Web-based Software for Automating Development of
Knowledge Bases on the Basis of Transformation of
Conceptual Models

Dorodnykh N.O.

Matrosov Institute for System Dynamics and Control Theory,
Siberian Branch of the Russian Academy of Sciences (IDSTU SB RAS),
Irkutsk, Russia
Email: tualatin32 @mail.ru

Abstract—The paper describes the web-oriented software de-
signed for the development of intelligent system software packages
(modules) intended for the code generation of knowledge bases
based on the transformation of conceptual models. Software can
be positioned as a framework for the development of knowledge
bases also. It provides network access to a shared pool of
knowledge bases projects and means for the visual design of
knowledge bases.

Keywords—web-based software, knowledge acquisition, knowl-
edge bases, conceptual model, model transformation, code genera-
tion.

I. INTRODUCTION

Currently the complexity of development process of intelli-
gent systems is caused, mainly, by the features of the develop-
ment phase of the knowledge bases (KB) which traditionally
has been considered as a "bottleneck” [1]. The efficiency of this
phase can be improved through the use of specialized software.

This paper describes the prototype of web-based software
called the Knowledge Base Development System (KBDS).
The KBDS implements the approach to the development of
software components (modules) for the program code gener-
ation for KBs based on conceptual models presented in the
XML format (the most common format for the exchange and
storage of the different conceptual models) [2]. The C Lan-
guage Integrated Production System (CLIPS) [3] and the Web
Ontology Language (OWL 2) [4] were selected as the targeted
knowledge base programming languages. This software is also
an environment (framework) for the KBs development and it
provides network access to a shared pool of KB projects and
means for the visual design of KBs.

The KBDS prototype was implemented in PHP using the
Yii2 Framework and JQuery, jsPlumb libraries. PostgreSQL
was used as the object-relational database management system.

II. KNOWLEDGE BASE DEVELOPMENT SYSTEM

The main purposes of the developed software are:

e the support of the development of software compo-
nents for the program code generation for KBs based
on different conceptual models;

e the support of the development of KBs (with the use
of the developed software components).

145

Further we present the main functions and the architecture
of KBDS in detail.

A. Functions

The main functions of KBDS in the context of the devel-
opment of the software components are the following:

e the creation (import) of a meta-model of the source
conceptual model on the basis on the XML schema
(XSD) of this model, or by analyzing the model
(Reverse Engineering);

e the visual representation and modification of the ob-
tained meta-models;

e the visual design of a transformation model (in the
form of a set of transformation rules) and the auto-
matic TMRL (Transformation Model Representation
Language) [2] code generation. In this case, a trans-
formation rule is a description of how one or more
constructs in the source language can be transformed
into one or more constructs in the target language;

e the generation (assembling) of the software compo-
nent based on the developed transformation model and
the analyzer and generator units selected (depends on
the type of the software component).

The KBDS provides the following main functions for the
design of the KBs:

e the code generation for KBs on the targeted knowledge
base programming language (CLIPS or OWL) using
the software components developed;

e the automated synthesis of an ontological and a rule-
based model (the internal representation of knowledge
in the KBDS) based on the analysis of conceptual
models;

e the storage and representation of obtained knowledge
with the use of these models;

o the use of the special graphic notation - Rule Visual
Modeling Language (RVML) [5] for the representation
and modeling the logical rules;

e the visual representation and modeling knowledge in
the form of ontological model.

B. Architecture

The KBDS has the client-server architecture (Figure 1)
which allows to implement the main factions.

The client part of the KBDS includes the following main
modules:

e the RVML editor that provides a visual representation
and editing the logical rules with the aid of RVML;

e the ontology editor that provides a visual representa-
tion and editing knowledge in the form of a graph
(ontological model);

e the meta-model editor that provides a visual represen-
tation and editing the meta-model elements;

e the transformation model editor that provides a visual
representation and editing the transformation rules.

The server part of the KBDS includes the following main
modules:

e the administration module that provides an user inter-
action with the KBDS (the limitation of user rights,
the collection and analysis of various statistical infor-
mation, etc.);

e the knowledge bases management module that pro-
vides a creation and managing KB projects;

e the meta-level management module that provides an
internal representation of knowledge in the KBDS in
the form of the rule-based and ontological models.
These models allow us to abstract form the features in
elements descriptions of various knowledge represen-
tation languages which are used in the implementation
of KBs (for example, CLIPS, Jess, Drools, RuleML,
OWL, SWRL, etc.) and to store knowledge in own
independent format;

e the software components development module that
provides the creation and managing software com-
ponent projects, as well as code generation of the
software components based on the developed trans-
formation model and. the analyzer and generator units
selected;

e software components that provide a synthesis of the
KB model (ontological or rule-based models) based
on the analysis of conceptual models and a program
code generation for a KB (CLIPS or OWL) based on
the analysis of the KB model or the source conceptual
model.

The architecture of a typical software component and a
conceptual KBDS architecture are discussed in [2], [6] in
detail.

C. Types of the software components

The KBDS allows to develop the following types of
software components depending of transformations:

e the integrated components for the analysis that provide
a formation of the rule-based or the ontological models
based on the transformation of a conceptual model;

146

Back end (server)

Front end (client) Administration madule
RVML editor ! Module of management of
i meta-level of I&nuwle:lge
representation
: Madula of i
3 Ontology editor ¢ knpwisdge Production model
E _________________________ management
= , Ontolagical model
g‘ Meta-model editor
H : r-1_oqnf-l::e af
H Transloré‘g.?tt{i:cl)_ﬂ model : qqhnl'j‘.por?erﬁt\s Software components Conceptual
H " H developrent Is
LIPS KB OWL KB
Figure 1. The client-server architecture of the KBDS

the autonomous components for the program code
generation that provide a program code generation for
a KB on CLIPS or OWL based on the transformation
of a conceptual model.

At the same time, the previously developed integrated
software components for the code generation for CLIPS and
OWL are provided to the user by default.

Description of the components is discussed in [2] in detail.

D. User roles

The developed prototype of web-based software (KBDS)
is focused on the non-programmers (experts, knowledge engi-
neers, analysts, etc.).

The KBDS supports the following user roles:

1)
2)

3)

"guest" is a unregistered user, which can develop the
KBs only (has limited access rights);

"developer" is a registered user, which can develop
the KBs and software components, create user groups
(has extended access rights);

"administrator” is a registered user who have access
to all functions of the KBDS (has full set of access
rights).

E. User interface

The user interface of web-based software (KBDS) is com-
posed of five main elements (Figure 2):

1)

2)

3)

4)

5)

the main menu that contains the main KBDS sections
("Account", "My projects”, "Contacts" and "Admin-
istration");

the navigation chain (breadcrumbs) that is a path
through the KBDS pages from the root to the current
worksheet;

the right additional submenu contains all the possible
actions that are available to the user within the section
selected;

the workspace that is an basic element of the user
interface that contains the semantic content of the
selected page (section);

the bottom block (footer) that contains contact infor-
mation and copyright.

Figure 3 shows the meta-model editor form (the meta-
model for the XTM CmapTools concept maps is opened).

@_E [pOrpasMHEIe KOMAOHERT : . View transformation model code TMRL

Figure 2. The main element of the KBDS user interface

Figure 5. The form of generated transformation model code

Metamodel editor

L2

Figure 3. The meta-model editor form

. . . Fi . The RVML edi
Figure 4 shows the transformation model editor form (the igure 6 ¢ editor

scenario for transformation of the XMI UML class diagrams

to rule-based model is opened). The following XML document fragment corresponds to the

UML-model is obtained:

Tratshimation sdltor <UML:Stereotype xmi.id = ’S.339.1116.39.0°

aee- | [el name = ’assert’ visibility = ’public’
isSpecification = ’false’ isRoot =~
+ze o false’
e u| isLeaf = ’false’ isAbstract = ’false’
i icon = °’ baseClass = ’Association’
pes extendedElement = *G.13° />
i <UML:Class xmi.id = °S.339.1116.38.1"
o name = ’Sole’ visibility = ’public’
b isSpecification = ’false’ isRoot = ~
L 4 true’
isLeaf = “true’ isAbstract = ’false’
Figure 4. The transformation model editor form isActive = ’false’ namespace = 'G.0° >
<UML:Classifier. feature>
Figure 5 shows the form of of generated transformation <UML:Attribute xmi.id = ’S
model code. .339.1116.38.2°
Figure 6 shows the RVML editor. fame = Ma’terlal visibility =
private
III. AN ILLUSTRATIVE EXAMPLE isSpecification = “false”
ownerScope = ’instance
Let’s consider an illustrative example of a knowledge base changeability = ’changeable’
design fragment using the proposed approach and software. targetScope = ’instance’
IBM Rational Rose Enterprise was used as the UML-model type = 'G.16° >
source. The example analysed UML class diagram is presented <UML:StructuralFeature .
in Figure 7. multiplicity>

147

Figure 7. The analysed UML class diagram

<UML:Multiplicity >
<UML:Multiplicity .range>
<UML:MultiplicityRange xmi

.id = ’id.3400316.11°
lower = ’1° upper = '1°
/>

</UML:Multiplicity .range>
</UML:Multiplicity>
</UML:StructuralFeature .
multiplicity>
<UML:Attribute. initialValue>
<UML:Expression language =
body = ’steel , enamelled’
/>
</UML:Attribute .
</UML:Attribute>
</UML:Classifier. feature>
</UML:Class>
<UML:DataType xmi.id = °G.16°

LR

initialValue>

name = ’String’ visibility = ’public

isSpecification = ’false’ isRoot =~
false’

isLeaf = ’false’ isAbstract = ’false
To>

Furthermore, the user creates a new KB project and imports
conceptual model of ‘a subject domain (in our case, the
industrial safety examination of petrochemical facilities).

The concepts and relations extracted from this XML doc-
ument and mapped to the production model can be presented
using the RVML notation for further modification and valida-
tion (Figure 8).

The following generated CLIPS KB code fragment corre-
sponds to the RVML model is obtained:

(defrule Sole+Thermoregulator+Operating

time+Thermal

switch—>Degradation process

(declare (salience 2))

(Sole (Material "steel, enamelled"))
(Thermoregulator (Type "bimetallic"))
(Operating time (Time ""))

(Thermal switch (Type "disposable ,

reusable"))

148

At -
Sole+ Thermoreg WialorsOperating lame+ Thermal switch->Degradation process

The obtained RVML model

Figure 8.

=>
(assert
(Degradation process (Name
breakage , deterioration"))

)

(defrule Degradation process —>External
manifestations
(declare (salience 1))
(Degradation process

(Name "breakage , deterioration")
)
=>
(assert

(External manifestations

(Name "lack of heating , stains
, scratches , chips")

)

)

IV. DISCUSSION

The efficacy evaluation of the use of the developed soft-
ware (KBDS) is carried out within a case study. The main
objective of the case study was to assess the complexity of the
development of KBs for expert systems with the use of the
proposed approach and software (a UML-modeling tool + the
KBDS, let’s denote this approach as Al) and compare it with
the complexity of other approaches:

e a UML-modeling tool [7] + the other software for the
KB design, in particular, ClipsWin [9] (let’s denote
this approach as A2);

e without any a UML-modeling tool, but with the use
of software for the KB design, in particular, ClipsWin
(just a pure programmer’s approach, let’s denote this
approach as A3).

IBM Rational Rose is chosen as a UML-modeling tool [8].

There are 20 variants (tasks) for the design of static
expert systems for solving problems of diagnosing or prognosis
in different subject areas (Table 1). Some constraints were
imposed on the characteristics of subject areas models and
KBs (on the tasks), in particular:

e the number of subject area entities: 5-10;
e the number of properties of subject area entities: 3;

e the number of connections between subject area enti-
ties: 5-10;

e the number of cause-effect relations (generalized
rules): 3-4;

e the number of instances of cause-effect relations (pos-
sible concrete rules): 10-15.

Using the constraints provides the possibility of multiple
repetitions of the tasks and their time compactness.

Table I. VARIANTS OF TEST TASKS
Variant D"‘T‘?““ Connections Cause—leffect Rules
entities relations
1 6 5 3 10
2 5 6 3 10
3 8 5 3 10
4 5 8 4 11
5 8 7 3 12
6 9 5 3 10
7 5 6 3 14
8 8 7 4 14
9 6 5 3 15
10 7 10 3 12
11 5 6 3 11
12 5 6 3 12
13 7 7 3 14
14 8 5 3 11
15 7 6 3 18
16 6 8 3 14
17 6 5 3 11
18 8 7 3 12
19 7 8 3 10
20 5 7 3 12

The time criterion used (the time required to perform
certain stages of development of expert systems) to assess the
complexity. The assessment was carried out in the following
stages [1], [10]: conceptualization, formalization, realization.

The main results of the conceptualization and formalization
stages are the conceptual models of the subject areas presented
in the form of UML class diagrams. The main results of the
implementation stage are a syntactically corrected program
codes of the KBs, checked on the adequacy and consistency.

For each variant (task) 3 results describing the time used
are obtained, the average of their values are presented in Figure
9.

Used time (min.)
-
b=

=]

TR EERAAR AR AR

12 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20
Variants (Tasks)

oAf mAZ OA3

Figure 9. The results of the evaluation

Let’s note features of performing the work at various stages
for different approaches:

149

e A2: This approach provides the greatest time perfor-
mance and uses IBM Rational Rose Enterprise for
conceptual modeling of the subject area. The greatest
time performance is caused by the hand transfer of the
conceptual models obtained to ClipsWin (due to the
absence the function of automatic code generation for
the KB on the basis of conceptual models);

e A3: Functional limitations of the ClipsWin in the part
of editing typing codes caused the application of the
additional text editor (Programmer’s Notepad) at the
stage of realization. In particular, first, the description
of the code in an external text editor (using the
copying and pasting of individual blocks of a code)
is carried out, and then the resulting code is imported
into ClipsWin, which carries out the syntax check. In
practice, using this scheme, the creation of KBs took
1.5 time less.

Analysis of the effectiveness of the proposed approach
and software (KBDS) by the time criteria showed that the
effectiveness of the development of KBs by the Al can be
increased 60.3% vs. A2 and 48.2% vs. A3 in an average due to
automatic code generation based on conceptual models, which
in turn allows:

e to increase the effectiveness of using the results of the
conceptualization and formalization stages in the form
of UML class diagrams, considering them not as static
images, but as a basis for the automatic formation of
the program codes in accordance with the ideology of
a model-driven approach [11]. A Model-Driven Ap-
proach (Model-Driven Engineering or Model-Driven
Architecture) is a software design approach which
uses the conceptual (information) models as the major
artifacts for software development [12], [13];

e to reduce the risk of design errors by enabling rapid
prototyping KBs and getting their program codes;

e to eliminate programming errors (hand coding errors)
by automatically transferring the elements of the con-
ceptual models in CLIPS language constructs.

In addition to test cases designed to demonstrate the
principal possibility of the application of the approach and its
advantages, this approach was used to design the KB of the
decision-support system for the industrial safety examination
of petrochemical facilities [14], in the part of the definition
the degradation processes and recommendations to reduce their
rate.

V. CONCLUSION

The development of KBs for intelligent systems can be
improved by acquiring subject domain knowledge presented
in the form of conceptual models. This paper describes the
prototype of web-based software called the Knowledge Base
Development System (KBDS). This software implements the
approach proposed by the authors [2].

The description of main functions, the client-server archi-
tecture, the user interface, user roles and types of software
components are presented. The efficacy evaluation of the use

of the developed prototype of web-based software (KBDS) is
also given.

There are some features of the KBDS:

e the program code generation for CLIPS or OWL based
on the transformation of conceptual models presented
in the XML format. This feature significantly reduces
the creation time for KBs. The proposed approach
does not eliminate errors due to inaccurately or in-
completely analysed conceptual models, however, the
automatic model-based program code generation uses
the principles of rapid prototyping to implement KBs;

e the modularity: the ability to expand the KBDS by
adding new software components;

e the visual construction of the transformation rules and
the automatic TMRL code generation;

e the use of the rule-based and ontological models for
generalized representation and storage of acquired
knowledge that, in turn, allows to support the code
generation for various knowledge representation lan-
guages (eg, CLIPS, OWL, etc.);

e the non-programmers orientation. This feature is im-
plemented by a set of editors that provide the descrip-
tion of the logical rules in the RVML and ontological
(conceptual) knowledge in the form of a graph. The
implementation of this feature expands the community
of the KBDS users by experts, knowledge engineers,
analysts;

e the possibility to support the collective, distributed
work of specialists in the process of creating the KBs.

At present, the prototype of software is used in the learning
process in Irkutsk National Research Technical University
(IrNRTU) with in "CASE-tools", "Means of information tech-
nologies" and "Programming technologies" courses.

Future work will focus on improving the software support
for the OWL2 as another target knowledge representation
language and the algorithms support for the analysis of fuzzy
conceptual models.

ACKNOWLEDGEMENT

The reported study was partially supported by RFBR
(research projects No. 15-07-05641, 16-37-00122).

REFERENCES

[1] Gavrilova T.A;, Kudryavtsev D.V., Muromtsev D.I. Knowledge Engineer-
ing. Models and methods. SPb.: Lan, 2016. 324 p. (In Russ.)

[2] Bychkov L.V., Dorodnykh N.O., Yurin A.Yu. Approach to the develop-
ment of software components for generation of knowledge bases based on
conceptual models // Computational Technologies. 2016. Vol.21, No.4.
P.16-36. (In Russ.)

[3] CLIPS: A Tool for Building Expert Systems.
http://clipsrules.sourceforge.net/ (accessed 25.11.2016).

[4] Grau B.C., Horrocks 1., Motik B., Parsia B., Patel-Schneider P., Sattler U.
OWL 2: The next step for OWL // Web Semantics: Science, Services and
Agents on the World Wide Web. 2008. Vol.6, No.4. P.309-322.

[S] Rule Visual Modeling Language. Available at: http://www.knowledge-
core.ru/index.php?p=rvml (accessed 25.11.2016).

Available at:

150

[6] Dorodnykh N.O., Yurin A.Yu. An approach for design of knowledge
bases on the basis of computer-aided transformation of conceptual
models /| Proceedings of the VI International Scientific and Techni-
cal Conference - Open Semantic Technologies for Intelligent Systems
(OSTIS-2016). — Minsk: BSUIR, 2016. P.209-212. (In Russ.)

[7]1 Unified Modeling Language (UML) Version 2.5 // OMG Document
formal/15-03-01. Available at: http://www.omg.org/spec/UML/2.5/ (ac-
cessed 25.11.2016).

[8] IBM Rational Rose Enterprise. Available at: http://www-
03.ibm.com/software/products/ru/enterprise/ (accessed 25.11.2016).

[91 ClipsWin: CLIPS Rule Based Programming Language. Available
at: https://sourceforge.net/p/clipsrules/news/2008/01/clipswin-6241/ (ac-
cessed 11.06.2016).

[10] Jackson P. Introduction To Expert Systems., 3rd ed. Addison-Wesley,
1998. 560 p.

[11] Stahl T., Voelter M., Czarnecki K. Model-Driven Software Develop-
ment: Technology, Engineering, Management., 1rd ed. John Wiley &
Sons, 2006, 446 p.

[12] Schmidt D.C. Model-driven engineering // IEEE Computer. 2006.
Vol.39, No.2. 25 p.

[13] Kleppe A., Warmer J., Bast W. MDA Explained: The Model Driven
Architecture: Practice and Promise, 1rd ed. New York: Addison-Wesley
Professional, 2003. 192 p.

[14] Berman A.E, Nikolaichuk O.A., Yurin A.Yu., Kuznetsov K.A. Support
of Decision-Making Based on a Production Approach in the Performance
of an Industrial Safety Review. /| Chemical and Petroleum Engineering.
Vol.50, No.1-2. 2015. P.730-738.

BEB-OPUEHTUPOBAHHA A ITPOI'PAMMHA A
CUCTEMA ABTOMATUSALIU PABPABOTKU BA3
3HAHUIT HA OCHOBE TPAHC®OPMAIINU
KOHIENTYAJIbHBIX MOJIE/IEN

Hopommaeix H.O.

Paccvorpena BeG-opneHTHPOBaHHAST IPOTPAMMHAS CH-
crema (Knowledge Base Development System, KBDS)
aBTOMaTU3aAIIUN paBpa6OTKI/I OporpaMMHBIX KOMIIOHEHTOB
(momysteit) wmHTe/UIEKTYaIbHBIX cucreM. CosmaBaeMble ¢
MMOMOITBIO CHCTEMBI KOMIIOHEHTBI MIPETHAZHAYEHBI JIJIs e~
Hepanuu Koja 6a3 3HaHUWH (IIpeCTaBJIeHHBIX B (opMmare
CLIPS u OWL) ma ocuose TpancdopMaIyu KOHIEITY-
aJbHBIX MoJeJiell (mpeicrasienubix B (opmare XML).
Cucrema 1Mo3BOJISIET HE TOJILKO CO3/IABATh IPOIDAMMHBIE
KOMIIOHEHTBI, HO OHA TaKXKe sIBJISIETCsT CPeioit JjIsl pa3pa-
O60TKM Oa3 3HAHUIT, 0OECIIeTTNBas CETEBOM JOCTYI K O0IIeMy
yJIy POEKTOB 6a3 3HAHUN U [IPEIOCTABIISIS CPEJICTBA JIJIsT
BU3yaJIbHOTO TPOEKTUpPOBaHuUs 0a3 3HaHwmii. Pazpaboran-
Hasl cUCTeMa 00JIaIaeT KJIMEHT-CEPBEPHON apXUTEKTYPOii
U OPUEHTUPOBAHA HA HEIIPOIPAMMUPYFOIIETO CIIEIUAJIACTA.
[IpuBeneno ee ommcanue u oreHKa 3PPEKTUBHOCTH.

