
Ontology-Based Design of
Intelligent Systems User Interface

Boriskin A.S., Koronchik D.N.
Zhukau I.I., Sadouski M.E.

Belarusian State University of Informatics
and Radioelectronics,

Minsk, Belarus
Email: coloss_000@mail.ru

Email: denis.koronchik@gmail.com

Khusainov A.F.
Institute of Applied Semiotics of the

Tatarstan Academy of Sciences
Kazan, Russia

Email: Khusainov.aidar@gmail.com

Abstract—The work is devoted to the development of intelli-
gent systems user interfaces design technology, which is based on
an ontological model of the interfaces itself and the ontological
model of the design process.

Keywords—user interface, subject domain, ontology, intelligent
system, ontology-based design, user, interface action, interface
command, message.

I. INTRODUCTION

A. Objective and Relevance of the work

The objective of this paper is the creation of technology
of design of multimodal intelligent systems user interface and
the creation of visualization tools for intelligent systems in
particular. The relevance of the topic chosen due to the need
to reduce overhead costs and timing of the development of
user interfaces, the inability to adapt to the peculiarities of
a particular user. As a user of any system communicating
with it through an interface, the problems associated with the
interface, often form a negative opinion about the system as
a whole and does not allow full use of its functionality. This
situation is mostly suitable in case of intelligent systems usage
as possibilities of such systems is much wider than possibilities
of conventional systems.

It is proposed to use ontology-based approach as a basis
for the development of intelligent systems user interfaces
design technology. The approach involves the development
of intelligent systems user interfaces formal ontology. The
creation of such ontology promotes coordination of principles
and methods for user interface components design at first,
promotes unification of user and intelligent system interface
activities secondly, promotes decomposition process of user
interfaces design and the possibility of its parallelism in third.

B. Problems, Need to be Solved

• the complexity of various kinds of the intelligent systems
interfaces leads to the increased time needed to spent on
the interface usage training and to learn additional study
materials [5];

• long-term design and support of user interfaces and its
high costs, what complicates the improvement process
and leads to rapid system obsolescence;

• the absence of user interface development process unifi-
cation what makes it difficult to develop user interfaces in
parallel as well as limits the reuse of already developed
components;

• long-term user retraining at the stage of learning new
intelligent systems interfaces and at the stage of learning
new external languages for knowledge representation as
a consequence of the absence of such unification;

• there is no ability to use several external languages for
knowledge representation simultaneously: various kinds
of knowledge may displayed differently if such a display
will be convenient for perception. At the same time it
should be clear for the user when to use each external
language for knowledge representation. In addition there
is no possibility of rapid expansion of set of external
languages, if it will be necessary;

• difficulties in transferring of user interfaces from one
platform to another;

• absence of a common formal basis for constructing mod-
els of interfaces void the user’s possibility of asking
questions related to the interface usage.

C. Analysis of Existing Approaches of Specified Problems
Solution

Nowadays there are several scientific researches which
aimed to solve the problems of user interfaces development.
The user interface is a component of the intelligent system
that is prone to frequent changes due to the presence of a
wide range of users with different levels of usage culture and
requirements for a software system. Create a user interface that
satisfies the requirements of all users possible only through a
creation of flexible models of such interface, which could then
be interpreted by the interpretation of one of the platforms of
such models.

In the classical approach [14] to create an interface
based on user requirements the layout of the interface is built
firstly, then the prototype, then, as a rule, determination of the
dialogue structure, and work out a possible scenario for the di-
alogue development, then there is an interface implementation
using a suitable programming environment.

Model is the basic of interface development which contains
declarative description of a high level of abstraction and does

95

Би
бл
ио
те
ка

 БГ
УИ
Р



not contain procedural code in model-orientied approach [6].
A set of models is different for each model-oriented tool,
for each tool and the level of the model different declarative
languages are used, which makes it difficult not only to
create an interface in one model-oriented tool, but also its
subsequent modification as well as to the strong dependence
of the developed model to the tool of its development.

Model-oriented approach based on ontology with spec-
ified interface models proposed in [10]. The interface in
this approach is focused on the conversion of user-entered
information presented in a comprehensible user message, into
the values of the application program variables and vice versa.
Particular importance is attached to the algorithm of automatic
interface model transformation to the code, which is controlled
by user interface ontologies where the characteristics of a
particular model are input to the algorithm. However, this
approach does not solve the problem of the user interface
complexity and the absence of user possibility to ask questions
related to the interface usage.

Another approach is building an adaptive user interface.
The main focus here is on the user’s cognitive characteristics
taking into account possibility to create a custom interface that
focuses on the modification of the parameters for maximum
coordination with a cognitive profile. Adaptation mechanism
for the implementation is proposed in [7] to establish a set
of software tools including the designer interface, diagnostics
subsystem, knowledge base for storing interface settings and
individual user information important for building personalized
interface.

The next approach for user interfaces design is associated
with the theory of activity [4]. The user interface is considered
as a set of information model of the problem domain, tools and
methods of interaction of the user with the information model,
and components, ensuring the formation of the information
model in the process of a software system in [11]. To reduce a
minimum set of user actions usage of universal command and
intuitive approach to the description of the control elements is
proposed in [19]. However, this approach does not consider
interfaces extensibility aspect.

By visualizing the knowledge in intelligent systems we
mean the mapping knowledge base fragment into the external
form. Visualization of knowledge related to the user interface
has an important role in knowledge obtaining and transfer-
ring. Visual languages complement ontological (or conceptual)
modeling technology, making ontology content understandable
and intuitive is not only for experts and analysts, but for a
beginner [1].

There are several approaches to solving the problem of
knowledge visualization. Visualization of ontologies using
cognitive frames is considered in [16] [17]. The cognitive
frame is a visualized fragment of ontology which allows to
adequately convey to the person (expert) knowledge related to
some target concept. The cognitive frame has two components
- the contents of the corresponding ontological context of the
target concepts and the visual image, presenting to an expert.
The structure of the cognitive frame is based on the use of
invariant relationships as well as consideration of concepts
at different levels of hierarchy. It allows to form content
in the frame that satisfies the requirements of compactness,

completeness and familiarity for any ontology concepts.

Various visualization techniques such as hyperbolic trees,
conceptual maps, goal-oriented visualisation of relationships
between the elements of knowledge are proposed in [8].
Focused on goals integration of contextual visualization of re-
lations between knowledge elements significantly improves the
transfer of knowledge from the media (teacher) to recipients
(students).

The main disadvantages of existing approaches of visu-
alisation of different types of knowledge are the absence of
universal language, which would allow to display any kind of
knowledge in th form, though less evident than in the case of
a specialized language, but clear to the end user.

As can be noted, the use of the approaches outlined above
can solve only some of the identified problems of the user
interface design. Several problems such as interface flexibility
and effective implementation of new specialized communica-
tion languages remain unresolved.

D. The Proposed Approach

Problems of unification of construction of the various
components of the computer systems principles are solved
within the OSTIS Project [9], aimed at creating an open
semantic technology design, managed by knowledge. Systems
developed by this technology called ostis-systems. In this
paper we will talk about user interfaces of the ostis-systems.

As a formal basis for building ostis-system models in this
technology is the universal language called SC-code. The texts
of the language written in the form of homogeneous semantic
networks with set-theoretic interpretation. Elements of such
semantic networks called sc-elements, such as nodes - sc-
nodes, connections - sc-connectors (sc-arcs, sc-edges).

The basis of the ontological user interfaces design are the
following principles:

• the user interface is a specialized ostis-system oriented
on the interface tasks solution and consisting of the
knowledge base and knowledge processing machine for
user interface. It allows the user to address the various
types of questions to the user interface;

• the ontology-based approach of the user interface design
is used. It contributes to defined separation of the activ-
ities of various user interface developers as well as the
unification of design principles;

• SC-code is used as a formal language of the internal
knowledge representation (ontologies, subject domains
and others). This ensures ease of interpretation of this
knowledge by the system and by the person - the user or
developer as well as the perception of the uniqueness of
this information perception;

• the syntax and semantics of all kinds of external lan-
guages are described using SC-code with the appropriate
ontology;

• translation from the internal to the external language
and back are organized in such a way that translation
mechanisms are not depend on external language. For the
implementation of new specialized language in such case
specification of the syntax and semantics of the language

96

Би
бл
ио
те
ка

 БГ
УИ
Р



is only needed. The universal model of the translation will
not be affected by this specification;

• each control element of the user interface is an external
display of a sc-element stored into the semantic memory
(sc-memory). This allows to use them as custom com-
mands arguments and correctly interpret the semantics
and pragmatics of the interface objects activity;

• selection of visualisation styles carried out depending
on the type of knowledge to display (for example, the
use of different visualization elements for certain types
of knowledge, and the other - for the other types) is
supposed. This allows the user to quickly learn new
specialized languages as well as to make a simple and
understandable display of knowledge;

• the user interface model built independently of the inter-
pretation of the platform implementation of such a model.
It allows an easy transfer of the developed model on
different platforms.

The use of the ontology-based approach of user interfaces
design involves the construction of (1) the ontological model of
the user interface as a specialized ostis-system; (2) ontological
model of interfaces design process, those interface developers
actions ontology which is based on the proposed model. In this
paper the main focus is on the construction of the ontological
model of the ostis-system user interface.

Within the described technology knowledge base structure
of any ostis-system is described by a hierarchy of subject
domains and the corresponding ontologies [12]. Ontology thus
treated as specification of the appropriate domain. So speaking
about the development of a certain domain we assume that
it is development of an appropriate set of ontologies in the
particular.

Ontological model of any entity described by SC-code will
call sc-model. Knowledge base model and knowledge process-
ing machine model will be called sc-model of knowledge base
[13] and sc-model of knowledge processing machine [20]
accordingly.

E. Tasks to be Resolved for Proposed Approach Implemen-
tation

Clarification of the intelligent systems user interface on-
tology-based design concept proposed in the paper includes
solving of the following tasks:

• to develop the sc-model of the user interface knowledge
base presented by hierarchy of domains and their corre-
sponding ontologies;

• to develop the sc-model of the user interface knowledge
processing machine presented by family of user interface
agents;

• to develop a universal meta-language based on the system
of concepts of Subject domain and ontology of languages
and visualization tools which is the basis for a system of
visualization and editing knowledge agents;

• to unify the principles of organisation of user and ostis-
system interface activities;

• to unify the intelligent systems user interface commands
typology;

• to develop a semantic typology of user interface elements
which are the objects of the interface activity;

• to develop a library of reusable components of ostis-
systems user interfaces, in which distinguish the Kernel
of the unified models of user interfaces.

II. USER INTERFACE KNOWLEDGE BASE STRUCTURE

As mentioned earlier, the user interface as part of the
proposed approach is a specialized ostis-system and therefore
knowledge base is its necessary component [12]. The knowl-
edge base of the user interface includes the following parts:

• description of the processes related to the past, present
and future of the user interface. Under the previous of
the user interface meant the history of its exploitation as
well as the evolution of the interface. Under the present
- the current state of the user interface. Under the future
- user interface development plans. Analysis of described
temporal processes allows to evaluate the effectiveness of
the interface development and enables versioning of the
user interfaces design;

• users models with information about users characteristics,
capabilities and preferences, which allows the interface
to be flexible and adapt to the user, providing the most
efficient interaction;

• typology of user and ostis-systems actions, which allows
to describe the principles of interaction of the user inter-
face with users at all levels of the interface interaction;

• typology of the objects of these actions, which allows
to produce unification and coordination of user interface
components as well as to make their hierarchy;

• formal description of external languages of SC-code
structures representation, both universal and specialized.

If we consider the General ontology of user interfaces,
it makes sense to speak of a system of four interrelated
ontologies:

• General ontology of user interfaces;
• General ontology of users and ostis-systems interface

actions;
• General ontology of user interfaces developer actions;
• General ontology of users interfaces design tools.

The first of these describes the common model of ostis-
systems user interfaces. The second - a multi-level user inter-
face activities on the one hand and the ostis-system interface
activities on the other hand. The third ontology deals with
the activities of the developer of ostis-system user interfaces.
Finally, the fourth ontology considering various user interfaces
design tools, including the various editors, translators and other
tools.

This paper will consider the first and second of these
ontologies and their corresponding subject domains. The frag-
ments (substructures) of the considered subject domains and
ontologies will be further shown in the form of SC-code text
(sc-texts), written in SCn-code [3].

A. Subject domain and ontology of user interfaces

As it was mentioned before, user interface is a specialized
ostis-system focused on solving the corresponding class of
problems [15]. Further, design of user interface will mean user
interface of the ostis-system. Therefore all the principles listed

97

Би
бл
ио
те
ка

 БГ
УИ
Р



below will characterize exactly this type of interfaces. Thus, sc-
model of this interface is built according to general principles
of ostis-systems construction:

user interface
= ostis-system user interface
= sc-model of ostis-system user interface
<= abstract decomposition*:

{
• sc-model of ostis-system user interface knowledge base
• sc-model of ostis-system user interface knowledge

processing machine
}

A concept of the ostis-system user interface, different
user interface elements like windows, controls, states which
describe user interface are investigated in the context of the
Subject domain of user interfaces.

The key concepts of this domain model are:

• concepts, which denote different classes of the user
interfaces;

• concepts, which denote different objects on which the user
interface activity may be directed;

• relations defined on the set of interface activity objects.

Maximum studied object class of analysed subject domain
and ontology is the concept of the ostis-system user interface.

The following subclasses of user interfaces are defined
based on the type of interaction [18]:

user interface
=> inclusion*:

• command user interface of IMS
= interface where commands are given to a computer

system using the command line and then
transferred for execution

• graphical user interface
= interface where commands are given to a computer

system indirectly through graphic images
• SILK-interface

= interface where commands are given to a computer
system through the analysis of human behavior

=> inclusion*:
• natural language interface

=> inclusion*:
• speech interface

Each intelligent system operates with knowledge base
using internal language. A dialog is represented as a message
exchanging between user and intelligent system. So as such a
dialog takes place, a fragment of knowledge base should be
mapped into some external form.

The universal external language of message exchanging is
a language which allows to describe any kind of knowledge.
The SC-code and all its representations are examples of this
language:

• SCg-code - is one of possible languages to visualize
SC-texts. The basic principle of SCg-code is that each

sc-element is mapped into scg-element(a graphic repre-
sentation);

• SCs-code – a string (linear) representation of SC-texts. It
visualizes sc-text as a sequence of characters;

• SCn-code – a string nonlinear representation of SC-texts.
SCn-code visualizes sc-text in a formatted with special
rules sequence of characters in which also can be used
basic tools of hypermedia, images and tools for navigation
between parts of scn-texts.

The specialized language of an external messaging is a
language which intended to describe particular forms of knowl-
edge applicable in specific areas of science and technology.
The most widespread examples of this language are language
of drawings and language of description of topographic maps.

Geometric primitives are the main elements for language
of drawings. This language is used in the geometry intelligent
system which is built with help of ostis-technology.

Terrain elements and their properties are the main elements
for language of description of topographic maps. This language
can be reused in various ostis-systems.

Message exchange is performed with help of user interface
actions in the ostis-system. Also it’s possible to interact
with some objects on the screen. Controls and windows are
examples of such objects.

Each control represents a class of actions which can be
initiated by user. Using such actions user has an influence
on visible objects and on state of sc-elements associated with
these objects.

SC-elements can be divided into groups and marked during
visualization(e.g. with some color). The possible groups of sc-
elements are:

• sc-elements which have been just generated on the screen
by user;

• sc-elements which have been just generated by user and
are available in the knowledge base;

• sc-elements which have been just generated by user and
are not available in the knowledge base;

• sc-elements which have been displayed on the screen by
ostis-system from the knowledge base.

Localization of interaction between a user and ostis-system
can be performed via user interface windows. The types of
possible ostis-system windows are shown below:

window
= ostis-system window
= sc-text sign or file sign (which may be empty) stored in

sc-memory at the current time and displayed on the screen
=> inclusion*:

• main window of ostis-system
<= partitioning*:

{
• frame window of ostis-system
• contour window of ostis-system
}

contour window of ostis-system
= (scg-contour ∩ ostis-system window)

98

Би
бл
ио
те
ка

 БГ
УИ
Р



= scg-contour which is the ostis-system window displayed on
the screen and can be manipulated

frame window of ostis-system
= (scg-frame ∩ ostis-system window)
= scg-frame which is the ostis-system window displayed on

the screen and can be manipulated

The main window is distinguished among all windows
in the ostis-system based on the principle of inheritance of
windows. This window is not a child of any window displayed
on the screen.

It has the following properties:

• Only one instance of main window is available for a user
session in the ostis-system;

• Main window belongs to the contoured set of elements;
• It’s not possible to remove or hide main window.

Relation ’child window*’ is an example of concept which
is investigated in scope of Subject domain of user interfaces.
This relation helps to build hierarchy of windows in the ostis-
system.

Each tuple of the relation consists of window sc-elements
and has the following properties:

• Oi child window must be a part of the (be in) parent
window Oj;

• There is no such a window Ok, which is a parent for Oi
and Oj windows at the same time.

User interface of ostis-system goes from one state into
another, defines set and appearance of objects which are visible
on the screen. Variety of these states defines a mode of
user interface. It makes user interface flexible and helps to
distinguish actions which are available for different categories
of users.

mode
= situational set of states of the user interface, which state is

considered during executinon of user action.
⊂ situational set
=> inclusion*:

• mode of identification language
• mode of language for visualization of external texts
• mode for displaying sequences of messages

The description of each mode is listed below:

• mode of identification language - the mode which set
a specific language for the identification of displayed
object.
Russian and English identification languages are sup-
ported in current version of technology.

• mode of language for visualization of external texts -
the mode which set a specific external language to display
selected texts.
SCn-code, SCg-code, language of drawings and language
of description of topographic maps are supported in
current version of technology.

• mode for displaying sequences of messages - the mode
which set a specific visualization sequences of messages*
during user interaction with system.

Display all messages in single window and display each
message in new window are supported modes in current
version of technology.

B. Subject domain and ontology of users and ostis-systems
interface actions

Subject domain and ontology of users and ostis-systems
interface actions
<= sc-structure decomposition*:

{
• Subject domain and ontology of ostis-systems users

interface actions
• Subject domain and ontology of ostis-systems interface

actions
}

1) Subject domain and ontology of ostis-systems users
interface actions: Interface language of ostis-system users,
like any other language, has its own syntax and semantics and
represents a set of a certain kind of texts. The text of such
language is a sequence of interface actions of ostis-system
users.

The proposal (the minimum meaningful piece of text) of
interface language of ostis-system users is the specification of
some initiated ostis-system action or the command formulation
addressed to ostis-system. In this case, if an action initiated by
user [21] does not require the indication of action objects (ar-
guments), the proposal will consist of one elementary interface
action of ostis-system user, which is an indication of the type
of initiated action.

Development of Subject domain and ontology of ostis-
systems users interface actions solves the problem of a clear
separation of the activities of the user interfaces developers for
effective and rapid development and facilitates the unification
of user interface design principles.

The objects of research in Subject domain and ontology
of ostis-systems users interface actions in the context of
the general typology of actions are elementary user actions,
interface commands and ostis-system users messages.

The key concepts of this domain are:

• concepts, indicating different classes of elementary user
actions, interface commands and ostis-system users mes-
sages;

• relationships defined on the set of elementary user actions
and interface command, related to the Subject domain and
ontology of actions and tasks;

• relationships defined on the set of ostis-system users
messages, related to the Subject domain and ontology of
temporal entities;

• relationships defined on the set of ostis-system users
messages, which can be defined only in scope of Subject
domain and ontology of ostis-systems users interface
actions.

The maximum class of research objects of considered
subject domain and ontology is the concept of ostis-system
user interface action.

99

Би
бл
ио
те
ка

 БГ
УИ
Р



On the basis of atomacity (elementary quality) class of
shown actions is divided into the next subclasses:

interface action of an ostis-system user
<= union*:

{
• elementary interface action of an ostis-system user

= interface action of an ostis-system user, for which
another ingoing in his composition interface
actions of the ostis-system user don’t exist

• interface command of ostis-systerm user forming
• message of ostis-systerm user forming
}

The simpliest interface language fragments of ostis-system
users are elementary interface actions of ostis-system users,
for which another ingoing in his composition interface actions
of the ostis-system user don’t exist. Notice that the description
of each elementary user action is abstract, so independence of
the actions from implementation on various devices is provided
[2].

Like atomic text fragments of any language, elementary
action of ostis-system user is associated with its own alphabet
(syntactically recognizable typology) below:

elementary interface action of ostis-system user
= the interface action of ostis-system user, for which another

ingoing in his composition interface actions of the
ostis-system user don’t exist

⊃ specification of the type initiated by ostis-system user
⊃ specification of the argument (object) initiated by

ostis-system user
⊃ specification of the entity, for which base decomposition is

requested
⊃ specification of the of completion of arguments transfer
⊃ cancel of the last elementary action of ostis-system user
⊃ cancel of all specified (listed) arguments

Among the listed subclasses of elementary actions of an
ostis-system user special attention should be paid to the action
of specification for the entity, for which the base decompo-
sition is requested, because the action is an interface user
command at the same time. Because output process of the
decomposition (base semantic neighborhood) for some entity
is the most frequent user request, the action included to the list
of elementary user actions, that makes a task of explicit using
of the base decomposition request command with specification
for its arguments easier.

At the same time, it is worth remembering that not every
elementary user action is an interface command, which will
be discussed further.

an interface command of ostis-system user
= specification for ostis-system user action, formed in the

language of interface actions of ostis-system users and
included type specification for an initiated action and
specification for its arguments, i.e. objects, for which the
action must be executed

The next kinds of forming of an interface command al-
lowed depending on whether the user addresses to the signs of

initiated actions by them or uses resources of external editors,
that allows to reproduce specifications of initiated actions:

interface command of ostis-system user
<= partitioning*:

{
• command, formed on interface actions language

= command, commiting the fact, that specification for
an executing action generates automatically by
applying of elementary user actions to the control
elements

• command, formed on external language
= command, commiting the fact, that specification for

an executing action generates whether by the user,
using resources of special editor, or using
instraction on natural language

}

Interface actions of ostis-system users are subclasses of
regular actions, therefore according to the ontology approach,
in particular, the existing system of ontologis and subject
domains are possible crossing of subject domains, the object of
study of which are this two mentioned concepts. Examples of
the relations from Subject domain and ontology of actions and
tasks in the considered domain are such relations as object*,
result*, context of action*, etc.

The most difficult, in terms of structure, interface actions
class of ostis-system users is message forming.

message of ostis-system user
<= partitioning*:

{
• user message in the external language

= message generated in the language of the interface
actions (interface commands), which represents a
sequence of actions with the indication of the
objects on which these actions are defined, and the
types of actions

=> inclusion*:
• scn-message
• scg-message

• user message on the internal language
= sc-message
= sc-text, representing the meaning of information

built by one subject and intended for use by some
particular subject or a group of subjects

}

Depending on what kind of sense carries the generated
message, there are following subclasses of message of ostis-
system user:

message of ostis-system user
<= partitioning*:

{
• narrative message

= message provided the recipient* some information
and does not require any additional user action.

• imperative message
= message, which suggests some action by the

recipient* after receiving of the message.

100

Би
бл
ио
те
ка

 БГ
УИ
Р



Some interface commands can simultaneously be impera-
tive messages of the ostis-system users, in this case is said
about message, which is decorated in the language of the
interface commands. However, the main difference between
them is that the message directly affects to the sc-elements,
i.e, the formation of ostis-system user message means entering
this message in the substantive part of the knowledge base.

Moreover, messages movement from one form to another
also depends on the used commands. Commands-requests are
initiated at once, in this case the message is converted from one
form to another almost immediately, commands of editing form
the actions protocol connected with the creation of the message
content in one of the foreign languages, then the message is
translated to the ostis-system memory that runs the process of
initiating sequential actions from a protocol and the subsequent
integration of the content of the message with the substantive
part of the knowledge base.

Specifications of actions, which are the interface com-
mands, does not always mean the use of sc-elements as
arguments. For example, when it comes to the commands of
editing file, the use of these commands affects the content of
these files, but does not affect the sign of the file. However,
if you imagine the content of a file as a linked sc-text, the
reference to a certain subset of the sc-text (e.g, the sign of
the proposal, the sign of some letter) will already imply the
formation of user message.

Relations specified on messages consider the temporary
connections between them, for example, sequence of mes-
sages* for a particular user during the session of ostis-system
operation. The existence of such relations indicates the inter-
section of the analysed subject domain and Subject domain of
temporary entities.

Consider the examples of such relations:

sequence of messages*
=> inclusion*:

• temporary sequence of messages*
• logical sequence of messages*

=> inclusion*:
• answer*

= binary oriented relation, the first component of
the ligament of which is a sign of formulated
in the form of an imperative message sender*
request, and the second component - a sign of
narrative message in response to this request.

• message that specifies statement of the problem*
= binary oriented relation, the first component of

the ligament of which is a sign of formulated
in the form of an imperative message sender*
request, and the second component — a sign
of recipient* imperative message if the sc-text
of the original message is not completed.

• error message*
= binary oriented relation, the first component

of the ligament of which is a sign of
formulated in the form of an imperative
message sender* request, and the second
component - a sign of narrative message,
representing a formed incorrect structure by
the result of request processing.

Completing the description of the interface actions of
ostis-system users, consider some of the relations specific
only for Subject domain and ontology of ostis-systems users
interface actions that reveal deeper aspects of visualization and
interaction with the outside world:

• outer form of message* - binary oriented relation, the
first component of the ligament of which is the sign of
message, and the second component - a sign of the file
generated as a result of sc-text translation* to the external
language;

• communication environment* - binary oriented relation,
the first component of the ligament of which is the sign
of message, and the second component - a sign of a
certain subset of the surrounding environment, in which
the messages exchanged between the sender* and the
recipient*. As a communication environment* for ostis-
systems is sc-memory.

2) Subject domain and ontology of ostis-systems interface
actions: Frequently, in spite of the same appointment of
software and the similarity of tasks solved by them, from the
user point of view interfaces of such tools externally looks very
different, leading to the need for user to retraining and adapting
to the new principles of interaction with the system. The
solution of the problem is to explicitly allocate semantic types
and classes of actions in a variety of ostis-systems interface
actions and reflect by the semantics of the syntactic (visual)
separation signs of such actions when they are displayed on
the screen.

Development of Subject domain and ontology of ostis-
systems interface actions solves the problem of correct and
unambiguous interpretation of semantics and pragmatics of
elements displayed on the screen This allows to obtain com-
prehensive information about the purpose and use of objects
of interface activity at lower levels of working with it.

The objects of research in Subject domain and ontology
of ostis-systems interface actions in the context of the general
typology of actions is ostis-system direct action initiated by
users and indirect actions the implementation of which is
implicit in the execution of other actions.

The key concepts of this domain are:

• concepts, indicating different classes and types of ostis-
systems interface actions;

• relationships defined on the set of ostis-system interface
actions related to the Subject domain and the ontology of
actions and tasks.

The maximum class of objects of research of the considered
subject domain and ontology is the concept of ostis-system
interface action.

ostis-system interface action
<= partitioning*:

{
• atomic ostis-system interface action

= ostis-system interface action performed by atomic
agent

• non-atomic ostis-system interface action

101

Би
бл
ио
те
ка

 БГ
УИ
Р



= ostis-system interface action which is a sequence of
atomic ostis-system interface actions and
performed by non-atomic agent

}

At the stage of interaction with the elements on the screen
non-atomic ostis-system interface action classes are allocated,
the interpretation of which is to provide a list of types of
user-initiated actions relating to this class. Syntax highlighting
for classes and types of action is supposed to intuitively
understand the purpose of the user interface control elements
implies a signs of sc-elements mentioned above.

Speaking about the classification of ostis-system interface
actions in terms of their purpose, in this case it is preferable
to use a color selection or the introduction of a specified
extension as an option for the external representation (for ex-
ample, SCg-code), which includes into the alphabet primitives
associated with different classes of operations.

class of ostis-system actions, initiated by its users
<= partitioning*:

{
• non-atomic class of ostis-system actions, initiated by

its users
• type of ostis-system actions, initiated by its users
}

<= partitioning*:
{
• action of interpreting the program stored into

sc-memory
• information searching action

=> inclusion*:
• information searching action into the whole

knowledge base
• information searching action into the specified

knowledge base fragment
• action of knowledge base editing
• action of editing file stored in sc-memory
• action of ostis-system building
• action of ostis-system operation mode setting
• windows manipulation action
• ostis-system action in the external environment
• action of cancelling the latest initiated ostis-system

action
}

In case when the number of initiated action arguments is
important, the introduction of syntax rules here is not even a
recommendation, but a necessity as receiving information on
the number and type of action arguments can not be obtained
without recourse to the appropriate action specification. As
in the case with the appointment of interface actions syntax
highlighting the best option here is to use some variant of the
external representation. A complete classification of the types
of actions initiated by ostis-system user will be given further:

type of actions initiated by ostis-system user
= elementary class of ostis-system actions
= class of ostis-system actions an indication of which

together with the corresponding action arguments (object
on which the action is performed) uniquely defines every

ostis-system action
<= partitioning*:

{
• type of actions initiated by ostis-system user with fixed

arguments count
<= partitioning*:

{
• type of actions initiated by ostis-system user

without arguments
• type of actions initiated by ostis-system user

with one argument
• type of actions initiated by ostis-system user

with two arguments
• type of actions initiated by ostis-system user

with three and more arguments
}

• type of actions initiated by ostis-system user with any
arguments count

In addition to ostis-system user messages messages of
ostis-system itself are distinguished:

ostis-system message
=> inclusion*:

• ostis-system message as a response on the imperative
ostis-system user message

• ostis-system message initiated by itself

Possible ostis-systems reactions to the imperative message
are:

• an indication of the fact of the completion of certain task.
Is typical for behavioral actions for example;

• receiving a response on the assigned task generated either
as a result of the of the user interface knowledge base
analysis or as a result of analysis of the subject part of
the ostis-system knowledge base itself.

Situations in which ostis-system initiates communication
itself can be divided into two groups:

• situations arised in the analysis of user activity.
Examples: assignment arguments, which are not corre-
spond the type of initiated action; hints appearance during
the usage of user interface elements.

• situations arised in the analysis of the syntax of the
external language texts.
Examples:incompleteness of sentences formed on the
external language; usage of structures, atypical or in-
correctly used in the context separately taken external
language.

Based on the description of the main entities that reflect the
ostis-system interface activities, will describe the scenario of
messaging between the user and ostis-system on the example
of the work with file.

• receptor agents which fix the fact of performing elemen-
tary user actions on a file and generates a sequence of
actions in time;

• effector agent recognizes in the generated sequence in-
terface user commands and defines order of execution of
these commands;

102

Би
бл
ио
те
ка

 БГ
УИ
Р



• the input of formed user message is happening on the
external language;

• effector agent of translation the file to SC-code converts
(if possible) the contents of the file as a sequence of sc-
elements constituting the fragment of connected sc-text
unambiguously interpreted in ostis-system memory;

• The formation of ostis-system response message on the
external language is happening which was formed by a
user message and taking into account the mode of the user
interface which is currently set for the user interface.

The same relationships can be set on the ostis-system user
interface actions as in the Subject domain and ontology of
actions and tasks that have been mentioned above in the
Subject domain of user interface actions. In addition, such
taxonomic relations, showing a more complex organization of
ostis-systems interface such as sub-action*, action decompo-
sition* and others can be used.

A special case of equivalence relation is also introduced
for interface actions:

equivalence of the ostis-system actions, initiated by its
users*
∈ equivalence relation
= relation between the actions which have different

specifications but the same result

III. STRUCTURE OF USER INTERFACE KNOWLEDGE
PROCESSING MACHINE

User interface knowledge processing machine consists of
some collective of sc-agents [12] that provide user experience
with control element of ostis-systems. Consider a model of
user interface knowledge processing machine as an aggregate
of abstract sc-agents that are meant by some software imple-
mentation.

abstract sc-agent of user interface
<= abstract sc-agent decomposition*:

{
• Abstract sc-agent of external texts editing

=> inclusion*:
• Abstract sc-agent of ostis-system’s window

manipulating
<= abstract sc-agent decomposition*:

{
• Abstract sc-agent of new window

creating
• Abstract sc-agent of window closing

(minimizing)
• Abstract sc-agent of window removing
• Abstract sc-agent of window moving
}

• Abstract sc-agent of mode setting
<= abstract sc-agent decomposition*:

{
• Abstract sc-agent of identification language

setting
• Abstract sc-agent of external texts displaying

language setting
• Abstract sc-agent of message sequence

displaying

}
• Abstract sc-agent of work with commands

<= abstract sc-agent decomposition*:
{
• Abstract sc-agent of displaying semantic

neighborhood of command
• Abstract sc-agent of search of commands,

which are members of one class
• Abstract sc-agent of search of command class

that matches specified command
• Abstract sc-agent of search of commands, for

which given entity can be an argument
• Abstract sc-agent of command recognition from

the set of elementary interface actions
• Abstract sc-agent of last executed user

command cancellation
}

• Abstract sc-agent of file translation into external
language
<= abstract sc-agent decomposition*:

{
• Abstract sc-agent of file translation into

SCn-code
• Abstract sc-agent of file translation into

SCg-code
• Abstract sc-agent of file translation into

specialized language
}

• Abstract sc-agent of fixation of elementary user action
execution fact

• Abstract sc-agent of sc-message translation into
external language

• Abstract sc-agent of last executed user command
cancellation

}

If you use agents, It will worth to remember the differences
in semantic and pragmatic component of any element of an
user interface. Semantic component consists of determining
sign of witch entity is the element displayed on the screen.
Pragmatic component considers applied aspect (aspect of ap-
plication) of the element displayed on the screen.

Only semantic component matters on sc-memory level.
However this fact does not influence on exploitation process
of system by user, because both components reflect different
sides of the same sign of some entity. For example, every
localized sc-text of some message is hidden behind window
of ostis-system, every button hides behind itself sign of some
actions class initiated by pressing input device keys.

Initiation event for two groups of abstract sc-agents -
Abstract sc-agents of ostis-system’s window manipulating and
Abstract sc-agents of mode setting - will occur in three cases:

• in connection with keystroke or after selection of specific
item in a drop-down list (in this case input parameters of
sc-agent are taken by default);

• in connection with using command with previously spec-
ified arguments (in this case user choose specific control
element as sc-agent’s input parameter);

• in connection with generation of action specification and
inclusion of this action into set of initiated actions (in this

103

Би
бл
ио
те
ка

 БГ
УИ
Р



case user knows set-theoretic interpretation of abstract sc-
agent).

The third group of abstract sc-agents - Abstract sc-agent of
work with commands - is a particular case of search sc-agents,
whose task is to view the full or partial semantic neighborhood
of the key element of this neighborhood or to find connections
between the key element and other entities in the ostis-system
knowledge base. These agents don’t imply default arguments.
It is the reason why only second and third of outlined above
ways of initiating are valid for them.

The fourth group of abstract sc-agents - Abstract sc-agents
of file translation into external language and connected to
them Abstract sc-agent of sc-message translation into external
language and Abstract sc-agent of sc-message translation into
external language - is involved in messaging between user
and ostis-system. These agents are not added into a list of
commands that are available to a user as a menu item or
as an user interface element because they are initiated by
ostis-system. Therefore outlined above initiating events are not
applied to these agents.

Finally Abstract sc-agent of last executed user command
cancellation allows to correct activity of ostis-system’s user
by retrieval through protocol of executed action in case of
committing unintentional errors by user.

IV. LIBRARY OF REUSABLE COMPONENTS OF USER
INTERFACES

User interface component is an important concept of this
paper.

user interface component
= a limited set of user interface elements that is unified and

that can be used repeatedly in various intelligent systems

Each component of the user interface conforms to a frag-
ment of the knowledge base based on some set of concepts
discussed earlier and a set of sc-agents, manipulating this
fragment in sc-memory. Depending on tools one component
was developed with, the following subclasses are marked:

user interface component
<= partitioning*

{
• platform-independent user interface component

= user interface component developed and
maintained on OSTIS Technology tools.

• platform-dependent user interface component
= user interface component developed with using of

extraneous tools that are different from OSTIS
Technology tools

}

Platform dependent components of the user interface get
through a process of integration to function properly as a part
of ostis-system. In the course of this process the debugging
of this component and sc-memory interaction is made. In the
simplest situation it’s provided by building of translators to
sc-memory and from it.

One of the interfaces designing complication is a platform
orientation of interfaces. To solve this problem, the compo-
nents that realize the user interface kernel of intelligent
system are included in the library of reusable components of a
user interface. It consists of knowledge base model containing
some subset of the knowledge base of a user interface and a
model of a minimum essential knowledge processing machine.

V. CONCLUSION

The paper reviews the ontological approach to user inter-
face design which is based on presentation of the user interface
as specialized embedded intelligent subsystem that is intended
for realization of information exchange between intelligent
system and its users.

The use of this approach offers the following advantages:

• flexibility of designed interfaces, its maintenance and
enhancement.

• time development lowering due to:
•• possibility of the interface activity separation in the

design of user interfaces and minimizing the number of
agreements in the process of collective development;

•• accumulation and use of project experience (design
solutions) of other developers that is presented in the
form of the user interface specified components as part
of component libraries;

•• the use of unified approach to design of both the user
interface and the interface of the ostis-system, its users
and developers activity.

• portability of resultant ontological model of the user
interfaces for different platforms

• improvement of information perception, that is displayed
on the screen, through the use of general-purpose and
specialized languages of external texts representation de-
scribed by a common formal basis - SC-code.

Intelligence of the user interface is expressed in:

• correctness and efficiency analysis of user actions;
• serving out recommendations to user in case of incorrect

and inefficient actions;
• identification of user commands, which can lead to dan-

gerous (irreversible) harmful effects: in this case the
request of additional action confirmation is carried out;

• formation of response to any user question that concerns
the interface activity organization.

Thanks to presentation of the user interface in the form
of ostis-system, it is possible to address different queries to
the interface, it means, to use it as an all-round help-system,
as well as to use objects (sc-elements), that are displayed on
the screen, as arguments to any queries that may be useful,
for example, when you configure the user interface for user
specific needs.

In this way, the screen of the user interface displays the
knowledge base fragment that is stored in the memory of ostis-
system, though the user interface control elements are appro-
priate sc-elemets visualization, which adds the conciseness to
the interface.

This work was supported by BRFFR-RFFR (Ф15PM-
073).

104

Би
бл
ио
те
ка

 БГ
УИ
Р



Список литературы
[1] Gavrilova, T.A. Evaluation of the cognitive ergonomics of

ontologies on the basis of graph analysis / T.A. Gavrilova,
V.A. Gorovoy, E.S. Bolotnikova // Scientific and Technical
Information Processing, December 2010, Volume 37, Issue 6. -
P.398-406.

[2] (2016, Nov.) Extensible User Interface Language. [Online].
Available: xml.coverpages.org/xul.html

[3] (2016, Nov.) The IMS.OSTIS website. [Online]. Available:
http://www.ims.ostis.net/

[4] Mikko Korpela, Anja Mursu, H.A. Soriyan. Information
Systems Development as an Activity // Computer Supported
Cooperative Work 11. - 2002. - P. 111-128.

[5] Patrick, 2003. Intelligent user interfaces: introduction and survey
/ Patrick A.M. – Delft University of Technology, 2003.

[6] Szekely P., Sukaviriya P., Castells P., Muthukumarasamy J.,
Salcher E. Declarative Interface Models for User Interface
Construction Tools: the Mastermind Approach. In Engineering
for Human-Computer Interaction, L. Bass and C. Unger Eds.
Chapman & Hall, 1996.

[7] Белоусова С.А., Рогозов Ю.И. Анализ подходов к созданию
пользовательского интерфейса. «Известия ЮФУ» №6. 2014.
– С.142-148.

[8] Бодров В.Н., Магалашвили В.В. Ориентированная на цели
визуализация знаний // Международный журнал «образо-
вательные технологии и общество». – 2008. – Т. 11, № 1. – C.
420-433.

[9] Голенков В.В., Гулякина Н.А. Семантическая технология
компонентного проектирования cистем, управляемых зна-
ниями // Открытые семантические технологии проектиро-
вания интеллектуальных систем: материалы V Междунар.
Науч.-тех. конф./редкол.: В.В. Голенков [и др.]. – Минск:
БГУИР, 2015.

[10] Грибова В.В., Клещев А.С. Концепция разработки пользо-
вательского интерфейса на основе онтологий. Ч. 1. Инстру-
ментарий для разработки пользовательского интерфейса
(обзор литературы). Основная идея подхода. - Владивосток:
ИАПУ ДВО РАН, 2003. -24 с.

[11] Гультяев А.К., Машин В.А. Проектирование и дизайн поль-
зовательского интерфейса.- СПб.: КОРОНА принт, 2007. -
239 с.

[12] Давыденко И.Т., Гракова Н.В., Сергиенко Е.С., Федотова
А.В. Средства структуризации семантических моделей баз
знаний // Открытые семантические технологии проектиро-
вания интеллектуальных систем: материалы VI Междунар.
Науч.-тех. конф./редкол.: В.В. Голенков [и др.]. – Минск:
БГУИР, 2016.

[13] Давыденко, И.Т. Семантическая модель коллективного
проектирования баз знаний / И.Т. Давыденко // Открытые
семантические технологии проектирования интеллектуаль-
ных систем (OSTIS-2016): материалы VI Междунар.научн.-
техн.конф. – Мн.: БГУИР, 2016.

[14] (Nov, 2016) Копылов А. Чего не хватает Microsoft Blend:
взгляд проектировщика взаимодействия. [Online]. – Available:
http://www.gui.ru/copylove/xaml-for-interction-design/.

[15] Корончик Д.Н. Семантическая технология компонентного
проектирования пользовательских интерфейсов интеллекту-
альных систем // Открытые семантические технологии про-
ектирования интеллектуальных систем: материалы I Меж-
дунар. Науч.-тех. конф./редкол.: В.В. Голенков [и др.]. –
Минск: БГУИР, 2011.

[16] Ломов П. А., Шишаев М. Г. Визуализация OWL-онтологий
на основе когнитивных фреймов. - «Труды Кольского науч-
ного центра РАН» №5 (18). 2013 - С. 77-89.

[17] Ломов П.А., Шишаев М.Г., Данилов Е.Ю. Визуализация на
основе когнитивных фреймов для передачи знаний. - Минск:
Изд. центр БГУ. 2015 - С. 35.

[18] Мелешко, А. Д. Интерфейсы взаимодействия человека и
компьютера / А. Д. Мелешко // Современные компьютер-
ные информационные технологии: тезисы XI Межвузовской

научной студенческой конференции, [Минск], 21 апреля 2010
г. - Минск: БГЭУ, 2010. - С. 117-119.

[19] Раскин Д. Интерфейс: новые направления в проектирова-
нии пользовательских интерфейсов. - Символ-Плюс, 2005 -
272 с.

[20] Шункевич Д.В. Машина обработки знаний интеллекту-
альной метасистемы поддержки проектирования интеллек-
туальных систем // Открытые семантические технологии
проектирования интеллектуальных систем: материалы IV
Междунар. Науч.-тех. конф./редкол.: В.В. Голенков [и др.].
– Минск: БГУИР, 2014.

[21] Шункевич, Д.В. Формальное семантическое описание це-
ленаправленной деятельности различного вида субъектов
/ Д.В. Шункевич, А.В. Губаревич, М.Н. Святкина, О.Л.
Моросин // Открытые семантические технологии проекти-
рования интеллектуальных систем (OSTIS-2016): материалы
VI Междунар.научн.-техн.конф. – Мн.: БГУИР, 2016.

ОНТОЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ
ПОЛЬЗОВАТЕЛЬСКИХ ИНТЕРФЕЙСОВ

ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ

Борискин А.С., Корончик Д.Н., Жуков И.И.,
Садовский М.Е., Хусаинов А.Ф.

В работе рассмотрен онтологический подход к про-
ектированию пользовательских интерфейсов, в основе
которого лежит представление пользовательского ин-
терфейса в виде специализированной встроенной ин-
теллектуальной подсистемы, предназначенной для ре-
ализации обмена информацией между интеллектуаль-
ной системой и её пользователями.

Для достижения поставленной цели необходимо ре-
шить следующие проблемы:

• сложность интерфейса интеллектуальных систем
различного рода приводит к затратам времени на
обучение использованию таких интерфейсов и изу-
чение дополнительных материалов;

• велики сроки разработки и затраты на проектиро-
вание и поддержку пользовательских интерфейсов,
что осложняет процесс их совершенствования и
приводит к их быстрому моральному старению;

• отсутствие унификации в принципах построения
пользовательских интерфейсов затрудняет воз-
можность распараллеливания процесса проекти-
рования пользовательских интерфейсов, а также
ограничивает возможность повторного использова-
ния уже разработанных компонентов;

• как следствие отсутствия такой унификации, вели-
ки сроки переобучения пользователя на этапе осво-
ения новых интерфейсов интеллектуальных систем
и на этапе освоения новых внешних языков пред-
ставления знаний.

• отсутствует возможность одновременного исполь-
зования нескольких внешних языков внешнего
отображения хранимых в системе знаний: различ-
ные виды знаний могут отображаться по-разному,
если такое отображение будет более удобным для
восприятия. Кроме того отсутствует возможность
быстрого расширения набора внешних языков при
необходимости;

• затруднена возможность переноса пользователь-
ских интерфейсов с одной платформы реализации

105

Би
бл
ио
те
ка

 БГ
УИ
Р



на другую;
• отсутствие общей формальной основы при постро-

ении моделей интерфейсов лишает пользователя
возможности задания вопросов, касающихся орга-
низации самого интерфейса.

Проблемы унификации принципов построения раз-
личных компонентов компьютерных систем решаются
в рамках Проекта OSTIS, направленного на создание
открытой семантической технологии проектирования
систем, управляемых знаниями. Системы, разрабаты-
ваемые по данной технологии, названы ostis-системами.

В основе онтологического проектирования пользо-
вательских интерфейсов лежат следующие принципы:

• пользовательский интерфейс представляет собой
специализированную ostis-систему, ориентирован-
ную на решение интерфейсных задач;

• используется онтологический подход к проектиро-
ванию пользовательского интерфейса, что способ-
ствует чёткому разделению деятельности различ-
ных разработчиков пользовательских интерфей-
сов, а также унификации принципов проектирова-
ния;

• используется SC-код в качестве формального язы-
ка внутреннего представления знаний (онтологий,
предметных областей и др.), благодаря чему обес-
печивается легкость интерпретации этих знаний и
системой, и человеком - пользователем или разра-
ботчиком;

• средствами SC-кода с помощью соответствующих
онтологий описываются синтаксис и семантика все-
возможных используемых внешних языков;

• трансляции с внутреннего языка на внешний и
обратно организовываются так, чтобы механизмы
трансляции не зависели от внешнего языка;

• каждый элемент управления пользовательского
интерфейса является внешним отображением неко-
торого элемента, хранящегося в семантической па-
мяти;

• предполагается выбор стилей визуализации, осу-
ществляемый в зависимости от вида отображаемых
знаний;

• модель пользовательского интерфейса строится
независимо от реализации платформы интерпрета-
ции такой модели.

Использование онтологического подхода к проекти-
рованию пользовательских интерфейсов предполагает
построение (1) онтологической модели самого пользо-
вательского интерфейса, как специализированной ostis-
системы; (2) онтологической модели процесса проек-
тирования интерфейсов, т.е. онтологии действий раз-
работчиков интерфейсов, построенных на основе пред-
лагаемой модели. В рамках данной работы внимание
уделено построению онтологической модели пользова-
тельского интерфейса ostis-системы.

В рамках описываемой технологии структура ба-
зы знаний любой ostis-системы описывается иерархией
предметных областей и соответствующих им онтоло-
гий. Онтология при этом трактуется как того или иного

рода спецификация соответствующей предметной обла-
сти. Таким образом, при разработке некоторой пред-
метной области речь идет, в том числе, о разработке
соответствующего набора онтологий.

Использование данного подхода даёт следующие
преимущества:

• гибкость проектируемых интерфейсов, простота их
поддержки и совершенствования;

• снижение сроков разработки пользовательских ин-
терфейсов за счёт:
•• возможности разделения интерфейсной деятель-

ности при проектировании пользовательских ин-
терфейсов и минимизации числа согласований в
процессе коллективной разработки;

•• накопления и использования проектного опыта
(проектных решений) других разработчиков, со-
держащегося в виде специфицированных компо-
нентов пользовательских интерфейсов в составе
библиотеки таких компонентов;

•• использования унифицированного подхода к
проектированию как самих пользовательских
интерфейсов, так и к интерфейсной деятельно-
сти ostis-системы, её пользователей и разработ-
чиков.

• переносимость сформированной онтологической
модели пользовательских интерфейсов на различ-
ные платформы

• улучшения восприятия информации, отображае-
мой на экране благодаря использованию универ-
сальных и специализированных языков представ-
ления внешних текстов, описанных с помощью еди-
ной формальной основы - SC-кода.

Интеллектуальность пользовательского интерфейса
выражается в следующем:

• анализ корректности и эффективности пользова-
тельских действий;

• выдача пользователю рекомендаций в случае его
некорректных и неэффективных действий;

• выявление пользовательских команд, которые мо-
гут вызвать опасные (необратимые) или вредные
последствия: в этом случае осуществляется запрос
дополнительного подтверждения их выполнения;

• формирование ответа на любой вопрос пользова-
теля, касающийся организации интерфейсной дея-
тельности.

Дополнительными преимуществами представления
пользовательского интерфейса в виде ostis-системы яв-
ляется возможность адресовать интерфейсу вопросы
различного рода, то есть, использовать его как пол-
ноценную help-систему, а также использовать объекты
отображённые на экране, в качестве аргументов любых
запросов, что может быть полезным, например, при
настройке пользовательского интерфейса под нужды
конкретного пользователя.

106

Би
бл
ио
те
ка

 БГ
УИ
Р




