9), (10) k1 = 1, k2 = s = 112). We will mark such a forecast as 112/112 in values, or 336/336 in
hours, or 14/14 in days.

The results of the forecasting were grouped by month. The results were included in the month when the forecast
was made for days in that month. Table 1 shows the numbers of forecasts by month (top line of table for each year).
For example, in January 2011 27 forecasts were performed, in February – 23 forecasts, etc. The last string in Table 1
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(a) (b)

Figure 1. The graphs of the atmospheric temperature at the meteorological station 26850 Minsk in January and in June 2011–
2014 years.

Table 1.
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2011 27 23 29 26 22 24 26 19 27 26 24 26
11 11 11 11 10 10 9 10 10 10 10 10

2012 27 26 25 26 22 24 22 23 27 29 28 30
12 12 12 12 11 11 10 11 11 11 11 11

2013 24 26 23 27 24 25 26 30 27 28 30 30
13 13 13 13 12 12 11 12 12 12 12 12

2014 29 28 30 27 29 30 28 29 29 31 30 31
14 14 14 14 13 13 12 13 13 13 13 13

Total 107 103 107 106 97 103 102 72 81 83 82 86

shows the total number of predictions, which were calculated in each month cumulatively over the four years. In total
there were 1278 predictions made.

The retrospective forecasting made it possible to obtain the actual forecast error. For a fixed length of prediction
times, a sample average module error (AME) of each statistical forecast was calculated:

sst,i =
1
k

k

∑
j=1
|tfor, j− tac, j|, i = 1,26, (27)

where tfor, j – the predictive value of the atmospheric temperature at the time j, tac, j – the actual value of the
atmospheric temperature at the time j, k – the number of the forecasts of the bottom values in Table 1.

In order to compare with available forecasts from the Russian Hydrometeorological Center (Gismeteo,
http://www.gismeteo.ru) the sample average module error was not calculated for all 112 values, but for day and night
(maximum day temperature and minimum night temperature, respectively). For the all of the 26 forecasts, daytime
and nighttime values of AME can be calculated as shown in the formula (27). According to the last formula the
corresponding AME of the Gismeteo forecats were calculated (forecast Gismeteo is the numerical model forecast that
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they use, and according to its authors, one of the best predictive models). Calculated AME are presented as graphs in
Figure 2, Figure 3. The graphs relate to the case when the average value of the predicted sequence (temperature) is
considered as non-stationary in the given time period.

The graphs of AME in Figure 2, Figure 3 are very irregular. For the simplification of the comparison, a cubic
approximation using the least squares method was performed (LSE-approximation). The cubic LSE-approximation
of the AME in Figure 2, Figure 3 are continuous. The square marker in Figure 2, Figure 3 are located at midday.

Figure 2 shows the AME of statistical, climatological and Gismeteo forecasts which was calculated for all 1278
forecasts in the years 2011–2014 (annual AME of the forecast). We see that in the short-term, the statistical forecast
is more accurate compared with the climatological forecast and less accurate compared with the Gismeteo forecast.
However, the difference between statistical and Gismeteo forecasts doesn’t exceed 1.5 ◦C. This error is not an issue
since home thermometers can have an error bar up to 2.0 ◦C. For the long-term, the statistical forecast are possibly
more accurate compared with the forecasts Gismeteo.

Figure 3 shows the AME for individual months of the year (month’s AME of the forecast). These results are
more ambiguous. The statistical short-term forecast remains less accurate compared with the forecast Gismeteo for
all months of the year. At the same time, for a number of months we observe greater accuracy for the long-term
statistical forecasting, for example, in January, April, June, especially in August, September, November. The month’s
AME of the climatological forecast wasn’t shown in fig. 3. It is approximately horizontal line as in Figure 2.

Figure 2. The graphs of annual sample average module error of the forecast of the temperature.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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(i) (j)

(k) (l)

Figure 3. The graphs of month’s sample average module error of the forecast of the temperature.

4. SUMMARY AND CONCLUSIONS

Thus, the original algorithm of linear statistical extrapolation of vector random sequence on any set of moments in
time has been proposed. This algorithm will be able used to forecasting in any knowledge domain. In this paper it has
been used to forecasting of the atmospheric temperature. As a result the place of statistical forecast was determined
between the numerical Gismeteo forecast and climatological forecast. In the short-term (less than one week), the
statistical forecast is more accurate compared with the climatological forecast but on the whole a little less accurate
compared with the numerical Gismeteo forecast. In the long-term (more than one week), both the statistical and the
climatological forecasts are approximately equivalent, but the numerical Gismeteo forecast maybe less accurate.

Due to satisfactory accuracy, low cost and flexibility to the resources of the statistical forecast it can be rec-
ommended for use along with numerical forecast. Statistical forecasting can be implemented in local automated
meteorological complexes and meteorological stations.

It makes sense to continue the study of the statistical approach in directions of accumulation of data for estimating
the parameters of the algorithm, the calculation of the monthly forecast errors, long-term forecasting.

9

Би
бл
ио
те
ка

 БГ
УИ
Р



OPEN JOURNAL OF ATMOSPHERIC AND CLIMATE CHANGE

References

[1] P. Belov, E. Borisenkov, and B. Panin, “Numerical methods of weather forecast,” Hydrometeoizdat, Leningrad,
p. 376, 1989.

[2] N. Gustafsson, “Statistical issues in weather forecasting,” Scandinavian Journal of Statistics, vol. 29, no. 2,
pp. 219–239, 2002.

[3] A. Kolmogorov, “Interpolation and extrapolation of stationary random sequences,” vol. 5, pp. 3–14, 1941.
[4] Y. Prohorov, “Probability and mathematical statistics,” The Encyclopedia. M.: Big Russian Encyclopedia, p. 910,

1999.
[5] T. Malone, “Application of statistical methods weather prediction,” in Proceedings of the National Academy of

Sciences USA, vol. 41, pp. 806–815, 1955.
[6] R. Vilfand, V. Tishchenko, and V. Khan, “Statistical forecast of temperature dynamics within month on the basis

of hydrodynamic model outputs,” Russian Meteorology and Hydrology, vol. 32, no. 3, pp. 147–153, 2007.
[7] S. D. Campbell and F. X. Diebold, “Weather Forecasting for Weather Derivatives,” Journal of the American

Statistical Association, vol. 100, no. 469, pp. 6–16, 2005.
[8] V. Mukha, “Statistical vector forecasting of the quantitative features of the weather. Information systems and

technologies (IST’2004),” in Materials of International conference (Minsk, November 8-10, 2004.). Part 2,
pp. 195–200, 2004.

[9] V. Mukha, “Minimum average risk and efficiency of optimal polynomial multidimensional-matrix predictors,”
Cybernetics and Systems Analysis, vol. 47, no. 2, pp. 277–285, 2011.

[10] V. Mukha, “Estimations of mathematical expectation and covariance function of stationary random sequence by
averaging on time and ensemble realizations,” Doklady BGUIR. N 1, vol. 39, pp. 93–99, 2009.

10

Би
бл
ио
те
ка

 БГ
УИ
Р


	INTRODUCTION
	ALGORITHM OF LINEAR STATISTICAL EXTRAPOLATING OF VECTOR RANDOM SEQUENCE
	AN EMPIRICAL ANALYSIS OF THE ACCURACY OF PREDICTING THE TEMPERATURE OF ATMOSPHERIC AIR
	SUMMARY AND CONCLUSIONS
	References



