About the Specialization of Model-Driven Approach
for Creation of Case-Based Intelligent Decision
Support Systems

Dorodnykh N.O., Yurin A.Yu.

Matrosov Institute for System Dynamics and Control Theory,
Siberian Branch of the Russian Academy of Sciences (IDSTU SB RAS),
Irkutsk, Russia
Email: tualatin32 @mail.ru
Email: iskander @icc.ru

Abstract—The paper describes the specialization (modifica-
tion) of the model-driven approach in the context of the devel-
opment of case-based intelligent decision support systems. The
specialization includes: the redefinition of the basic steps of the
process of the software creation (their structure and content)
and the models used. It is proposed to use: ontology as the
computation-independent model (CIM), which will provide a
complete and consistent description of the concepts and relations
of the subject domain and their visual representation in the form
of a graph; XML-like specification as a platform-specific model
(PSM), which takes into account features of the description of
cases.

Keywords—model-driven approach, cases, knowledge bases,
decision support systems, code generation.

I. INTRODUCTION

The problem of improving the efficiency and quality of
development of problem-oriented intelligent systems (includ-
ing knowledge bases (KB) and expert systems (ES)) is still
relevant. This problem can be solved in different ways: from
improving the development approaches (methodologies) up to
creating and using specialized software [1]. Thus, there are
some tendencies in this area:

e the development and application of software for on-
tological and cognitive. modeling and CASE-tools
(Protégé, FreeMind, Xebece, TheBrain, XMind, IBM
Rational Rose, StarUML, ect.). These systems allow
to create graphical conceptual models corresponding
to the key abstractions of software;

e the development and application of specialized ed-
itors and shells for ESs (Expert System Designer,
Expert System Creator, ARITY Expert Development
Package, CXxPERT, Exsys Developer, ect.). These sys-
tems allow to implement a formalized description
of domain concepts and KB structures on a cer-
tain programming language (knowledge representation
language), but have the low integration ability with
CASE-tools, in most cases they support the one a
particular language;

e the use of integrated development environments
(frameworks) and unified approaches, which provide
coverage of all stages of the life cycle of knowledge

151

based systems and integration of the first two tenden-
cies [2], [3], [4], [5].

In general, the existing solutions (results of mentioned
directions) allow to improve the effectiveness of the intelligent
systems development process, but don’t solve the problem of
portability of the developed systems to another technology or
software platform (the operating system or the programming
language).

One of the solutions for this problem is to use approaches
based on Generative Programming [6], in particular, a model-
driven approach, which provides the ability to develop multi-
platform software.

II. MODEL-DRIVEN APPROACH

A Model-Driven Approach (Model Driven Software De-
velopment or Model-Driven Engineering, MDE) is a software
design approach which uses the information models as the
major artifacts that, in turn, can be used for obtaining another
models and generating programming codes [7].

Thus, the core ideas of the model-driven approach are:

e a model is the key artifact during the development
process of software (a formal specification of the
function, structure and behavior of a system within
a given context);

e the software development process is a sequence (a
chain) of transformations of models (from the more
abstract to the less abstract).

Some of the better known MDE initiatives are the follow-
ing:

1) Model-Driven Architecture (MDA), which is a reg-
istered trademark of Object Management Group
(OMG) [8], [9], [10]. The main idea of the approach
is to build an abstract meta-model for the manage-
ment and exchange of metadata (models) and setting
the ways of their transformation into a software-
supported technology (Java, CORBA, XML, etc.).
MDA specifies three default viewpoints on software:
computation independent, platform independent and
a platform specific. The viewpoint is an abstraction

technique for focusing on a particular set of concerns
within a system while suppressing all irrelevant de-
tail. The viewpoint can be represented via one or
more models;

2) Eclipse Modeling Framework (EMF) is an Eclipse-
based modeling framework and code generation fa-
cility for building tools and other applications based
on a structured data model [11]. EMF provides the
foundation for interoperability with other EMF-based
tools and applications. The heart of EMF is Ecore.
Ecore is the special language for description of meta-
models (implementation of OMG’s Essential Meta-
Object Facility, EMOF). The basic tools to work with
meta-models and skeletal code generation of software
(programming skeletons) are EMF.Core, EMFE.Edit,
EMF.Codegen;

3) Model-Integrated Computing (MIC) has been devel-
oped over two decades at ISIS, Vanderbilt University
for building a wide range of software systems. MIC
focuses on the formal representation, composition,
analysis, and manipulation of models during the
design process. It places models in the center of
the entire life-cycle of systems, including specifica-
tion, design, development, verification, integration,
and maintenance [12]. MIC providing three core
elements: the technology for the specification and use
of the domain-specific modeling languages (DSML);
the fully integrated metaprogrammable MIC tool
suite, and an open integration framework to support
formal analysis tools, verification techniques and
model transformations in the development process;
the three-level representation of the system develop-
ment process (Application Level, Model-Integrated
Program Synthesis Level, Meta-Level).

In the context of the development of case-based intelligent
decision support systems, MDA is selected as the primary
approach, as the most standardized version (initiative) of the
MDE.

III. MODEL-DRIVEN ARCHITECTURE
A. The main MDA elements (specifications)

MDA itself is not @ new OMG specification but rather an
approach to software development [9] which is enabled by
existing OMG specifications such as:

e MOF (Meta-Object Facility) — OMG’s standard for
model-driven engineering. Its purpose is to provide a
type system for entities in the CORBA architecture
and a set of interfaces through which those types
can be created and manipulated. MOF is designed
as a four-layered architecture (a conceptual modeling
space). Every model element on every layer is strictly
in correspondence with a model element of the layer
above. MOF provides a means to define the structure,
or abstract syntax of a language or of data [13];

e UML (Unified Modeling Language) — the OMG’s
standard for an object modeling in software devel-
opment. UML is not the programming language, but
the UML-based models allow to generate codes of
software [14];

152

e XMI (XML Metadata Interchange) — the OMG’s
standard for exchanging metadata information (UML-
based models, etc.) via Extensible Markup Language
(XML). XMI is also commonly used as the medium
by which models are passed from modeling tools to
software generation tools as part of MDE [15];

e Query/View/Transformation (QVT) — the standard set
of languages for model transformation (model to
model transformation, M2 [6]) defined by the OMG.
The QVT standard defines three model transforma-
tion languages (QVT-Operational, QVT-Relations and
QVT-Core). All of them operate on models which
conform to MOF meta-models. The QVT standard
integrates the OCL (Object Constraint Language) 2.0
standard and also extends it with imperative features
[16];

e MOF Model to Text Transformation Language
(MOFM2T) — the OMG’s specification for a model
transformation language [17]. Specifically, it can be
used to express transformations which transform a
model into text (M2T) [6].

B. Software development stages

MDA specifies three default models of a system corre-
sponding to the three MDA viewpoints defined above. These
models can perhaps more accurately be described as layers of
abstraction, since within each of these three layers a set of
models can be constructed, each one corresponding to a more
focused viewpoint of the system (user interface, information,
architecture, etc.). Thus, MDA defines the software develop-
ment process as a sequential transformation of these models.
Consequently, the development process can be represented as
a set of following stages:

e building a computation-independent model (CIM). It
presents the system requirements, i.e. exactly what the
system is expected to do, but hides all information
technology related specifications to remain indepen-
dent of how that system will be (or currently is)
implemented. CIM plays an important role in bridging
the gap which typically exists between these domain
experts and the information technologists responsible
for implementing the system;

e building a platform-independent model (PIM). PIM is
a model of software that is independent of the specific
technological platform used to implement it;

e building platform-specific models (PSM). PSM is a
model of software that is linked to a specific techno-
logical platform (for example, a specific programming
language, operating system, database, etc.). Thus PSM
specializes PIM for a specific platform based on its
model (Platform Description Model, PDM);

e generating program codes and/or specifications (using
the generator) based on PSM.

As a result, we propose to adapt (modify) and apply the
MDA/MDD approach for building the case-based intelligent
decision support systems, including clarification and redefi-
nition of the main elements and stages taking into account
specifics of the developed software.

IV. PROBLEM STATEMENT

MDA can be formalized as follows:

L,CIM, PIM, PSM, PDM,
MDA:< Fervi—to—piv, FPIv—to—PSM s > (D
Fpsy—to—coDE

where an L — visual modeling languages, L = {UML};
CIM, PIM, PSM, PDM - corresponding models;
Fervi—to—prv : CIM — PIM, Fpry—to—psm @ PIM —
PSM, Fpsyi—to—cCode : PSM — Code — model transforma-
tion rules.

Thus, the main purpose of this paper is to adapt (to special-
ize) the MDA methodology in the context of the development
of case-based intelligent decision support systems, i.e. to define
an M DECBR;

LCBR CIMCBR PIMCBR
PSMCBR PDMCBR,

FCBR FCBR)
CIM —to—PIM> ¥ PIM~to—PSM>

FPSMftofCode

MDACBE —

V. MDA SPECIALIZATION

The MDA specialization includes:

e to use the original author’s notation - RVML (Rule Vi-
sual Modeling Language [18]) as the additional visual
modeling language: LYBE = {UML, RVML};

e to use the ontologies as computation-independent
models (CIM), which provide a complete and consis-
tent description of the domain concepts and relations,
and also their visual representation in a graph;

e to use the original XML-like specification as a
platform-specific model (PSM), which provide the
description of cases (particularly: possible fuzzy prop-
erty values and description for a membership function)
and the formation of an operational level to work with
the Data Based Management Systems (DBMS).

The development process of the case-based intelligent de-
cision support systems is presented by the following sequence
of stages (Figure 1):

Stage 1. Description of the subject domain that contains
the main concepts and relations. At this stage, the user creates
a computation-independent model (CIM). This model can be
implemented in the form of an ontology or an UML-model
(in particular, as a class diagram). In addition, the main
architectural elements of system (such as the "input form", the
"output form", the "inference engine" and etc.) is also produced
at this stage.

The efficiency of this stage can be improved by reusing
(transformation) the existing conceptual models created using
various ontological and cognitive editors, such as CASE-tools
(e.g., IBM Rational Rose, etc.) [19].

Most of the software that supports the MDA/MDD ap-
proach does not realize this stage and only allows one to

153

1. Description of subject domain e L -”i’ -
(coneepts and relationships) = - Ontelogy of Ontology of
V| subject domain case-based ES
Ontology H |
» | IR SR
2. Building platform-independent models
(2.1. Descripbon of case structure) }D, = “‘j:» Description of Description of ES i
i J Cases architectura
el Case model | M 1
2.2, Automatic generation of expert (RVML) | LAl i
L system architecture description 1 | P i !
5 'j e Do G :
Vi Architecture (UML) 4> i
3 Code generation of knowledge base and AU RN TR T :
axperl system - - PSM !
(Buiiding platform-specific models)
KB Code ES Cade

Vi I (specifieation)

4, Testing) I:___-::_-_-_-___‘_‘ B ,-___-_-_‘:I
(NI

@ '; Platform description Transformation |
v (PostgreSal, .} rules |

T

Figure 1. Stages and models of the specialized MDA

develop the software starting at the next stage. In this case, the
conceptual model of a subject domain (even presented in the
form of an ontology) is considered as a platform-independent
model (PIM) that describes the main concepts and business
logic (that is acceptable for databases).

In the case of developing intelligent systems, this stage
is necessary and corresponds to the stage of the conceptual-
ization of knowledge. This stage allows one to pass from a
general conceptual model of a subject domain to a knowledge
representation model (with logical rules).

Stage 2. Building a platform-independent model (PIM)
that describes the case structure with a clear separation of
the "problem description" and "solution" parts. This model is
obtained as a result of the automated transformation of a CIM
with the subsequent clarification.

Visual modelling is one of the main aspects of the MDA
approach. MDA traditionally uses a unified modelling lan-
guage (UML) for building models. It should be noted that
applying the MDA approach to develop specific software
requires the use of UML extensions [20] that allow one to
take into consideration some features of a subject domain
(e.g., telecommunication or health.), architectures (e.g., real-
time access and reliability), and programming languages and
formalisms (e.g., CORBA or Prolog). So, it is proposed to use
RVML as an additional visual modeling tool.

Stage 3. Building a platform-specific model (PSM) that
is linked to a specific technological platform, in particular,
DBMS.

Stage 4. Generating the codes for a KB and the case-
based intelligent decision support system. At this stage, the
interpretation of the UML-class diagram (that describes the
software architecture) and RVML diagrams is performed. The
main results of the interpretation are the program codes and
specifications for an interpreter. In the process of interpretation
and code generation, the platform description model (PDM)
and rules for the transformation of models are used. In this
case, a PDM describes the syntax and semantics of the

programming languages for which program code is generated.

Stage 5. Testing. At this stage, the obtained program codes
are tested in special software (in the interpreter).

It should be noted that the end user (an expert or a system
analytic) only designs a CIM, a PIM and part of a PSM.
All of the transformations of the models and the generation
of program codes (with the possibility of modifications) are
implemented with specialized software that includes a PDM.

The described sequence of stages almost coincides with a
"standard" MDA approach, but the stage’s content is redefined
based on the designs of the case-based intelligent decision
support systems.

VI. CONCLUSION

Efficient creation of KBs for solving problems in various
areas requires the development and use of specialized method-
ical, algorithmic and program means. This paper describes the
modification (adaptation) and application of the MDA/MDD
approach for the development of the case-based intelligent
decision support systems.

The modification includes: the use of the ontology as the
CIM, the use of the RVML notation to create the PIM, and
the use of XML-like specification as a platform-specific model
(PSM) that takes into account the particular case descriptions,
including description of fuzzy property values and a member-
ship function.

The proposed approach will be the basis for the develop-
ment of software.

ACKNOWLEDGMENT

The reported study was partially supported by RFBR
(research projects No. 16-37-00122).

REFERENCES

[1] Gavrilova T.A., Kudryavtsev D.V., Muromtsev D.I. Knowledge Engineer-
ing. Models and methods. SPb.: Lan, 2016. 324 p. (In Russ.)

[2] Gribova V.V., Kleshchev A.S.; Krylov D.A.; Moskalenko EM., Sma-
gin S.V., Timchenko V.A., Tyutyunnik M.B., Shalfeeva E.A. JACPaa$S
project. Complex for intelligent systems based on cloud computing I/
Artificial Intelligence and Decision Making. 2011. No.1. P.27-35. (In
Russ.)

[3] Golenkov V.V., Gulyakin N.A. Design principles of mass semantic
technology component of intelligent systems // Proceedings of the I
International Scientific and Technical Conference - Open Semantic
Technologies for Intelligent Systems (OSTIS-2011). — Minsk: BSUIR,
2011. P21-58. (In Russ.)

[4] Zagorulko Yw.A. Semantic technology for development of intelligent
systems oriented on experts in subject domain // Ontology of Designing.
2015. Vol.15, No.1. P.30-46. (In Russ.)

[S] Rybina G.V. Instrumental tools for constructing of dynamic integrated
expert system: developing of complex AT-TECHNOLOGY /| Attificial
Intelligence and Decision Making. 2010. No.1. P41-48. (In Russ.)

[6] Czarnecki K., Helsen S. Feature-based survey of model transformation
approaches [/ IBM Systems Journal. 2006. Vol.45, No.3. P.621-645.

[71 Stahl T., Voelter M., Czarnecki K. Model-Driven Software Development:
Technology, Engineering, Management, 1rd ed. John Wiley & Sons,
2006. 446 p.

[8] Frankel D. Model Driven Architecture: Applying MDA to Enterprise
Computing. New York: Wiley, 2003. 352 p.

154

[91 OMG Model Driven Architecture (MDA). Available at:

http://www.omg.org/mda/ (accessed 25.11.2016).

[10] Kleppe A., Warmer J., Bast W. MDA Explained: The Model-Driven
Architecture: Practice and Promise, 1rd ed. New York: Addison-Wesley
Professional, 2003. 192 p.

[11] Eclipse Modeling Framework (EMF). Available at:
http://www.eclipse.org/modeling/emf/ (accessed 25.11.2016).

[12] Model Integrated Computing (MIC). Available at:
http://www.isis.vanderbilt.edu/research/MIC (accessed 25.11.2016).

[13] Meta-Object Facility (MOF). Available at: http://www.omg.org/mof/
(accessed 25.11.2016).

[14] Unified Modeling Language (UML) Version 2.5 // OMG Document
formal/15-03-01. Available at: http://www.omg.org/spec/UML/2.5/ (ac-
cessed 25.11.2016).

[15] XML Metadata Interchange (XMI). Available at:
http://www.omg.org/spec/XMI/ (accessed 25.11.2016).
[16] Query/View/Transformation (QVT). Available at:

http://www.omg.org/spec/QVT/ (accessed 25.11.2016).

[17] MOF Model To Text Transformation Language (MOFM2T). Available
at: http://www.omg.org/spec/MOFM2T/ (accessed 25.11.2016).

[18] Rule Visual Modeling Language. Available at: http://www.knowledge-
core.ru/index.php?p=rvml (accessed 25.11.2016).

[19] Dorodnykh N.O., Yurin A.Yu. Using UML class diagrams for design
of knowledge bases of rule-base expert systems // Software Engineering.
2015. No.4. P.3-9. (In Russ.)

[20] De Miguel M., Jourdan J., Salicki S. Practical experiences in the
application of MDA // LNCS. 2002. Vol.2460. P.128-139.

O CIIEIMAJIN3ATINN
MOJEJIBHO-YITIPABJIAEMOI'O ITOAXOJA IJIA
CO3JAHUA NHTEJIJIEKTYAJIBHBIX CUCTEM

HOAOEPKKN ITPUHATNS PEHIEHUI
[NPEOEAEHTHOI'O TUITA

Hopomaeix H.O., FOpun A.IO.

Paccmorpena crenuasmsaryst (KOHKpeTu3aius)
MOJIEJILHO-YIIPABIIIEMOrO [IOJIX0/[a B KOHTEKCTE CO3ZaHUsI
UHTEJIJIEKTYAJbHBIX — CHCTEM IOJUIEPXKKH IIPUHSITHUS
pellleHuil IPEeIeJeHTHOr0 TUlla. B 9acTHOCTH: yTOYHEHBI
OCHOBHBIE€ 3Tallbl IIPOIleCCa IIOCTPOEHUA IIPOI'PAMMHBIX
cucreM (MX COCTaB M COJNEPXKAHUE) U HUCIHOJIb3yeMble
Moz, B paMKax = CHeNUagu3alyuu IPEeJJIOYKEHO
UCHONIBb30BATh: OHTOJOTUM B KAYECTBE BBIYUCIUTEIHHO-
Hezapucumoii mojean (CIM) u XML-nojgobuyro
crrenmuUKAIMI0O B KadeCTBe ILIAT(OPMO-3aBUCHMOMN
mogenu (PSM). Hcnonb3oBanue OHTOIOMHN 06ECIEIHBACT
IIOJIHOE U COTJIACOBAHHOE ONMCaHUe ITOHATHUI U OTHOIIEeHU
IpeJMEeTHOM 06/1acTU U MX BU3yaJlbHOE IPEJICTABICHHUE B
Bujie rpada; a mpeIoyKeHHas! ClennduKaIys yInThIBAeT
0COBEHHOCTH ONUCAHUS IIPEIEIEHTOB.

