

Semantic model for high-level synthesis

of dataflow pipelines

Prihozhy A.A., Karasik O.N., Frolov O.M.

Information technologies and robotics department

Belarusian national technical university

Minsk, Republic of Belarus

Email: prihozhy@yahoo.com

Abstract — A semantic model of computational hardware and

software pipelines has been developed. Several relations, graphs and

logic inference rules constitute a basis for the construction and high-

level synthesis of dataflow pipelines. The behavioral specification

pipelining tool is capable of optimizing parallel implementations of

logic inference and knowledge dynamic processing algorithms.

Keywords — semantic model; pipeline; knowledge processing; high

level synthesis; optimization

Pipelining is an efficient way of increasing the operating
frequency and throughput of data intensive digital systems in
various application fields. Among them, pipelining of knowledge
representation and processing tools as well as logic inference
tools is the most important task. A pipelined system is usually
described in an appropriate programming or hardware description
language. Pipelining can be seen as a transformation of a source
behavioral specification into pipeline-stage-fragments that are
executed in time-sliced fashion.

Complex digital systems are typically characterized by
irregular structures, thus it is impossible to perform a
straightforward mapping of the specification into a pipeline
implementation. Therefore, this paper develops an efficient
semantic model of pipelining designs that imply several "low
cost" chained operators in one basic processing block. The model
takes into account key parameters of the behavioral elements
including the variable sizes, the operator delays, the relations on
the set of variables and operators, and the behavior of mutually
exclusive branches.

Various languages and representations are used for describing
pipelines: the concurrent language, CAL [1], programming
language, C/C++ [2], data flow graphs [3], signal flow graphs [4],
transactional specifications [5], and other notations. A pipeline
system is characterized by several parameters such as the clock
cycle time, stage cycle time, number of pipeline stages, latency,
data initiation interval, frequency and throughput.

The pipeline high-level synthesis algorithms as follows have
been proposed: list scheduling [6], force directed scheduling [7],
iterative modulo scheduling [8], speculative loop pipelining [9],
and integer linear programming [10]. The loop winding method
[11], percolation based scheduling [12], loop rotation scheduling
[3], pipeline vectorization method [2] and modulo scheduling
followed by stage scheduling [13] aim at pipelining loops. The
macro pipelining based scheduling technique [14] is capable of
pipelining heterogeneous multiprocessor systems. A pipeline
decomposition tree based scheduling framework is presented in
[15]. The cost-optimized algorithm for the selection of
components without sharing resources in the pipeline is presented
in [16].

Since modern technology provides large amounts of available
resources, faster and larger pipelines for knowledge processing
without (or with minimal) sharing of resources can be synthesized
with advantages in performance [17-19]. In order to realize this
challenge, a systematization of knowledge on pipeline
construction, synthesis and optimization has to be conducted.

This paper is organized as follows. Section II presents the
semantic model of the behavioral specification under pipelining.
Section III describes the semantic model of computational
pipelines. Section IV presents the semantic model of pipeline
high level synthesis and optimization. The last section concludes
the paper.

I. SEMANTIC MODEL OF BEHAVIORAL SPECIFICATION UNDER

PIPELINING

A. Behavioral specification for pipelining

The system behavior that is under pipelining is represented as
a program in a system representation language. The key parts of
the representation are variables, operators and relations. Each
variable is characterized with a type and a size. The set of
operators includes logic scalar and vector operators, arithmetic
operators and others. The assignment, conditional and loop
instructions allow to represent any computational behavior of the
system under pipelining.

Rule 1. The pipeline synthesis and optimization is performed
from a system behavior and constraints on pipeline parameters.

B. Control-data flow graph

The control-data flow graph (CDFG) is a result of translation
of the behavioral specification into an intermediate
representation. The original control dominated CDFG is not
efficient for pipeline high-level synthesis. It should be
transformed to a data flow graph (DFG) that is more convenient
for pipelining. The transformation is based on splitting and
eliminating control structures as shown in [17] and on rules 2-5.

Rule 2. If the behavioral description contains loops then it is
transformed to a single loop with an infinite iteration scheme, one
linear basic block and break instructions inside it.

Rule 3. If the behavioral description is a branched one then it
is transformed to a sequence of short if-then instructions with an
assignment inside which are considered as data flow elements.

Rule 4. If an assignment instruction contains more than one
operator in the right part expression then it is transformed to a
sequence of simpler assignments by adding intermediate
variables.

415

Би
бл
ио
те
ка

 БГ
УИ
Р

mailto:prihozhy@yahoo.com

Rule 5. The mixed control/data flow graph is transformed to a
pure data flow graph and a set of relations.

An example of pure data flow graph is shown in fig.1. The
graph consists of the variables and operators that are reported in
fig.2. The operators are located on the levels according to the data
dependences and critical path.

C. Data dependency relation and graph

Let V be a set of variables and N be a set of operators. A set of

input variables of operator i=1,…,n is denoted as in(i)V and a

set of its output variables is denoted as out(p)V. From these sets,

a set cons(v)N of consumers and a set prod(v)N of producers

is being computed for each variable vV. The data dependences
among operators are represented with a binary matrix (relation
and graph) D whose rows and columns correspond to operators.
An element dij=1 if operator j is data dependent on operator i. For
CDFG with loops the graph D is cyclic, otherwise it is acyclic.

Fig.1. Example data flow graph

Operators Variables

No Type Relative delay No Name Mode Size

1 2.20 1 i1 in 16

2 1.65 2 i2 in 12

3 2.00 3 i3 in 12

4 1.75 4 a loc 16

5 bitxor 0.10 5 b loc 10
6 2.00 6 c loc 13

7 bitxor 0.10 7 d loc 14

8 bitand 0.10 8 e loc 18

9 2.20 9 f loc 16

10 bitand 0.10 10 g loc 6

11 1.93 11 h loc 18

12 2.48 12 p loc 13

13 1.62 13 q loc 14

14 2.48 14 r loc 13

15 + 1.25 15 s loc 10

 16 o1 out 17

 17 o2 out 14
 18 o3 out 10

Fig.2. Operators and variables of example data flow graph

Rule 6. The data dependency graph is constructed taking into
account the input and output variables of operators, feedbacks in
CDFG with loops and mutually exclusive execution conditions.

D. Operator precedence relation and graph

The operator precedence relation P describes a partial order
on the set of operators.

Rule 7. The partial order is derived from the analysis of data
dependences between operators in DFG taking into account the
orthogonality of test variables in conditional statements.

The operator direct precedence relation Pdirect is computed as a
minimal anti-transitive relation of the transitive closure Ptrans of
relation P (fig.3). This relation represents the direct precedence
graph as well. The graph can be cyclic or acyclic. It describes a
mixed sequential-parallel execution of operators and short
conditional instructions.

0

00

010

0000

10000

100010

0110000

00010000

100000000

0110001000

01010001000

111111100100

1110100000000

11111110110100

011100110110000

transP

Fig.3. Transitive matrix Ptrans for the example dataflow graph

Rule 8. The minimal anti-transitive precedence relation speeds
up the optimization process in high-level synthesis.

E. Operator delays

Timing models and delay estimation techniques for operators
depend on the implementation platform: ASIC, FPGA, multi-core
processor etc. The rules as follow are used.

Rule 9. Timing models of operators that are executed on
words of bit depend on the operator type, operands width and
implementation style.

Rule 10. Time delays of operators that are implemented on a
LUT-based FPGA are measured in LUT (lookup table) levels and
are estimated through bit-level interpretation of word operators
and decomposing them into logic LUT-fragments.

F. Longest delay paths in operator precedence graph

The lengths of longest paths between operators in the operator
precedence graph constitute a basis for realizing pipeline
constraints. A matrix L represents the lengths for all operator pair.
As the precedence graph is DAG for a non-loop behavior, matrix
L can be computed in a polynomial time. For Ptrans shown in Fig.3
and its elements described in fig.2, the matrix L is given in Fig.4.

Rule 11. Additive timing models are used in many cases of
pipeline implementation. More complex and precise timing
models of operators and paths are used in several design flow, in
particular, for FPGA.

416

Би
бл
ио
те
ка

 БГ
УИ
Р

II. SEMANTIC MODEL OF COMPUTATIONAL PIPELINES

A. Classification of pipelines

Fig.5 and 6 show two architectures of hardware pipelines and
fig.7 shows architecture of a software pipeline. The number of
clock cycles within one stage is called a pipeline initiation
interval (II). The increase of II dramatically influences the
resource sharing.

Rule 12. If the goal is to minimize the resources by sharing, II
is increased. It costs a growth in the hardware pipeline latency
and a reduction in the system throughput.

25.1

00.048.2

00.010.463.1

00.000.000.048.2

18.300.000.000.093.1

28.300.000.000.003.210.0

00.030.683.300.000.000.020.2

00.000.000.058.200.000.000.010.0

35.100.000.000.000.000.000.000.010.0

00.030.882.500.000.000.020.400.000.000.2

00.058.200.068.200.000.000.020.000.000.010.0

03.505.1057.723.478.385.195.500.000.075.300.075.1

18.510.663.300.093.300.000.000.000.000.000.000.000.2

68.670.1123.988.543.550.360.700.075.140.500.040.300.065.1

00.050.1002.888.400.000.040.640.200.020.430.200.000.000.020.2

L

Fig.4. Matrix L of longest path lengths for the example dataflow

graph

…

stage 1

stage k

clock cycle 2

pipeline registers

clock cycle 1

high cost operators

FUs sharing

among operators

clock cycle 1

registers

clock cycle 2

precedence

Fig.5. Hardware pipeline with two clock cycles per stage and

resource sharing

…

stage 1

stage k

pipeline registers

operator chains

no resource sharing

among operators

low cost operators

one clock cycle

one clock cycle

Fig.6.Hardware pipeline with one clock cycle per stage, operator

chaining and without resource sharing

…

stage 1

stage N

buffers

buffers

Processor 1

(program code

for stage 1)

Processor N

(program code

for stage N)

Fig.7.Software pipeline that consists of stages which are assigned a

program code that is executed on a processor

Rule 13. If the goal is to minimize the hardware pipeline
latency and maximize the throughput, II is decreased. Pipelines
with one clock cycle per stage use operator chains within one
stage and do not use resource sharing.

Rule 14. If the goal is to maximize the throughput of software
pipeline, the program code is partitioned for the execution on
processors which run in the time-sliced fashion.

Rule 15. If the goal is to optimize the pipeline, the tasks as
follows are to be solved: choosing the number of stages and the
pipeline initiation interval; selection of operator implementations,
assignment of operators to stages and clock cycles, minimization
of buffer sizes and minimization of the pipeline latency.

B. Pipeline stage time

In a hardware synchronous pipeline, the stage time, Tstage is
evaluated in the number of clock cycles multiplied by the clock
period. In pipeline optimization, the time is often considered as a
constraint that essentially influences the resulting design
throughput and load of equipment. In a software asynchronous
pipeline, the stage time is the program code maximum execution
time in a stage on the corresponding processor over all stages. If
the data buffers which are inserted in between two stages are
implemented as FIFOs, the stage time can vary over stages and
data sets.

Rule 16. The pipeline stage time and the number of stages are
mutually dependent values. The larger stage time implies the
fewer number of stages.

C. Operator conflict relation and graph

For two operators i and j, if the value of li j in matrix L is
larger than Tstage, we say there is a pipeline stage conflict between
these operators. To overcome this conflict, the operators must be
assigned to different pipeline stages. The conflict relation and
graph is described with a binary matrix, C. To speed up the
pipeline optimization process, C is replaced with its minimal anti-
transitive version which is computed from the transitive closure
of C and contains the minimum number of value 1. Fig.6 presents
the operator conflict relation for the example matrix, L and
Tstage=3.825.

In a software pipeline, operators i and j have a conflict if the
execution time of i and j plus the execution time of all operators
which are successors of i and predecessors of j exceed the
pipeline stage time.

417

Би
бл
ио
те
ка

 БГ
УИ
Р

0

00

010

0000

00000

000000

0100000

00000000

000000000

0110001000

00000000000

111100100000

1100100000000

11111010010000

011100100100000

C

Fig.6. Operator conflict relation C for the matrix L and

Tstage=3.825

Rule 17. The conflict relation C is a basis for the estimation of
the minimum number of pipeline stages and for the generation of
a tremendous number of alternative but functionally equivalent
hardware and software pipelines.

D. Mapping of operators onto pipeline stages

The mapping is described with a function stage: NS where
N is the set of operators and S is the set of stages. According to
the mapping, s=stage(p) means that s is the stage which the
operator p is assigned to.

Rule 18. The number of different solution, stage is equal to
the number of different valid pipelines that are feasible and legal
for the stage time Tstage.

III. SEMANTIC MODEL OF PIPELINE HIGH LEVEL SYNTHESIS

AND OPTIMIZATION

A. Determining the number of pipeline stages

Rule 19. The number l of pipeline stages is determined by the
length of a longest path in the operator conflict graph, C. The
length is measured in the number of edges.

For a l-stage pipeline a minimum stage time is denoted
Tstage(l). The stage time for l stages is larger than the stage time for
l+1 stages. Therefore all pipelines which are generated for the
stage time in the range form Tstage(l+1) to Tstage(l) have the same
number l of stages as shown in fig.7.

B. ASAP and ALAP pipeline schedules

The as soon as possible (ASAP) schedule assigns operators to
the earliest pipeline stages and the as late as possible (ALAP)
schedule assigns operators to the latest stages. Fig.8 and fig.9
show these schedules for the example dataflow graph.

Rule 20. ASAP and ALAP determine the mobility of each
operator over pipeline stages.

Rule 21. ASAP and ALAP give the fastest pipeline schedule
without sharing resources.

Tmin

Smax

Tmax

1

Tstage(l) Tstage(l+1)

l

…

…

Tstage

l+1

stageCount

Fig.7.Number of pipeline stages versus stage time

Fig.8.ASAP 4-stage pipeline schedule for the example dataflow

graph and Tstage=3.825

Fig.9. ALAP 4-stage pipeline schedule for the example dataflow

graph and Tstage=3.825

418

Би
бл
ио
те
ка

 БГ
УИ
Р

Rule 21. ASAP and ALAP give the fastest pipeline schedule
without sharing resources.

Rule 22. ASAP and ALAP do not yield the minimum overall
pipeline buffer size.

C. A set of pipelines with the same stage time

A huge set of pipelines with the same stage count can be
generated from the same operator conflict graph.

Rule 23. The number of feasible valid pipelines is estimated

as
n
 where is the average operator mobility and n is the

number of operators.

Rule 24. Heuristic optimization techniques must be used for
large pipelined designs.

D. Overall pipeline buffer size minimization

The lifetime(v) of variable v over pipeline stages is
determined by the difference of the earliest stage of its producers
and the latest stage of its consumers (fig.10). Two and more
producers must be conditional, if c1 then v:=e1; end … if ck then
v:=ek; end with orthogonal test variables c1…ck and expressions
e1…ek.

Rule 25. The size of all buffers that represent v in a pipeline is

computed as size(v)lifetime(v). The overall buffer size is the sum
of buffer sizes over all variables. This is true for both hardware
and software pipelines.

Rule 26. In asynchronous pipelines the overall buffer size
increases against the synchronous pipelines as each buffer is
replaced with a FIFO.

E. Pipeline optimization algorithms

Exact and heuristic algorithms have been developed to
optimize the dataflow pipelines. They assume the functional units
and their parameters have been selected for the operator
implementation and assume the processor parameters have been
selected for the program code execution.

Rule 27. The algorithm of searching for the shortest path in
the operator conflict graph minimizes the number of pipeline
stages.

Rule 28. The overall buffer size minimization is a hard
combinatorial problem that is solved by exact algorithms for
small designed and heuristic algorithms for large designs.

Rule 29. The exact algorithm finds an optimal solution stage
by means of logic inference with backtracking.

Rule 30. The heuristic algorithm finds a suboptimal solution
stage by means of exploiting pipeline heuristics.

Fig.11 shows an optimal 4-stage pipeline schedule for the
example data flow graph. This schedule consumes 13 pipeline
registers (167 bit) while ASAP (fig.8) consumes 17 registers (247
bit) and ALAP (fig.9) consumes 16 registers (216 bit).

q1

v

ql …

cons(v)

)(max
)(

i
vconsq

qstage
i

lifetime

p1 pk …

prod(v)

)(min
)(

i
vprodp

pstage
i

Fig.10. Lifetime of variable v over pipeline stages

Fig.11. Optimal 4-stage pipeline schedule for the example dataflow

graph and Tstage=3.825

F. Experimental results

The experiments have been conducted on designs from
industry and on randomly generated designs. The proposed exact
and heuristic algorithms of dataflow pipeline optimization yield
much better results against ASAP and ALAP. They gain up to
twice over ASAP and ALAP with respect to the overall buffer
size. The exact algorithm is able to yield a solution for pipelines
with 100 operators and 5 stages. The heuristic algorithm loses the
exact one and gives only 2% larger buffer size on average over
the exact algorithm. At the same time the heuristic algorithm is
capable of handling large designs which consist of thousands
operators and is capable of generating many-stage pipelines
which consist of tens stages.

IV. CONCLUSION

This paper presents a semantic model for high-level synthesis
and optimization of dataflow pipelines. Several objects, relations
and graphs lie in the basis of this model, that are constructed in

419

Би
бл
ио
те
ка

 БГ
УИ
Р

accordance with the set of inference rules which are formulated in
this paper. Different architectures of hardware and software
pipelines are analyzed and different optimization parameters and
criteria are considered. Knowledge on the pipeline high-level
synthesis and optimization techniques are represented with rules
which allow the implementation of the synthesis by means of
logic inference and heuristics exploration. The semantic model
and pipelining tool aim at the parallelization and speeding up the
knowledge acquisition and processing as well as increasing the
throughput of the logic inference and knowledge manipulation
tools.

REFERENCES

[1] Eker, J. CAL Language Report: Specification of the CAL Actor
Language / J. Eker and J. Janneck // University of California-
Berkeley, December 2003.

[2] Weinhardt, M. Pipeline vectorization / M. Weinhardt and W.
Luk // Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 20, no. 2,
pp. 234–248, Feb. 2001.

[3] Chao, L.-F. Rotation scheduling: a loop pipelining algorithm /
L.-F. Chao, A. LaPaugh, and E.-M. Sha // Trans. Comp.-Aided
Des. Integ. Cir. Sys., vol. 16, no. 3, pp. 229–239, Mar 1997.

[4] Jun, H.-S. Design of a pipelined datapath synthesis system for
digital signal processing / H.-S. Jun, S.-Y. Hwang // Trans.
Comp.-Aided Des. Integ. Cir. Sys., vol. 12, no. 3, pp. 292–303,
September 1994.

[5] Nurvitadhi, E. Automatic pipelining from transactional datapath
specifications / E. Nurvitadhi, J. Hoe, T. Kam, and S. Lu //
Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 30, no. 3, pp.
441–454, March 2011.

[6] Park, N. Sehwa: A software package for synthesis of pipelines
from behavioral specifications / N. Park and A. C. Parker //
IEEE Trans. Computer-Aided Design, vol. 7, pp. 358–370,
March 1988.

[7] Paulin P. G., Force-directed scheduling for the behavioral
synthesis of ASIC’s / P. G. Paulin and J. P. Knight // IEEE
Trans. Computer-Aided Design, vol. 8, pp. 661–679, June 1989.

[8] Sun, W. FPGA pipeline synthesis design exploration using
module selection and resource sharing / W. Sun, M. Wirthlin,
and S. Neuendorffer // Trans. Comp.-Aided Des. Integrated Cir.
Sys., vol. 26, no. 2, 2007, pp. 254–265.

[9] Oh, S. Speculative loop pipelining in binary translation for
hardware acceleration / S. Oh, T. G. Kim, J. Cho, E.
Bozorgzadeh // Trans. Comp.-Aided Des. Integ. Cir. Sys., vol.
27, no. 3, pp. 409–422, March 2008.

[10] Cong, J. An Efficient and Versatile Scheduling Algorithm Based
on SDC Formulation / J. Cong and Z. Zhang // Design
Automation Conference (DAC), Jul. 2006.

[11] Girczyc, E. M. Loop windinga data flow approach to
functional pipelining / E. M. Girczyc // Proc. of the IEEE
ISCAS, May 1987, pp. 382–385.

[12] Potasman, R. Percolation based synthesis / R. Potasman, J. Lis,
A. Aiken, A. Nicolau // Proc. 27th Design Automation Conf.,
1990, pp. 444–449.

[13] Eichenberger, A.E. Stage Scheduling: A Technique to Reduce
the Register Requirements of a Modulo Schedule / A.E.
Eichenberger, E.S. Davidson // Proc. 28th Int. Symp. on Micro
architecture, 1995, pp. 338-349.

[14] Banerjee, S. Macro pipelining based scheduling on high
performance heterogeneous multiprocessor systems / S.
Banerjee, T. Hamada, P. Chau, and R. Fellman // IEEE Trans.
Signal Processing, vol. 43, no. 6, pp. 1468-1484, June 1995.

[15] Ko, D.-I. The pipeline decomposition tree: an analysis tool for
multiprocessor implementation of image processing applications
/ D.-I. Ko and S. S. Bhattacharyya // Proc. CODES+ISSS '06:
4th Int. Conf. on Hardware/ software codesign and system
synthesis, 2006, pp. 52-57.

[16] Bakshi S. Component Selection for High-Performance Pipelines
/ S. Bakshi, D. Gajski // IEEE Trans. VLSI Syst., Vol. 4, No. 2,
1996, pp. 181-194.

[17] Prihozhy, A. High-level Synthesis through Transforming VHDL
Models / A. Prihozhy // System-on-Chip Methodologies and
Design Languages, Kluwer Academic Publishers, 2001, pp.135-
146.

[18] Prihozhy, A. Synthesis and Optimization of Pipelines for HW
Implementations of Dataflow Programs / A. Prihozhy, E. Bezati,
H. Rahman, M. Mattavelli. // IEEE Trans. on CAD of Integrated
Circuits and Systems, Vol. 34, No. 10, 2016, pp. 1613-1626.

[19] Rahman, H. Pipeline Synthesis and Optimization of FPGA-
Based Video Processing Applications with CAL / H. Rahman,
A. Prihozhy, M. Mattavelli // EURASIP Journal on Image and
Video Processing, Vol. 2011:19, pp. 1–28.

СЕМАНТИЧЕСКАЯ МОДЕЛЬ ВЫСОКОУРОВНЕВОГО
СИНТЕЗА КОНВЕЙЕРОВ ПО ПОТОКОВЫМ

ОПИСАНИЯМ

Прихожий А.А., Карасик О.Н., Фролов О.М.

Разработана семантическая модель вычислительных
аппаратных и программных конвейеров. Отношения, графы и
правила логического вывода составляют базис построения и
высокоуровневого синтеза конвейеров для обработки
потоков данных. Отношения и графы представляют конвейер
на всех этапах, начиная со спецификации и кончая
реализацией. Правила логического вывода представляют
процесс трансформации поведенческого описания в
структурное описание конвейера. Инструментальная система
конвейеризации поведенческих спецификаций обладает
возможностями оптимизации параллельных потоковых
реализаций алгоритмов логического вывода и динамической
обработки знаний.

420

Би
бл
ио
те
ка

 БГ
УИ
Р

http://portal.acm.org/citation.cfm?id=1147025
http://portal.acm.org/citation.cfm?id=1147025

