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Abstract—Abstract–The paper explores the question of the
terminal state control of fuzzy dynamical systems, characterized
by classical fuzzy relations. A solution of the problem is traced
to the functional equation solution such as Bellman equation.
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I. INTRODUCE

The notion of fuzziness nowadays is widely used for pro-
cesses description of technical, economical and other nature.
This comes from the fact that this notion allows to operate
simply and naturally on qualitative information which is in
many cases mainly responsible for ambivalence (see, eg. [1,
2]).

Initially, the methods of fuzzy set theory have been directed
to use logical methods of decision-making, based on the
compositional inference rule (see., eg, [1]). Subsequently the
methods of the dynamic programming theory and fuzzy sets
theory was used to develop control problem-solving techniques
of deterministic and stochastic systems with fuzzy objectives
and restrictions (see., eg, [2]).

It enabled to form a general theory of mathematical pro-
gramming and the theory of decision-making with fuzzy objec-
tives and restrictions (see, eg, [3] - [5]). Further development
of fuzzy dynamic programming can be found, for example, in
[6] overview, where, in particular, the problem of deterministic
and stochastic systems with the fuzzy end time and infinite
horizon control are considered.

Let’s now note that simultaneously with the development
of the theory of dynamic and mathematical fuzzy relationship
have been widely used in the control theory and theory of
decision-making under fuzzy initial information. For example,
in [3] and [7] papers there have been considered and studied
in details the fuzzy preference relations of great importance to
the problems of decision-making in fuzzy systems (including
active ones). Let’s also mention [8] paper, where on the basis
of fuzzy relations questions of the theory of approximate
reasoning in fuzzy control are considered.

The main goal of this paper lies in the further development
of the [2]-[6] results. All the constructions are actually based
on the almost apparent modification of classical composition
operation of fuzzy sets shown below in par. II.

II. FUZZY SETS COMPOSITIONS

In considering the control problem further we’ll need some
important capabilities of fuzzy sets compositions.

Let X , Y and Z be certain sets. Let’s assume that at a
X×Y set a fuzzy relation A with membership function µA, is
defined and at a Y ×Z set a fuzzy relation B with membership
function µB is defined. Therefore theis defined. Therefore the
A ◦B composition of fuzzy set A and B is the fuzzy relation
in X × Z space with the membership function

µA◦B(x, z) = sup
y∈Y

min[µA(x, y), µB(y, z)] (1)

(see, eg. [1]).

Let’s now assume that in X space the fuzzy set R with
membership function µR s defined. Therefore the fuzzy re-
lation µA induces the fuzzy set R ◦ A n the Y spase. In
accordance with (1) the membership function µR◦A of R ◦A
set is given by an equation

µR◦A(y) = sup
x∈X

min[µR(x), µA(x, y)].

These compositions of fuzzy relations are widely used in
the theory of fuzzy sets for the construction of compositional
inference rules (see [1]). For the behavioral research of fuzzy
dynamical systems we’ll use the supplementary rule of fuzzy
sets composition.

Let’s assume that at X set the fuzzy relation S with
membership function µS is defined. Further, let’s assume that
in X space G set with membership function µG s also defined.
Therefore we can determine the S ◦ G composition of fuzzy
sets S and G and following (1) the membership function µS◦G
of S ◦G set will be defined by equation

µS◦G(x1) = sup
x2∈X

min[µS(x1, x2), µG(x2)]. (2)

One can readily see that S ◦ G composition allows to
determinate the membership degree of element of X set to
fuzzy G set with fuzzy relation S. Specifically for each x1 ∈ X
the membership degree of µS◦G(x1) of x1 the fuzzy set G is
defined by equation (2).
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III. SIMPLEST PROBLEM OF OPTIMAL CONTROL

Let X and U be certain compact metric spaces. Let’s
consider control system when X is state space and U is control
space.

Let’s assume that evolution of system state is characterized
by the fuzzy relation S representing fuzzy set S in X×U×X
pace with membership function µS . Provided that the initial
state x0 ∈ X is defined. As a result of choosing of u0 ∈ U
control the system goes into some new state x1 which was
earlier unknown. It is only known that with u0 and x0 fixed,
x0, u0 and x1 variables are related by the fuzzy relation S
with membership function µS(x0, u0, x1). In other words with
x0 and u0 fixed at point of time n=0 the state x1 can be
defined only by value of membership function µS(x0, u0, x1).
However at point of time n=1 we can observe exact value of
state x1.

In a similar way if at some point of time n the state xn is
known than a result of choosing of un control we can estimate
the state xn+1 by fuzzy relation S with membership function
µS(xn, un, xn+1). Moreover, at the next point of time n + 1
the state xn+1 becomes known.

Let’s consider that the control aim is characterized by fuzzy
goal set G in X space with membership function µG. Let’s
also assume that both functions µS and µG are continuous in
the range of their definition.

Now let’s assume that time N of end of system work is
defined. The control problem is to search the sequence

u0, u1, . . . , uN−1 (3)

of points of U set maximizing the membership degree of x0
states to fuzzy set G with fuzzy relations with membership
functions

µS(x0, u0, x1), µS(x1, u1, x2), . . . , µS(xN−1, uN−1, xN ).

Therefore the fuzzy set G is the control aim and the prob-
lem consists in searching the control sequences (3) providing
the maximal membership degree of the state x0 to the fuzzy
set G with that the evolution of system state is described be
the composition of fuzzy sets S and G.

By equation

DN = S ◦ . . . ◦ S︸ ︷︷ ︸
N

◦G

let’s put for consideration the fuzzy set DN being conditional
for variables (3) in the X space with membership function
µDN

satisfying the equation

µDN
(x0 |u0, u1, . . . , uN−1) =

= max
x1,x2,...,xN

min[µS(x0, u0, x1), µS(x1, u1, x2), . . . ,

µS(xN−1, uN−1, xN ), µG(xN )].

Therefore according to equation (2)
µDN

(x0 |u0, u1, . . . , uN−1) he values of function µDN

have the form of the membership degree of the state x0 to G
set with the use of any fixed sequence of control of (3) kind.

Let’s set

µN (x0) = max
u0,u1,...,uN−1

µDN
(x0 |u0, u1, . . . , uN−1). (4)

Following [1] let’s consider the initial task in the context
of task family where x0 and N are variable values. Therefore
with N = 0 the required membership degree x0 to G et with
the fuzzy relation S is prescribed by the equation

µ0(x0) = µG(x0). (5)

Function µ0 s continuous by convention over all of the
intervals at X set. Moreover because of continuity of functions
it is easy to note that for each function f which is defined and
continuous over all of the intervals at X and possesses values
at the interval [0,1], the function

g(x0, u0, x1) = min[µS(x0, u0, x1), f(x1)]

is continuous over all of the intervals. But X and U spaces
are compact. Therefore, the function

h(x0) = sup
u0,x1

min[µS(x0, u0, x1), f(x1)] =

max
u0,x1

min[µS(x0, u0, x1), f(x1)]

is continuous over all of the intervals at X set. Provided that

max
u0,u1,...,uN

µDN+1
(x0 |u0, u1, . . . , uN ) =

= max
u0,x1

min[µS(x0, u0, x1),

max
u1,u2,...,uN

µDN
(x1 |u1, u2, . . . , uN )]

(see, eg. [9]). Then by virtue of (4) for certain N the equation

µN+1(x0) = max
u0,x1

min[µS(x0, u0, x1), µN (x1)], (6)

is executed where µN+1(x0) is the maximal membership
degree of the statex0 to the G set with the relation S and the
condition where end of system work time is equal to N + 1,
and µN (x1) is the maximal membership degree of the state
x1 to the G set with relation S and the condition where end
of system work time is equal to N .

One can readily see that recurrence relationship (6) with
the condition (5) is similar to Bellman’s functional equation for
classical problems of dynamic programming. This relationship
interprets the control u0 as function of time N and the state
x0, i.e.

u0 = u∗0(x0, N), N = 1, 2, 3, . . . (7)
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IV. ASYMPTOTIC PROPERTIES OF RELATIONSHIP (6)

In many practical cases it is appropriate to replace control
law (7) by autonomous law

u = u∗(x) (8)

(see, eg. [3]). In order to understand the availability of getting
such a law let’s study asymptotic properties of relationship (6).

Let’s set as an set closure operation. Let C(X, [0, 1]) be a
space of continuous functions defined at X set and possessed
value at interval [0,1]. For certain function ϕ ∈ C(X, [0, 1])
let’s assume

Aϕ = max
u0,x1

min[µS(x, u0, x1), ϕ(x1)],

where A is an operator mapping the space C(X, [0, 1]) into
itself. Therefore the following sentences are correct.

Proposition 1. Let’s assume that the X space is finite.
Therefore the set

Ω(µ0) =
⋂
N≥0

 ⋃
k≥N

Akµ0


isn’t empty, it is compact in the topology of simple conver-
gence and is invariant. In such a case the equation

lim
k→+∞

Akµ0 = Ω(µ0). (9)

Proposition 2. Let M be a set of functions

µ0, µ1, . . . , µN , . . . (10)

Therefore if the X space is finite then the set

Ω(M) =
⋂
N≥0

ANM (11)

isn’t empty, is compact in the topology of simple convergence
and is invariant. In such a case the equation

lim
N→+∞

ANM = Ω(M). (12)

The assumption of the X space finiteness in each specific
case requires justification. However let’s note that in our case
the X space is initially considered as compact. Accordingly
it is separable, i.e. in X here is dense set being countable
everywhere. Thus there is a countable -netcovering the X
space. But in virtue of the X space compactness out of each
of its countable covering the finite subcover can be chosen. In
other words there is a finite -net overing the X space.

Thus in general case the X space can be approximated
by a finite set to a high accuracy. Thus the conditions of

sentences 1 and 2 are shown with prescribed accuracy . In
addition the compact space approximation by its certain finite
part is justified in many practical situations for modeling of
fuzzy systems (see, eg. [1]). For this reason sentences 1 and
2 set asymptotic properties of relationship (6) applicable for
practice.

V. ASYMPTOTIC AUTONOMOUS CONTROL LAW

Asymptotic properties of relationship (6) set by sentences
1 and 2 prevent from thinking directly of the optimal au-
tonomous control law existence without any additional require-
ments.

Actually we can speak about the existence of such a law
only with sequence convergence (10). In this case according
to A operator continuity in some cases the function µ defined
at the X set by the equation

µ(x) = lim
N→+∞

µN (x), (13)

is a continuous solution of the equation

µ(x0) = max
u0,x1

min[µS(x0, u0, x1), µ(x1)]. (14)

For the purpose that the equation (14) is followed by ex-
istence of the equation (14) continuous solution it is sufficient
the convergence (13) is uniform at Xset and control laws (7)
are continuous. Again the necessary and sufficient condition of
uniform convergence in the equation (13) as is known lies in
the fact that the set (10) is equicontinuous (see, eg. [9]). Then
in the case under consideration the check of equicontinuity of
the set (10) is rather difficult in virtue of representation of A
operator.

Let’s note that the situation is extremely rare where at the
X set the equation is simply (even nonuniformly) satisfied (see,
eg. [9]). The situation becomes complicated by the fact that
even if the equation (14) has a unique solution it doesn’t mean
that the control law (8) corresponding to this solution will be
unique. Thus we have to speak in the majority of practical
situations only about the existence of suboptimal autonomous
control law.

For the development of such law let’s assume that the X
set is finite. Therefore according to the sentence 2 the closure
M of the set (10) isn’t empty, is compact and invariant. But
each compact, invariant set contains compact minimum set (see
attachment 2). Thus under conditions of sentence 2 the set
Ω(M) contains the compact minimum set . In this case by
the finiteness of the X set one can find such finite system of
compact, invariant set

Ω(M) ⊃M1 ⊃M2 ⊃ . . . ⊃MN , (15)

that equation

M = Ω(M) ∩M1 ∩ . . . ∩MNM
, (16)
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is satisfied where N is a certain sufficiently great positive
integer (see, eg. [9]).

If the system (15) is built then according to the equation
(16) the set is also built. Let µ be arbitrary function of the
set. Therefore by virtue of the fact that is a minimum set the
function

Aµ = max
u0,x1

min[µS(x, u0, x1), µ(x1)] (17)

belongs to and v.v. (see [10]).

One can readily see that maximum in the equation (17) is
attained with the use of the certain control law

u = uµ(x). (18)

Moreover by equation (13 and (14) it is easy to note that
if the optimal law (8) exists, the law is the same as law (18).

Thus a certain kind of control law (18) corresponds to
each function µ ∈. Any of these laws in general case is
only suboptimal. However by sentences 1 and 2 the equation
(17) not only sets the existence of such suboptimal laws but
provides a procedure of its construction.
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ПРОСТЕЙШАЯ ЗАДАЧА УПРАВЛЕНИЯ
НЕЧЕТКИМИ ДИНАМИЧЕСКИМИ СИСТЕМАМИ

Палюх Б.В., Дзюба С.М.,
Егерева И.А., Емельянова И.И.

В работе рассмотрена задача управления конечным
состоянием нечетких динамических систем. Эволюция
состояний рассматриваемых систем характеризуется
классическими нечеткими отношениями. Решение за-
дачи сведено к решению функционального уравнения
типа уравнения Беллмана. На основе современных
методов общей теории динамических систем изучены
асимптотические свойства решений полученного функ-
ционального уравнения. Изучена проблема существова-
ния и построения субоптимального автономного закона
управления с обратной связью.
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