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Introduction. Missing data scenarios are common Big Data problems in domains such as biol-

ogy, finance, medicine, life-science, research, or climatic science (to name a few). They can arise 

from different sources such as mishandling of samples, low signal-to-noise ratios, measurement er-

rors, hardware failures, transmission errors, no-response, or deleted aberrant values. Rubin introduced 

the notion of the distribution of missingness as a way to classify the conditions under which missing 

data should be treated. Little and Rubin distinguish among data missing completely at random 

(MCAR), data missing at random (MAR), and data missing not at random (MNAR):  

1. Data missing completely at random (MCAR) describes scenarios where the probability of an 

instance (case) having a missing value for a variable does not depend on either the known values or 

the missing data, respectively. An example would be a sensor outage that results into missing some 

measurements.  

2. Data missing at random (MAR) describes scenarios where the probability of an instance 

having a missing value for a variable may depend on the known values but not on the value of the 

missing data itself. For example, suppose men are less likely (compared to women) to respond to an 

income question in a survey, but the likelihood of responding is independent of their actual income. 

In this case, unbiased gender-specific income estimates can be made if one has data on the gender 

variable (as an example by replacing the missing income value with the gender-specific median in-

come).  

3. Data missing not at random (MNAR) describes scenarios where the probability of an instance 

having a missing value for a variable may depend on the value of that variable. For example, this may 

occur if either low or high income subjects (or both) are less likely to answer the income question in 

a survey. This is the most complex type of missing data and in many cases, there is no good value to 

substitute for the missing one. But, by just dropping these subjects, the results will be biased and 

hence such an approach is normally not suggested.  

It has to be pointed out that missing data introduces an element of ambiguity into the data anal-

ysis cycle. Missing data can affect properties of statistical estimators such as the mean, variance, or 

percentage, resulting in a loss of information power and misleading conclusions. A variety of tech-

niques have been proposed for substituting missing values with statistical predictions, a process that 

is generally referred to as missing data imputation. To reiterate, it is very often the case that the 

weakest link in a Big Data analytics study is the quality of the available data sets. It is a fact that the 

more one can find out about why the data sets are as they are, the more one can develop a case on the 

pattern of the missing data, as well as on a rationale on why the pattern may or may not matter. It has 

to be pointed out though that in many studies, just eliminating missing cases prior to the analysis is 

not viewed as a legitimate solution to the problem. 

Some of the rather standard techniques to address missing data (such as list-wise deletion, single 
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mean imputation, or single regression imputation) may lead to biased estimates of the model param-

eters. To illustrate, a simple mean substitution method leaves the mean unchanged but decreases the 

variance! Some of the more appropriate techniques (in many cases) for dealing with missing data are 

the multiple imputation (MI) and the (full information) maximum likelihood (ML) estimation that 

incorporate the missing data points in the analysis (see Enders and Enders & Peugh). MI involves 

imputing a range of random plausible values for missing data, a process that results in several com-

plete data sets that can then be analyzed. One of the advantages of this approach is that the technique 

introduces variability into the distribution of cases with missing data (simulating the messy world we 

are living in), a process that is more likely to represent the population than imputing a single value 

for each missing case. Partial data actually contributes to the estimation of the model’s parameters by 

implying probable values for missing scores via the correlations among the variables. Expectation 

maximization (EM), a common method for obtaining ML estimates with incomplete data sets, treats 

the model parameters (rather than the data points themselves) as missing values to be estimated and 

borrows information from the existing data at successive iterations until differences between succes-

sive iterations are minor. Missing data can pose a number of additional problems in multilevel data 

structures, depending on the sampling design underlying the data set, the extent to which the data are 

missing at each level, and whether or not the data can be assumed to be missing at random. In some 

modeling situations, there may be a considerable amount of missing data. Compared with single-level 

analyses, the difficulties presented by multilevel analyses scenarios concerns the likelihood that the 

missing data at one level (Level 2) may be linked to the missing data at Level 1.  

In any Big Data analytics project, it is paramount to distinguish between data preparation and 

data analysis. While preparing the data for analysis, it is imperative to determine the amount of miss-

ing data, as well as the missing data pattern(s). It is essential to note that the reality is that there is a 

very small chance to get the missing (real) data back in the first place. Hence, a data scientist always 

has to deal with the problem of missing information. The quality of the analysis though depends on 

assumptions one makes on the pattern of the missing data and what is reasonable to conclude about 

those patterns. Now, what one can do about the missing data becomes the pressing concern! 

Definition - Missing Completely at Random (MCAR). Suppose the probability of an observation 

being missing does not depend on observed or unobserved measurements. In mathematical terms, one 

can stipulate: 

    (1) 

Then one can state that the observation is missing completely at random (MCAR). Note that in 

a sample survey, MCAR may be labeled as uniform non-response. If data sets are MCAR, then con-

sistent results with missing data can be obtained by performing the analyses as if there were no miss-

ing data. But, doing so will result in some loss of information. So that implies that with MCAR data 

sets, the analysis only provides valid inferences with complete data sets! So does an analysis based 

on moment based estimators (for example generalized estimating equations) and other estimators 

derived from consistent estimating equations. The term consistent estimating equations refers to func-

tions of the data and unknown parameters whose expectation (taken over the complete data at the 

population parameter values) is 0. Under MCAR, they still have expectation zero and so still lead to 

valid inferences. 

Stating the same mathematically, an estimating equation can be written as 𝑈 (𝑦, 𝜃) and at the 

estimate 𝜃, 𝑈 (𝑦, 𝜃) = 0. The estimating equation is consistent because 𝐸𝑈 (𝑌, 𝜃) = 0 (where 𝜃 re-

flects the population parameter value). It remains consistent if the data reflects missing completely at 

random (MCAR) because 𝐸𝑈 (𝑌𝑜 , 𝜃) = 0. A simple example of a consistent estimating equation is 

the sample mean 𝑈 (𝑦, 𝜃) =  𝑦̅ − 𝜃. With MCAR a single imputation or a multiple imputation (MI) 

method can be considered. It has to be pointed out that with a single imputation method, it may be 
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difficult to generate valid variance estimates though! The author of this report always suggest to at 

least consider an MI approach with MCAR. 

Definition - Missing At Random (MAR). After considering MCAR, a second scenario may come 

up. That is, what are the most general conditions under which a valid analysis can be done using only 

the observed data and no information about the missing value mechanism, Pr(r | yo, ym)? The answer 

here is when, given the observed data, the missingness mechanism does not depend on the unobserved 

data. Mathematically stated: 

    (2) 

This is equivalent to stating that the behavior of 2 runs who share observed values have the 

same statistical behavior on the other observations, whether observed or not. To illustrate: 

 

Table 1. Some Measurements 

 
 

As runs 1 and 2 in Table 1 have the same values (where values for both runs are available), 

given these observed values (under MAR), features 3, 5 and 6 from run 2 have the same distribution 

(not the same value!) as features 3, 5 and 6 from run 1. It has to be pointed out that under MAR, the 

probability of a value being missing will generally depend on observed values, so it does not corre-

spond to the intuitive notion of random. The important idea is that the missing value mechanism can 

be expressed solely in terms of observations that are observed. Unfortunately, this scenario can hardly 

ever be definitively determined from the data at hand! An example of a MAR mechanism may be the 

scenario where 2 measurements of the same variable are made concurrently. If they differ by more 

than a given amount, a 3d measurement is taken. This 3d measurement is missing for those scenarios 

that do not differ by the given amount specified for the 1st 2 measurements. 

A special case of MAR is known as uniform non-response within classes. To illustrate, one 

seeks to collect data on income and property tax bands. Typically, those with higher incomes may be 

less willing to reveal the actual numbers. So a simple average of incomes from people who actually 

responded will be downwardly biased. However, assuming one has everyone's property tax band and 

given that the property tax band non-response to the income question is random, then the income data 

is missing at random. The reason, or mechanism, for it being missing depends on the property band. 

Given the property band, missingness does not depend on income itself. Therefore, to get an unbiased 

estimate of income, one has to first average the observed income within each property band. As data 

is missing at random given a property band, these estimates will be valid. To get an estimate of the 

overall income, one has to combine these estimates, weighted by the proportion in each property 

band.  

It further has to be pointed out that likelihood methods (such as EM) are valid for MAR as well. 

However, in general, non-likelihood methods (based on simple completers, moments, estimating 

equations) are not valid for MAR per se. So ordinary means and other simple summary statistics that 

are based on the observed data will be biased. Finally, with likelihood, the term ignorable is often 

used to refer to a MAR mechanism. But it is the mechanism (the model for Pr(R | yo)) that is ignorable, 

not the missing data! To summarize, MAR scenarios can be analyzed via multiple imputation (MI) 

methods or likelihood-based methods (such as EM). 

Definition - Missing Not At Random (MNAR). When neither MCAR nor MAR holds, one states 

that the data sets are Missing Not At Random (MNAR). Now, in a likelihood setting, the missingness 
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mechanism is labeled non-ignorable. All this basically implies that while even accounting for all the 

available observed information, the reason for observations being missing still depends on the unseen 

observations themselves.  

In other words, the probability of a data value being missing is related to the unobserved values. 

To illustrate, a study may focus on analyzing tumors. So that study requires measurements of the 

actual tumor sizes. The data may show that smaller tumors are less like to have sizes recorded (maybe 

due to any detection delays). So it is harder to actually measure the size of smaller tumors. Hence, 

while there may be good data available for larger tumor sizes, the sizing data for smaller tumors may 

be missing. So with MNAR, the important question to be answered is how is the data related to the 

unobserved value?  

Similar to MAR, MNAR scenarios can be analyzed via Multiple Imputation (MI) methods or 

likelihood-based methods (such as EM). It has to be pointed out that MNAR is much more complex 

to deal with and basically requires modeling the process yielding the missing values. 

Definition - Multiple Imputation/ Multiple imputation refers to a statistical technique for ana-

lyzing incomplete data sets (data sets for which some entries are missing). The actual application of 

the technique requires 3 steps, imputation, analysis, and pooling.  

1. Imputation (impute = fill in). Impute the missing data m times to produce m complete data 

sets. Regression models, Bayesian ideas (with MCMC), or Fully Conditional Specifications (that 

works well for categorical data) can be used here.  

2. Analysis. Analyze each data set by using a standard statistical procedure. This step results in 

m analyses.  

3. Pooling. Integrate the m analysis results into a final result See Rubin or Schafer.  

Note: Rubin has shown that if the method to create imputations is proper, then the resulting 

inferences will be statistically valid. The real challenge here is in the imputation phase (aka the con-

struction of the m completed data sets). This step accounts for the process that created the missing 

data. A typical problem here could be that the missing data is actually related to its value (aka wealthy 

people tend to skip income questions in surveys). It further has to be reemphasized that missing entries 

can appear anywhere in the data and that the method used in the imputation step must foresee 

the intended complete-data analyses. But, the repeated analysis step on the imputed data is actually 

somewhat simpler than the same analysis without imputation, as there is no need to bother with the 

missing data per se. The pooling step consists of computing the mean over the (m) repeated analysis, 

its variance, and its confidence interval or p value. In general, these computation are reasonably sim-

ple. Some common data imputation techniques are (to just name a few): 

 MI Mean  

 K-nearest neighbors (KNN)  

 fuzzy K-means (FKM)  

 singular value decomposition (SVD)  

 Bayesian principal component analysis (BPCA)  

 Bayesian ideas (regression, MCMC)  

 Multiple imputations by chained equations (MICE)  

 Fully conditional specifications (FCS)  

To further discuss MI, The MCMC and the FCS methods are elaborated on in more detail here. 

Both methods are very popular iterative methods for performing multiple imputations for missing 

data patterns. The Markov Chain Monte Carlo (MCMC) method is widely used for Bayesian infer-

ence (Schafer) and is considered as one of the most popular iterative algorithm for multiple imputation 

scenarios. The basic flow is that one commences with some reasonable starting values for the mean, 

variance, and the covariance among a given set of variables. Next, one divides the sample into sub-

samples, each having the same missing data pattern (the same set of variables present and missing). 

For each missing data pattern, one uses the starting values to construct linear regressions for imputing 

the missing data, using all the observed variables in that pattern as predictors. One then imputes the 
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missing values, making random draws from the simulated error distribution, which results into a sin-

gle completed data set. 

Using this data set with missing data imputed, one recalculates the mean, variance and covari-

ance and then makes a random draw from the posterior distribution of these parameters. Finally, one 

uses these drawn parameter values to update the linear regression equations needed for imputation. 

This process is typically repeated many times. For example, one may run 200 iterations of the algo-

rithm before selecting the first completed data set, and then allow for another 100 iterations between 

each successive data set. So producing 5 data sets (as an example) requires 600 iterations (each of 

which generates a data set). Why so many iterations? The first 200 (burn-in) iterations are designed 

to ensure that the algorithm has converged to the correct posterior distribution. Then, allowing 100 

iterations between successive data sets gives the confidence that the imputed values in the different 

data sets are statistically independent. If all assumptions are satisfied, the MCMC method produces 

parameter estimates that are consistent, asymptotically normal, and almost fully efficient. Full effi-

ciency would require an infinite number of data sets, but a relatively small number normally gets one 

very close.  

An alternative algorithm is known as the fully conditional specification (FCS) or multiple im-

putation by chained equations (MICE) (Brand, Van Buuren, Oudshoorn). This method is attractive 

because of its ability to impute both quantitative and categorical variables appropriately. It allows one 

to specify a regression equation for imputing each variable with missing data (usually linear regres-

sion for quantitative variables and logistic regression (binary, ordinal, or unordered multinomial) for 

categorical variables. Under logistic imputation, imputed values for categorical variables will also be 

categorical. Imputation proceeds sequentially, usually starting from the variable with the least missing 

data and progressing to the variable with the most missing data. At each step, random draws are made 

from both the posterior distribution of the parameters and the posterior distribution of the missing 

values. Imputed values at one step are used as predictors in the imputation equations at subsequent 

steps (something that never happens in MCMC algorithms). Once all missing values have been im-

puted, several iterations of the process are repeated before selecting a completed data set. Although 

attractive, FCS has 2 major disadvantages (compared to the linear MCMC method). First, it is much 

slower, computationally. Second, FCS itself has no theoretical justification. By contrast, if all as-

sumptions are met, MCMC is guaranteed to converge to the correct posterior distribution of the miss-

ing values. FCS carries no such guarantee, although simulation results by Van Buuren are very en-

couraging. 

Summary - Multiple Imputation (MI). Just as the single imputation methods, multiple imputa-

tion fills in estimates for the missing data. But to capture the uncertainty in those estimates, MI esti-

mates the values multiple (m) times. As MI utilizes an imputation method that has an error term built 

in, the multiple estimates should be similar, but not identical. The result basically is multiple data sets 

(m) with identical values for all of the non-missing values and slightly different values for the imputed 

values in each data set. The statistical analysis of interest (such as logistic regression) is performed 

separately on each data set and the results are then consolidated. Because of the variation in the im-

puted values, there should also be variation in the parameter estimates, leading to appropriate esti-

mates of standard errors and p-values, respectively.  

Definition - Maximum Likelihood (ML). Depending on the pattern and the amount of missing 

data, a potentially legit approach may be to analyze the full, incomplete data set via a maximum 

likelihood estimation. This method does not impute any data, but rather uses each cases available data 

to compute maximum likelihood estimates. The maximum likelihood estimate of a parameter equals 

to the value of the parameter that is most likely to have resulted in the observed data.  

When data points are missing, one can factor the likelihood function. The likelihood is com-

puted separately for those cases with complete data on some variables and those with complete data 

on all variables. These 2 likelihoods are then maximized together to find the estimates. Like multiple 

imputation, this method provides unbiased parameter estimates and standard errors. One advantage 
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of ML is that it does not require the careful selection of variables used to impute values on (necessary 

with MI). 

Some Actual Guidelines  

In the next few paragraphs, some basic guidelines are provided. It has to be pointed out though 

that if more than 5% to 10% of the data is missing, a scenario like that is considered a potential major 

source of a serious bias that has to be addressed accordingly.  

 Assuming that the proportion of missing data is  0.05. If less than 5% of the data is missing, 

studies have shown that it matters little what imputation method is chosen or whether one adjusts the 

variance of the regression coefficient estimates for having imputed data in this case. So for continuous 

variables, imputation via the median value should be adequate. For categorical predictors, the most 

frequent category can be used. A complete case analysis may be an option here as well.  

 Assuming that the proportion of missing data is between 0.05 and 0.15. In this scenario, if 

a predictor is unrelated to all of the other predictors, imputations can be done the same way as above 

(impute a reasonable constant value). If the predictor is correlated with other predictors, develop a 

customized model (such as via a transcan function - a nonlinear additive transformation and 

imputation function) to foresee the predictor from all of the other predictors. Then impute missing 

data with predicted values. For categorical variables, classification trees are good methods for 

developing customized imputation models. For continuous variables, ordinary regression can be used 

if the variable in question does not require a non-monotonic transformation to be predicted from the 

other variables. For either the related or unrelated predictor case, variances may need to be adjusted 

for imputation. The author of this report suggests multiple imputation or maximum likelihood 

methods here while single imputation methods may be considered. 

 Assuming that the proportion of missing data is > 0.15. Such a scenario requires the same 

considerations as in the previous case and adjusting variances for imputation is even more important. 

To estimate the strength of the effect of a predictor that is frequently missing, it may be necessary to 

refit the model on the subject of observations for which that predictor is not missing. In this case 

either multiple imputation or maximum likelihood methods are preferred for most models.  

Summary. Analyzing and cleansing (missing) data is paramount in order to achieve actual, ac-

curate conclusions. To illustrate, while using the same ANN to conduct a regression study, using 2 

differently cleansed data-sets as the input, there is a high probability that the 2 different input sets 

will result into 2 different answers/conclusions. Further, in any data analysis project, greater than 5% 

to 10% of missing data points is considered a potential source of a very serious bias condition. It is 

always important to consider and scrutinize the model/environment that produces the missing data.  

Many studies have shown that in most scenarios, either a multiple imputation or an ML method 

does provide excellent results (even for MCAR). Further, if the missing data reflects MNAR, there is 

a need to consider and scrutinize the model that actually gives rise to the missing data. Plus, if the 

missingness is strongly related to the value of the variable, the problem becomes rather complex (a 

fact that cannot just be ignored). 
 

References 
[1]. Allison, P. (2002). Missing data. Thousand Oaks, CA: Sage.  

[2]. Bodner, T. E. (2008).What improves with missing data imputations? Structural Equation Modeling, 

15, 651-675.  

[3]. Enders, C. K. (2011). Missing not at random models for latent growth curve analyses. Psychological 

Methods, 16(1), 1-16.  

[4]. Enders, C.K., & Peugh, J. L. (2004). Using an EM covariance matrix to estimate structural equation 

models with missing data: Choosing an adjusted sample size to improve the accuracy of inferences. Structural 

Equation Modeling, 11, 1–19.  

[5]. Hedeker, D., & Gibbons, R. D. (1997). Application of random-effects pattern-mixture models for 

missing data in longitudinal studies. Psychological Methods, 2, 64–78.  

[6]. Hox, J. (2010). Multilevel applications: Techniques and applications (2nd Edition). New York: 

Би
бл
ио
те
ка

 БГ
УИ
Р



Третья Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и анализ высокого уровня», 

Минск, Республика Беларусь, 3-4 мая 2017 года 
 

 

25 

Routledge.  

[7]. Kish, L. (1989). Statistical design for research. New York: Wiley.  

[8]. Larsen, R. (2011). Missing data imputation versus full information maximum likelihood with second-

level dependencies. Structural Equation Modeling, 18(4), 649-662. 

[9]. Little, R.J.A & Rubin, D. B. (2002). Statistical analysis with missing data. New York, NY: Wiley.  

[10]. Rubin, D.B. (1976). Inference and missing data. Biometrika, 63, 581–592.  

[11]. Peugh, J.L. & Enders, C.K. (2004). Missing data in educational research: A review of reporting prac-

tices and suggestions for improvement. Review of Educational Research, 74, 525-556.  

[12]. Schafer, J. (2005, November). Missing data in longitudinal studies. A review. Paper presented at the 

Annual Meeting of the American Association of Pharmaceutical Scientists, Nashville, TN.  

[13]. Chandola T, Brunner E, Marmot M. (2006). Chronic stress at work and the metabolic syndrome: 

prospective study. BMJ 332:521-5. PMID:16428252  

[14]. Greenland S, Finkle WD. (1995). A critical look at methods for handling missing covariates in epi-

demiologic regression analysis. Am J Epidemiol 142(12):1255-64.  

[15]. Fleiss JL, Levin B, Paik MC. (2003). Statistical Methods for Rates and Proportions, 3rd ed. Hoboken 

NJ, John Wiley & Sons.  

[16]. Harrell Jr FE. (2001). Regression Modeling Strategies With Applications to Linear Models, Logistic 

Regression, and Survival Analysis. New York, Springer-Verlag.  

[17]. Huberman M, Langholz B. (1999). Application of the missing-indicator method in matched case-

control studies with incomplete data. Am J Epidemiol 150(12):1340-5.  

[18]. Li X, Song X, Gray RH. (2004). Comparison of the missing-indicator method and conditional logistic 

regression in 1:m matched case-control studies with missing exposure values. Am J Epidemiol 159(6):603-610.  

[19]. Moons KG, Grobbee DE. (2002). Diagnostic studies as multivariable, prediction research. J Epi-

demiol Community Health 56(5):337-8.  

[20]. Roth, P. (1994). Missing data: A conceptual review for applied psychologists. Personnel Psychology 

47:537-560.  

[21]. Royston P. (2004). Multiple imputation of missing values. The Stata Journal 4(3):227-241.  

[22]. Royston P. (2005a). Multiple imputation of missing values: update. The Stata Journal 5(2):188-201.  

[23]. Royston P. (2005b). Multiple imputation of missing values: update of ice. The Stata Journal 5(4):527-

536.  

[24]. Royston P. (2007). Multiple imputation of missing vlaues: further update of ice, with an emphasis on 

interval censoring. The Stata Journal 7(4):445-464.  

[25]. Schnonlau M. (2006). Stata software package, hotdeckvar.pkg, for hotdeck imputation. 

http://www.schonlau.net/stata/.  

[26]. Steyerberg EW. (2009). Clinical Prediction Models: A Practical Approach to Development, Valida-

tion, and Updating. New York, Springer. 

[27]. Twisk JWR. (2003). Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. Cam-

bridge, Cambridge University Press.  

[28]. van Buuren S, Boshuizen HC, Knook DL. (1999). Multiple imputation of missing blood pressure 

covariates in survival analysis. Statistics in Medicine 18: 681–694.  

[29]. Vandenbrouchke JP, von Elm E, Altman DG, et al. (2007). Strengthening and reporting of observa-

tional studies in epidemiology (STROBE): explanation and elaboration. Ann Intern Med 147(8):W-163 to W-

194.  

[30]. Brand, J.P.L. (1999) Development, Implementation and Evaluation of Multiple Imputation Strategies 

for the Statistical Analysis of Incomplete Data Sets. Dissertation, Erasmus University,Rotterdam.  

[31]. Cornwell, C. and Rupert, P., "Efficient Estimation with Panel Data: An Empirical Comparison of 

Instrumental Variable Estimators," Journal of Applied Econometrics, 3, 1988, pp. 149-155. 

[32]. Dempster, A. P., Nan M. Laird and Donald B. Rubin. 1977. “Maximum Likelihood Estimation from 

Incomplete Data Via the EM Algorithm.” Journal of the Royal Statistical Society, Series B 39: 1-38.  

[33]. Heckman, James J. 1976. “The Common Structure of Statistical Models of Truncated, Sample Selec-

tion and Limited Dependent variables, and a Simple Estimator of Such Models.” Annals of Economic and Social 

Measurement 5:475-492.  

[34]. Little, Roderick J. A. and Donald B. Rubin. 1987. Statistical Analysis with Missing Data. New York: 

Wiley. SAS Global Forum 2012 Statistics and Data Analysis  

[35]. Molenberghs, G. and Kenward, M.G. (2007) Missing Data in Clinical Studies. Chichester, UK: John 

Би
бл
ио
те
ка

 БГ
УИ
Р



Третья Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и анализ высокого уровня», 

Минск, Республика Беларусь, 3-4 мая 2017 года 
 

 

26 

Wiley and Sons Ltd.  

[36]. Mroz, T. A. (1987) “The sensitivity of an empirical model of married women's hours of work to 

economic and statistical assumptions.” Econometrica 55, 765–799.  

[37]. Raghunathan, Trivellore E., James M. Lepkowski, John Van Hoewyk and Peter Solenberger (2001) 

“A multivariate technique for multiply imputing missing valuesusing a sequence of regression models.” Survey 

Methodology, 27:85-95.  

[38]. Rubin, Donald B. 1976. “Inference and Missing Data.” Biometrika 63: 581-592.  

[39]. Rubin, Donald B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.  

[40]. Schafer, Joseph L. 1997. Analysis of Incomplete Multivariate Data. London: Chapman & Hall.  

[41]. Van Buuren, S., J.P.L. Brand, C.G.M. Groothuis-Oudshoorn and D.B. Rubin (2006) “Fully condi-

tional specification in multivariate imputation.” Journal of Statistical Computation and Simulation 76: 1046-

1064.  

[42]. Van Buuren, S., and C.G.M. Oudshoorn (2000). Multivariate Imputation by Chained Equations: 

MICE V1.0 User’s Manual. Report PG/VGZ/00.038. Leiden: TNO Preventie en Gezondheid. 

  

Би
бл
ио
те
ка

 БГ
УИ
Р




