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We investigate the transport properties of 𝑛-type noncompensated silicon below the insulator-metal transition by measuring the
electrical and magnetoresistances as a function of temperature 𝑇 for the interval 2–300K. Experimental data are analyzed taking
into account possible simple activation and hopping mechanisms of the conductivity in the presence of two impurity bands, the
upper and lower Hubbard bands (UHB and LHB, resp.). We demonstrate that the charge transport develops with decreasing
temperature from the band edge activation (110–300K) to the simple activationwithmuch less energy associatedwith the activation
motion in the UHB (28–90K). Then, the Mott-type variable range hopping (VRH) with spin dependent hops occurs (5–20K).
Finally, the VRH in the presence of the hard gap (HG) between LHB and UHB (2–4K) takes place. We propose the empiric
expression for the low 𝑇 density of states which involves both the UHB and LHB and takes into account the crossover from the HG
regime to the Mott-type VRH with increasing temperature. This allows us to fit the low 𝑇 experimental data with high accuracy.

1. Introduction

Interest in studies of conductivity mechanisms in semicon-
ductor materials, including traditional doped semiconduc-
tors near the metal-insulator transition (MIT), does not
stop currently [1, 2]. This is due to both the fundamen-
tal problems of electron transport in the vicinity of such
transition and applied aspects related to the development of
highly sensitive sensors of magnetic and electric fields. In
particular, it is not yet fully understood mechanisms of low
temperature electrical conductivity in doped semiconductors
involving multiply charged localized states, mechanisms of
positive and negative magnetoresistance (MR), as well as
mechanisms of localization and peculiarities of the energy
band structures of impurity and localized states. Due to
the above the detailed investigation of the conductivity of
doped semiconductors near the MIT in a wide temperature
range, influence on it the magnetic field is still relevant.
Actually, the MIT in three dimensional (3D) system occurs
when the Mott criterion 𝑁1/3𝑐 𝑎𝐵 ≈ 0.25 is satisfied, where𝑁𝑐 is the critical concentration of the localized states for

the MIT and 𝑎𝐵 is the effective Bohr radius of an insulated
defect center [3]. The validity of this criterion was confirmed
in various experiments [4–6]. However, some ambiguity in
correct understanding of the temperature dependence of the
conductivity and MR near the critical concentration of the
localized sites still does present. The main reason for this is
related to the competition between various types of hopping
conductivity, mechanisms of weak localization, percolation
and metallic and/or impurity bands (Hubbard bands) con-
ductivity. Therefore, a series of crossovers could be observed
between different types of conductivity in a wide temperature
range. This inevitably leads to the need for their very careful
consideration during the processing of the experimental data.
In particular, with decreasing temperature, the crossover
from band edge activation (𝜖1) to hopping (𝜖3) conductivity
is observed in doped semiconductors [6].

Hopping is one of the most likely mechanisms that
determines the overall conductivity on the insulating side
of the MIT. Among various types of hops, the variable
range hopping (VRH) is one of the most relevant. The
VRH mechanism, in turn, could be classified as the Mott
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mechanism, for which the density of states (DOS) on the
Fermi level is constant, 𝑔(𝐸𝐹) = const [3] and the Efros-
Shklovskii (ES) mechanism, which implies the soft Coulomb
gap (CG), 𝑔(𝐸) ∼ |𝐸 − 𝐸𝐹|2 [7, 8]. From a practical point
of view, at a constant 𝑇, the Mott-type VRH occurs when
the doping concentration 𝑁𝑑 is far less than the 𝑁𝑐 value,𝑁𝑑 < 0.5𝑁𝑐, and one can neglect the Coulomb interaction
[9].The ESmechanism, in turn, dominates when𝑁𝑑 > 0.6𝑁𝑐
and the CG has to be taken into account [10, 11]. From the
literature a few models of crossovers between the Mott and
ES hopping are known quite [12–14].

The temperature dependence of the resistivity for both
mechanisms is described by the well-known expression

𝜌 (𝑇) = 𝜌0 exp(𝑇ℎ𝑇 )𝑝 , (1)

where 𝜌0 is the preexponential factor and 𝑇ℎ and 𝑝 are the
characteristic temperature and exponent, respectively. Last
two quantities depend on the mechanism of hopping. In
particular, for 3D systems and for the Mott mechanism, the
exponent 𝑝 = 1/4, while for the ES VRH 𝑝 = 1/2 [3, 6]. The
exponent 𝑝 can be obtained from the experiment.

Actually, the concept of hopping between disorder-
induced localized electronic states near the MIT is a uni-
versal feature of disordered Mott systems. In particular,
it was successfully applied to describe transport in amor-
phous/nanocrystalline silicon hybrids [15], semiconductor
nanocrystals [16], ruthenate [17], carbon nanotube fibers
[18], as well as transport of single (few) donors in a silicon
nanoscale transistor [19, 20]. Known models of crossover
between different types of VRH are characterized by two
different approaches to the calculation of the exponent 𝑝
from (1). The first approach is based on the analysis of the
percolation problem [12, 13, 21], while the second deals with
the optimization of the exponent 𝑝 using the interpolation
expression for the DOS [14, 22, 23].

In general, the percolation approach can be applied when
the spatial correlation length for the random potential is
much larger than the phase coherence length [24, 25]. This
is a very powerful tool for the description of charge transport
in disordered systems with localized states, which occurs due
to the electron hops from one site to another [26, 27]. It
should be noted that the percolation theory was applied to
explain the properties not only of doped semiconductors, but
also granular metals [28], manganese oxides [29], quantum
Hall plateau transistors [30], high-𝑇𝑐 cuprates [31], and so
forth. Moreover, the percolation phase was directly observed
in vanadium dioxide close to the Mott transition by means of
nanoscale X-ray imaging [32].

The second approach is less stringent and leads to a
noticeable overestimation of the width of the crossover
region. General description of the crossover from the Mott
to ES VRH on the basis of rather complex multivariable
integral equation, which cannot be solved analytically and
needs rather difficult numerical analysis, was proposed in
[13]. In [14, 22, 23] the procedure based on the optimization
of the exponent in the expression for the hopping proba-
bility and using the interpolation expression for the DOS,

𝑔(𝐸) ∼ |𝐸 − 𝐸𝐹|𝑛 (here 𝑛 is integer which is equal to 0
for the Mott mechanism and to 2 for the ES VRH), has
been proposed.This approach leads to quite simple analytical
expressions but, as wementioned above, is less stringent than
the percolation task.

In addition to the crossover from the Mott to ES VRH,
there is another, less studied low 𝑇 crossover, between VRH
and a simple activation dependence (SAD) [33]. For the SAD
the temperature behavior of resistivity is described by (1) but
with the exponent 𝑝 = 1. Actually, the SAD may occur
for different reasons. At high 𝑇 it could indicate the nearest
neighbor hopping (NNH) [23, 34–36], or a band conductivity
[6, 37]. At low 𝑇, however, the probability of both the NNH
and band conductivity becomes negligibly small. Thus, the
SAD at low 𝑇 is usually associated with a hard gap (HG) in
the DOS [38], that is, in a certain energy range 𝑔|𝐸| ≈ 0. One
of the reason of the HG in doped semiconductors could be
the Coulomb interaction [39, 40]. The manifestation of these
mechanisms depends not only on the concentration of the
main impurities𝑁𝑑, but also on the degree of compensation
of the semiconductor,𝐾.

TraditionalMott, ES, andNNHmechanisms are based on
hops to the empty impurity centers.Therefore, the availability
of sufficient number of empty donor cites is important
for such kind of hops in 𝑛-type semiconductor. At low
temperatures, this can only be achieved by compensation
of semiconductor. Arisen due to compensation charged
donors and acceptors create dispersion of the donor energy
levels due to their chaotic potential. This dispersion exceeds
significantly the exponentially small splitting of levels of
neighbor donors caused by the overlap of the wave functions.
The characteristic feature of noncompensated semiconductor
(𝐾 ≪ 1) is the rapid decrease of the empty (ionized) do-
nors with decreasing temperature. In weakly compensated
semiconductors, in a limited range of concentrations (close to
the MIT), in addition to the band and hopping conductivity
another activation mechanism develops in the temperature
dependence of conductivity, 𝜖2 conductivity.Thismechanism
exhibits in the intermediate between band and hopping
conductivity temperature interval [41–43]. It is believed
that the 𝜖2 conductivity involves migration of electrons on
the single occupied neutral donors (𝐷− states). They have
large radius and, consequently, at the intermediate impurity
concentrations are strongly overlapped. The result is a wide
band of 𝐷− states. This band is an analogue of the upper
Hubbard band (UHB), formed in a disordered systems [6].
The decrease in donor impurity concentration leads to a
strong narrowing of a 𝐷− band. On the other hand, in the
absence of compensation, when 𝜖3 conductivity is zero, there
are most favorable conditions for 𝜖2 conductivity; that is, the
concentration of neutral donors is the highest.The increase of
the compensation improves significantly conditions for the 𝜖3
conductivity and worsens the 𝜖2 conductivity.

Electron hopping (𝜖3 conductivity) may occur not only
on free localized but also on occupied sites via the spin
dependent transport [44]. In fact, for doped semiconductors,
the spin degree of freedom could play a significant role in the
electron hops. If, for example, the width of the distribution
function of the energies of the localized sites overcomes the
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Coulomb repulsion between electrons, double occupancy of
the site becomes possible, as was first argued by Kurobe and
Kamimura [44]. In this case, two types of hops contribute to
the transport. The first occurs between singly occupied (SO)
and unoccupied (UO) sites, while the second type of hops
involves doubly occupied sites (DO) with opposite electron
spins. As a result, the spin dependent charge transport could
occur in this case. The UO site is considered as a singly
ionized site with the elementary charge +1𝑒. Consequently,
SO site has charge 0𝑒, andDO site has charge−1𝑒. Developing
of a quantitative theory of the 𝜖2 conductivity faced with
very great difficulties. The main difficulty is that in this
concentration range the overlap of the wave functions play
a role comparable to the Coulomb interaction of electrons
with impurities and with each other. In addition, disorder
in the distribution of impurities significantly complicates
the analysis of experimental data. Therefore, many problems
related to the interpretation of the experimental data for
doped semiconductors, in which 𝜖2 conductivity is observed,
are still unclear. In this regard, for doped semiconductors
with a low degree of compensation, in which 𝜖2 conductivity
is manifested, the study of the mechanisms of low temper-
ature conductivity and crossover between 𝜖2 and hopping
conductivity is a topical problem.

Therefore, the correct interpretation of the experimental𝜌(𝑇) data measured in a wide 𝑇 range can be significantly
hampered, because, in order to compare the experimental
values of the parameters with the calculated ones, it is
important to identify and properly describe the transport
mechanisms in different temperature intervals.

In this workwe performed a thorough investigation of the
low temperature (2K < 𝑇 < 90K) conductivity of 𝑛-type
noncompensated silicon close to theMIT taking into account
possible VRH, SAD, and spin dependent mechanisms. We
show that above 30K the conductivity is of the activation type
and is carried out in theUHB, while in the𝑇 range 5–25K the
Mott-type VRH dominates and is accompanied by the spin
dependent charge transport. Below 5K the crossover from
the VRH to SAD occurs. We demonstrate that the reason
for the SAD in this 𝑇 range is the HG in the DOS. We
developed a model of this crossover based on the percolation
task, using the expression for DOS, which takes into account
the evolution of the DOS from the HG at 𝑇 < 5K to the
Mott-type at 𝑇 > 5K. This approach allowed us to fit the
experimental 𝜌(𝑇) dependence with high accuracy.

2. Samples and Experimental Details

Single crystalline 𝑛-type Si (100) grown by Czochralski
method and doped with Sb was used in this work. Samples
of rectangular shape with a width of 1mm and a thickness
of 0.5mm were covered with 6 indium contacts as electric
probes using ultrasonic soldering. Two contacts were for
current supply, 2 were for Hall measurements, and, finally,
last 2 contacts were for voltage measurements. All contacts
were ohmic in the whole studied temperature range which
was proved by the linear current-voltage characteristics. A dc
current of 10𝜇A generated by multimeter Keithley 6430 was
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Figure 1: Temperature dependence of the resistivity at𝐻 = 0 (black
circles) and 𝐻 = 80 kOe (red circles) in the range 2–300K. Inset:
resistivity versus 𝑇−1 (symbols). Experimental data are explained by
two activation energies, 𝜖1 ≈ 10.35meV for 110–300K and 𝜖2 ≈1.73meV for 28–90K.

used to bias the sample during the resistivity measurements
and to measure the voltage drop down to 5 𝜇V. For low
resistivity samples we used the two-channel nanovoltmeter
Keithley 2182A. Samples were inserted into the cryogen
free measuring system (Cryogenic Ltd., London) with the
superconducting magnet. The system allowed performing
measurements in the 𝑇 range between 2 and 300K in
magnetic fields up to 𝐻 = 80 kOe. Lakeshore controller
allowed 0.1 K/min sweeping rate of temperature during the 𝜌
versus 𝑇measurements and stabilizing temperature with the
accuracy of ±0.005K during the sweep of the magnetic field
or current-voltage characteristics acquisition. Semiconduct-
ingGaAs thermometerwas calibratedwith an accuracy better
than 0.1%.On the basis ofmeasurements of the𝑇dependence
of the Hall effect the Sb concentration was estimated as𝑁𝑑 =1 × 1018 cm−3, which is 3 times less than the critical Mott
concentration for Sb in Si [45, 46]. Therefore, our samples
are on the insulating side of the MIT. Actually, a series of
samples cut from different Si wafers belonging to the same
technological set of fabrication were measured. All the data
are in nice agreementwith each other. Herewe present typical
results obtained on the investigated samples.

3. Results

In Figure 1 we show the resistivity versus temperature mea-
sured in the range 2–300K at zero magnetic field and at the
maximum applied field of 80 kOe. The strong change in 𝜌
(4 orders of magnitude) is evident. The 𝜌(𝑇) dependence
at 𝐻 = 0 is linear in the Arrhenius coordinates in the
temperature range 28–300K, as is clearly seen from the inset
to Figure 1. Actually, in this temperature interval there are two
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Figure 2: (a) ln 𝜌 versus 𝑇−1/4 (red symbols), left and bottom red axis. ln𝜌 versus 𝑇−1 (blue symbols), right and upper blue axis. Solid lines
are the result of the best linear fit in these coordinates. Data are for𝐻 = 0. (b) ln 𝜌 versus 𝑇−1/4 (red symbols), left and bottom red axis. ln𝜌
versus 𝑇−1 (blue symbols), right and upper blue axis. Solid blue line is the result of the best linear fit in these coordinates. Dashed black line
is tangent to the experimental data. Data are for𝐻 = 80 kOe.

significantly different activation energies: 𝜖1 ≈ 10.35meV
for the 𝑇 range 110–300K and 𝜖2 ≈ 1.73meV for 28–90K.
Resistivity in the first𝑇 range is increased by two times, while
in the second interval it is increased by only 1.2 times.

Below 20K at 𝐻 = 0 the SAD is changed to the Mott-
type VRH. In Figure 2(a) we show the ln 𝜌(𝑇−1/4) data for
the temperature interval 5–20K (red color). The obtained in
these coordinates linear dependence unambiguously proves
the Mott-type VRH. At 𝑇 < 5K the Mott-type VRH is no
longer valid and crossover to the SAD with the exponent𝑝 = 1 and activation energy 𝜖4 ≈ 1.48meV occurs (blue
color).

Data at 𝐻 = 80 kOe below 20K reveal similar features
as for zero field. However, only on the basis of the exponent𝑝 in (1) we cannot successfully fit experimental data in
the 𝑇 range 5–20K. As it follows from Figure 2(b), red
symbols, exponent 𝑝 = 1/4 is not suitable to describe the
experimental dependence. Other reasonable exponents in (1)
also do not give satisfactory agreement with the experiment.
Nevertheless, at lower 𝑇 we can identify interval, where the
exponent 𝑝 = 1 is valid, see blue color in Figure 2(b). It turns
out that low 𝑇 SAD still exists even at high magnetic field.

For a more accurate identification of the observed low𝑇 SAD in Figure 3 by symbols we plot ln 𝜌 versus 𝑇−𝑝
dependence at zero field for two different 𝑝 values, 1/2 (blue
color, corresponds to SE VRH) and 1 (red color, corresponds
to SAD). Solid lines in Figure 3 correspond to the result of
the best linear fit. It follows from Figure 3 that exponent 𝑝 =1/2 gives worse agreement with the experiment. The same
analysis for data measured in the presence of the magnetic
field leads to similar result, namely, presence of SAD below𝑇 = 4K.
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Figure 3: ln 𝜌 versus𝑇−1 (red symbols), left and bottom red axis. ln𝜌
versus 𝑇−1/2 (blue symbols), right and upper blue axis. Solid lines
are the result of the best linear fit in these coordinates. Data are for𝐻 = 0.

4. Discussion

4.1. Qualitative Analysis. The obtained experimental data
revealed the following. In the 𝑇 interval 110–300K the con-
ventional band edge activation caused by the transition from
the Fermi level located in the tail of the lower Hubbard band
(LHB) to the conduction band of silicon (the 𝜖1 conductivity
[6]) takes place.
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Another simple activation mechanism is manifested in
the temperature dependence of the resistivity in the interval
28–90K (𝜖2 conductivity). It is believed that the 𝜖2 conduc-
tivity is associated with the activation motion of electrons
along singly occupied neutral donors and corresponds to
the states in the upper Hubbard band (UHB) [5, 6, 20, 37].
In this temperature interval the characteristic value of the
thermal energy 𝑘𝐵𝑇 is greater than the activation energy 𝜖2
and all states are delocalized.Moreover, only slight increase in
the resistivity as the temperature decreases or magnetic field
increases indicates the extended UHB.

In the 𝑇 range 5–20K the Mott-type hopping 𝜖3 con-
ductivity is observed in the absence of the magnetic field.
Finally, in the temperature interval 2–4K again the SADwith
the activation energy 𝜖4 ≈ 1.48meV is realized. At first
glance, this is a reentrance of the previously observed within
the temperature interval 28–90K SAD with the activation
energy 𝜖2 ≈ 1.73meV. On the other hand, for the range
2–4K the activation energy 𝜖4 is greater than the energy
of thermal fluctuations, 𝜖4 ≈ (3–7)𝑘𝐵𝑇. It means that all
states are localized; that is, the charge transport is hopping-
like, but the mechanism of hops is different from usual
VRH.

The reentrance of the SAD after VRH is well known
for some dilute magnetic [38, 47, 48] and classical doped
semiconductors, like Si:B [33] and Si:As [49] with doping
concentration less than 𝑁𝑐, and for amorphous compounds
like In/InO𝑥 [50] or amorphous silicon after implantation
of Au or Si ions [51]. For all these materials evidences of 𝜖2
conductivity before VRHwere never reported. Typically, as𝑇
decreases first one observes the NNH, which is characterized
by the exponent 𝑝 = 1, then the VRH followed by SAD,
again with the exponent 𝑝 = 1. Moreover, for dilute magnetic
semiconductors and for Si:B strong magnetic field removes
the reentrance effect. But for In/InO 𝑥 the reentrance effect is
insensitive to the magnetic field [50]. It is worth mentioning
that for the electronic Si:As semiconductor the influence of
the magnetic field on the reentrance effect was not studied.
In our system, the reentrance effect in the presence of the
magnetic field still does exist, see Figure 2(b). Moreover, the
peculiar feature of the appearance of the SAD reentrance in
our case is that not only the VRH, but also the 𝜖2 conductivity
(not NNH) preceded it.

Thus, the performed brief qualitative analysis of the data
disclosed that, in the range 28–90K, the influence of both the
temperature and magnetic field on the resistivity is very low.
This indicates that the electron transport in this temperature
range has apparently a band character, is realized in the
relativelywideUHBand states are delocalized. In the range 5–
20K the electron transport is transformed to the hopping 𝜖3
conductivity. With further 𝑇 decrease, below 4K, the Mott-
type VRH is transformed into more complicated hopping
mechanismwhich formally corresponds to the SAD, but now
states are localized.

Actually, the SAD at low 𝑇 indicates the formation of the
HG in the DOS [38]. The energy 𝜖4 characterizes the width
of the HG, where the DOS is equal or close to zero. The
magnetic field does not suppress the SAD. The reason of the
HG appearance is hidden. In order to understand better the

Table 1: Parameters of the Mott-type VRH obtained within two
different approaches.

Parameter 𝜌(𝑇) data MR data
𝑎𝑀, nm 6.6 6.0–8.5
𝑔𝑀, eV−1 × cm−3 5.408 × 1019 4.7 × 1019

nature of the reentrance effect and the origin of the HG, we
need to perform the quantitative analysis of the data.

4.2. Quantitative Analysis

4.2.1. Spin Dependent Hopping. For the 𝑇 range 5–20K the
resistivity is described according to the Mott law, (1) [3, 6], in
which 𝑇ℎ = 𝑇𝑀 and 𝑝 = 1/4. Here 𝑇𝑀 = 𝛽𝑀[𝑔𝑀𝑎3𝑀𝑘𝐵]−1 is
the Mott parameter, 𝛽𝑀 = 21.2 ± 1.2 is the numerical factor,𝑔𝑀 = const is DOS at the Fermi level, 𝑎𝑀 is the localization
length of the states around the Fermi level. We calculated the𝑔𝑀 and 𝑎𝑀 values analyzing the experimental data 𝜌(𝑇) at
zero magnetic field in the Mott coordinates (𝜌 − 𝑇−1/4) and
applying the evaluation expressions [3, 6, 52, 53]

𝑔𝑀 = 𝑁𝑑
2𝑘𝐵 (𝑇𝑀𝑇3V𝑀)1/4

,

𝑎𝑀 = 𝛽1/3𝑀
[𝑘𝐵𝑇𝑀𝑔𝑀]1/3 ,

(2)

where 𝑇V𝑀 is the temperature of the onset of the Mott-type
VRH. Equation (2) gives approximate values of 𝑔𝑀 and 𝑎𝑀.
Note that on the basis of (1) and (2) the obtained 𝑔𝑀 and 𝑎𝑀
values must be temperature independent. On the other hand,
the MR data allow checking whether these quantities are
really 𝑇 independent. Indeed, within the standard approach
of the Mott-type VRH the positive MR which is usually
related to the contraction of thewave function of the localized
states in magnetic field is expressed as [6]

ln
𝜌 (𝐻)
𝜌 (0) = 𝑡3 𝑎

4
𝑀𝑙4𝐻 (𝑇𝑀𝑇 )3/4 ∼ 𝐻2, (3)

where numerical factor 𝑡3 = 5/2016, 𝑙𝐻 = √ℏ/𝑒𝜇0𝐻 is the
magnetic length, and 𝜌(0) is the zero field resistivity.

On the basis of (3), knowing 𝑇𝑀, 𝐻, and MR, we calcu-
lated the 𝑎𝑀 values at different 𝑇. Moreover, knowing already𝑎𝑀, the value of𝑔𝑀 from results of theMRmeasurements can
be calculated using the expression for theMott parameter𝑇𝑀.

The results of calculations of hopping parameters accord-
ing to the 𝜌(𝑇) dependence and MR data at different 𝑇 are
summarized in Table 1. The Mott parameter was evaluated
from (1) as 𝑇𝑀 = 1.524 × 104 K. The temperature 𝑇V𝑀 was
obtained from the 𝜌(𝑇) data as 𝑇V𝑀 ≈ 20K [54].

It follows from Table 1 that the obtained within two
different approaches 𝑎𝑀 and𝑔𝑀 values are in good agreement
with each other.

The surprising result, which we obtained, analyzing the𝑎𝑀 values from theMRmeasurements, is their𝑇 dependence.
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Figure 5: ln(𝜌(𝐻)/𝜌(0)) versus 𝐻2 at different temperatures (sym-
bols). Lines correspond to the results of the best linear fit in these
coordinates.

This result for 𝐻 = 80 kOe is presented in Figure 4, from
which it follows that the 𝑎𝑀(𝑇) function is not constant. In
particular, for the range 5–20K the 𝑎𝑀 values decrease from
8.3 to 6.0 nm.This means that the standard model of positive
MR, which takes into account only the contraction of the
electronic wave function in magnetic field and leads to the
temperature independent localization length, cannot explain
the obtained 𝑎𝑀(𝑇) result.

In Figure 5 we show the dependencies of ln(𝜌(𝐻)/𝜌(0))
versus 𝐻2 in the temperature range 4–20K together with
the results of the best fit procedure according to (3). It is
seen that the ln(𝜌(𝐻)/𝜌(0)) ∼ 𝐻2 law in the considered
temperature range is valid only at 𝐻 < (50–60) kOe. From
the results presented in Figures 2(b), 4 and 5 it follows that
the transportmechanism at low𝑇 becomesmore complicated

DO states

DO states

SO, UO states

SO, UO states

SO

SO

UO

UO

DO

DO

SO→ UO SO→ SO

DO→ UO DO→ SO

EF

EF

E

E

Figure 6: Possible electron hops considered for low temperature
conductivity. For more details, see the text.

than conventional Mott-type VRH. To clarify the hopping
mechanism, we examine other possible types of hops, to the
occupied localized sites, which are accompanied by a spin flip
[44].

The MR for a system of sites occupied by more than one
electron was considered in detail some time ago by Kurobe
and Kamimura [44], Matveev et al. [55], Meir [56], and
Demishev and Pronin [57]. In particular, if the Coulomb
repulsion between two electrons is smaller than the width of
the Hubbard bands, 2 types of hops, on unoccupied (SO →
UO,DO→UO) and occupied (SO→ SO,DO→ SO) sites are
relevant. All these possibilities are shown in Figure 6, where
we schematically draw the energy diagrams for each type of
hops.

In general case, spin independent hops to unoccupied
sites could be characterized by the localization length 𝑎1 and
DOS𝑔1, while spin dependent hops to occupied sites could be
described, in turn, by 𝑎2 and 𝑔2. The quantity 𝑔1 is assigned
to the DOS in the LHB, and 𝑔2 corresponds to the DOS in
the UHB. The relation between 𝑔1 and 𝑔2 as well as between𝑎1 and 𝑎2 is still an open question and different assumptions
were put forward to simplify the task. Typically, it is assumed
that the localization length for the DO state is more than
for the SO, 𝑎2 > 𝑎1 [44]. In [56] the possibility of spin
dependent transport was discussed considering inequality
between two densities of states and two localization lengths.
From a practical point of view, it seems problematic to
separate these quantities in the framework of such general
approach. It is necessary to introduce additional assumptions
associated with the density of states or the localization length.

In [55] the spin polarized mechanism of MR was inves-
tigated in terms of the approach proposed by Kurobe and
Kamimura [44]. It was supposed that both the states, UO
and SO, are characterized by the same localization length,𝑎1 = 𝑎2 = 𝑎, while densities of states differ from each other,𝑔1 ̸= 𝑔2.

We failed in the attempts to fit the experimental data of
Figure 2(b) applying theoretical approaches of Refs. [55, 56].
We believe this is due to the fact that applied theoretical
approaches do not take into account all complexity of the
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transport mechanisms. Further we investigate this problem
in detail within the approach proposed by Demishev et al.
[57, 58]. Authors [57], following Kurobe and Kamimura
[44], considered only intrasite correlations and neglect the
long range Coulomb repulsion. On the basis of [57] it is
possible to determine which type of conductivity under
the external magnetic field dominates: spin dependent or
spin independent. In particular, the modified expression for
the MR, which takes into account both types of hops, was
deduced [58]:

ln
𝜌 (𝐻)
𝜌 (0) = (𝑇𝑀𝑇 )1/4 14𝐴eff (𝑇) (𝜇0𝜇𝐵𝐻𝑘𝐵𝑇 )2 , (4)

where

𝐴eff (𝑇) = 𝐴 + 4𝑏( 𝑇
𝑇𝑀)
3/2 . (5)

In (5) parameters 𝐴 = (𝑔2𝑎32 − 𝑔1𝑎31)/(𝑔2𝑎32 + 𝑔1𝑎31) and𝑏 = 𝑡3𝑎42(𝑒2𝑘2𝐵𝑇2𝑀/ℏ2𝜇2𝐵). According to Demishev et al. [58],
parameter 𝐴 depends on the probability of hops, which
involve both 𝐷0 and 𝐷− states, and is determined by the
degree of polarization of the spin part of the wave function of
these states in the magnetic field. Parameter 𝑏 is determined
by the contribution of the mechanism of the wave function
contraction to the MR that acts on both types of hops.

Therefore, on the basis of the temperature dependence𝐴eff (𝑇) it is possible to conclude which type of contribution
determines the MR in the hopping region. If the spin
dependent mechanism dominates, then 𝐴eff (𝑇) = const.
Otherwise, 𝐴eff (𝑇) tends to 0 at 𝑇 → 0 according to the law
𝑇3/2. When both types of contributions are comparable, the
dependence of𝐴eff (𝑇) is expected to be more complicated, it
does not tend to 0 at 𝑇 → 0 [57, 58].

In Figure 7 we plot the 𝐴eff (𝑇) dependence obtained
from the experiment applying (4). Data are for 𝐻 = 80 kOe.
As can be seen, the 𝐴eff (𝑇) dependence has two distinct
regions. In one of them, in the 𝑇 range 5–11 K, the 𝐴eff
value is temperature independent and the results of the fitting
procedure give 𝐴 = 0.47 ± 0.03, 𝑏 = 0 (blue line in
Figure 7). Therefore, in this 𝑇 range the spin dependent
hopping prevails. In addition, the relation between DOS for
two different types of hops can be estimated via the quantity𝑘𝑔 = 𝑔2𝑎32/𝑔1𝑎31 . In this case 𝑘𝑔 ≈ 2.8.

In the𝑇 range 11–20K the linear approximation𝐴eff (𝑇) ∼𝑇3/2 explains well the experimental data (red line in Figure 7),
but 𝐴eff does not tend to 0 at 𝑇 → 0. Consequently, the
obtained result proves the absence of the dominant role of the
spin independent hops in this temperature interval. From the
fitting procedure we obtained coefficients 𝐴 = 0.29 and 𝑏 =0.96 × 104. That gives 𝑎2 = 5.5 nm and 𝑎1 ≈ 𝑎2/4 = 1.38 nm.
The parameter 𝑘𝑔 in this case depends on 𝑇. The obtained
overall 𝑘𝑔(𝑇) dependence is shown in the inset to Figure 7.
From 𝑘𝑔 values we may estimate the 𝑔1/𝑔2 relation, which is
equal to 21.3 for 𝑇 range 5–10K and to 10.7 at 𝑇 = 20K.
4.2.2. Gap in the DOS. Thus, the performed estimations and
calculations showed that, in the temperature range 5–20K,

A
ef

f
(a

rb
. u

ni
ts)

0.8

0.7

0.6

0.5

0.4

0.3

0 10 20 30 40 50 60 70 80

T3/2 (K3/2)

T (K)
5 10 15 20

k
g

6

4

2

Figure 7: Evaluated temperature dependence𝐴eff (𝑇) at𝐻 = 80 kOe
(symbols). Lines are plotted according to (5). Inset: the temperature
dependence of the calculated coefficient 𝑘𝑔.

on the whole, the Mott-type VRH is realized. Nevertheless,
we obtained that two types of hops, traditional hops on
UO sites and spin dependent hops on SO sites, have to
be taken into account. Therefore, one needs to consider
two localization lengths and two DOS. On the other hand,
previously introduced 𝑔1 and 𝑔2 values are essentially model
parameters that do not give information about the influence
of the DOS on the mechanism of hopping conductivity. It
should also be noted that neither approach [55] nor work [57]
gives any information about the gap between two Hubbard
bands.

Generally speaking, the origin of the gap could be
twofold. First, it could be due to the CG; second, the HG
between lower and upper Hubbard bands could be the
reason. The soft CG at the energy minimum does not have
a characteristic shelf, 𝑔(𝐸) ∼ |𝐸−𝐸𝐹|2, while the true gap has
the shelf of the width Δ. Moreover, the presence of the soft
CG leads to the exponent 𝑝 = 1/2, which we did not observe.

Below we propose the model expression for the DOS and
evaluate the influence of the shape and parameters of the
proposed model DOS on the 𝑇 dependence of the hopping
resistivity, which, in turn, is characterized by the critical
values of the exponent 𝜉(𝑇) = ln[𝜌(𝑇)/𝜌0] [21]. The relation
between the critical exponent 𝜉(𝑇) and the exponent 𝑝 is𝜉(𝑇) ∼ (𝑇ℎ/𝑇)𝑝. Estimations are performed within the model
of the low temperature crossover VRH-SAD.

To model this crossover let us consider the problem
of the charge flow in the lattice of impurity atoms. In the
theory of hopping conductivity, problems of charge flow in
the system of random nodes, chaotically distributed in space,
play the most important role. In this case the average number
of nodes in a unit volume is supposed to be given and
equal to the concentration of the impurities𝑁𝑑. The average
distance between nodes is 𝑟𝑑 = (3/4𝜋𝑁𝑑)1/3. For such a
lattice, the percolation radius 𝑟𝑐 is found from the condition
of the connectivity of two and more nodes which form an
infinite cluster [6], so that the value of 𝑟𝑐 depends only on
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the nodes concentration 𝑁𝑑. Typically, the dimensionless
threshold value 𝐵𝑐 is used, having a meaning of the average
number of bonds per node. In the 3D case [6]

𝐵𝑐 = (4𝜋3 ) 𝑟3𝑐𝑁𝑑. (6)

For random lattice the 𝐵𝑐 value is typically determined
numerically and varied in the range 2.65–2.76 [6]. Conse-
quently, the percolation radius is given by 𝑟𝑐 = (0.865 ±
0.015)𝑁−1/3𝑑 . In this case 𝑟𝑐 is always larger than 𝑟𝑑. In
particular, in our case 𝑟𝑐 = 8.64 nm > 𝑟𝑑 = 6.2 nm. In
other words, the symmetry of the lattice is irrelevant and only
the number of sites inside radius 𝑟𝑐 determines the transport
mechanism.

On the basis of the aforementioned estimations, we then
developed a model of the VRH-SAD crossover; this model is
based on a simplified procedure for solving the percolation
problem using the empiric expression for the DOS valid
for both types of the temperature dependent hopping. We
start from the following expression for the dimensionless
concentration of sites:

𝑁(𝜉) = 2∫𝐸max

0
𝑟3max𝑔 (𝐸) 𝑑𝐸, (7)

which satisfies the condition of connectivity for the exponent
of the hopping resistivity less than a certain value 𝜉𝑚𝑖𝑛
[6, 13]. Here, 𝐸max and 𝑟max are maximal values of the
energy and intersite spacing, respectively, which still allow
the connectivity. The dimensionless concentration 𝑁(𝜉) in
(7) is determined as a product of the concentration of sites
with the energy 𝐸 < 𝐸max and the volume of these sites.
This procedure for the temperature dependent DOS is not
completely rigorous and the connectivity condition should
be considered for each energy value separately, which leads
to the complicated integral equation [13]. Here we will follow
the procedure described in [21], which simplifies significantly
the calculations.

Values of 𝑟max and 𝐸max are specified in the percolation
theory by the relations [6] (see also Equation (4.30) in [59])

𝑟max = 𝑎2𝜉2 ,
𝐸max = 𝑘𝐵𝑇𝜉.

(8)

Substituting (8) into (7) and equating𝑁(𝜉) to 2𝐵𝑐, we get the
following expression:

2𝐵𝑐 = (𝑎2𝜉2 )3 ∫𝑘𝐵𝑇𝜉
0

𝑔 (𝐸) 𝑑𝐸, (9)

which allows calculating the 𝑇 dependence of 𝜉 and compare
it with the experimental data 𝜌(𝑇). The above procedure was
carried out using three different types of expressions for the
DOS.

First, we used the interpolation expression proposed in
[22, 23]. Thus, the change of the DOS from constant value
for the VRH Mott-type to the DOS 𝑔(𝐸) ∼ |𝐸 − 𝐸𝐹|𝑛, where
for the SAD 𝑛 > 2, was taken into account. In this case the
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Figure 8: Experimental (symbols) ln[𝜌(𝑇)/𝜌0] and calculated
(lines) according to (10) 𝜉(𝑇) dependencies. Red and blue lines
correspond to 𝑛 = 0 and 15, respectively.

DOS models, presumably, only the CG-like, but with steeper
dependence on the energy. According to [22], the crossover
at different exponent values of 𝑝 = (𝑛 + 1)/(𝑛 + 4) could be
described applying the following expression for the DOS:

𝑔 (𝐸, 𝑇) = 𝑔0 [(𝐸 − 𝐸𝐹) /𝐸𝑠𝑔]𝑛
1 + [(𝐸 − 𝐸𝐹) /𝐸𝑠𝑔]𝑛 . (10)

Parameter 𝐸𝑠𝑔 depends on the exponent 𝑛 and, when it is
fixed, is constant. Parameter 𝑔0 is a constant related to 𝑔𝑀.
For the case 𝑛 = 2, (10) coincides with the expression used in
[14] for the description of the crossover from the Mott to ES
VRH.

Substituting (10) into (9) and using the previously
obtained values, 𝑎2 and 𝐸𝑠𝑔 = 𝜖4, we calculated the
dependencies 𝜉(𝑇) for the fixed values of the exponent 𝑛
in (10), which were compared with the experimental data
ln[𝜌(𝑇)/𝜌0]. We obtained that theoretical results coincide
with the experimental data only varying values of the expo-
nent 𝑛 with temperature [60]. For example, in the interval
5–25K the agreement is observed only for 𝑛 = 0 (the Mott-
type VRH), while for 2–5K to obtain the agreement between
theory and experiment much greater value of 𝑛, 𝑛 > 6, is
required, Figure 8. Calculations of the 𝑝(𝑇) dependencies for
different 𝑛 values using the relation 𝑝 = −𝜕 log 𝜉(𝑇)/𝜕 log𝑇 =−[𝑇/𝜉(𝑇)][𝜕𝜉(𝑇)/𝜕𝑇] [21] and evaluated the 𝜉(𝑇) depen-
dence showed that, to achieve the value of the exponent 𝑝,
close to unity, it is necessary to significantly increase 𝑛, that
is, the variable 𝑛 needs to tend to infinity, Figure 9. At 𝑛 = 0
expressions for the crossover give the exact value 𝑝 = 1/4.
Thus, (10) for the DOS in this case has limited application
because, firstly, it requires a change of the exponent 𝑛 with𝑇 and, secondly, the value of 𝑛, which provides the exponent𝑝 → 1, tends to infinity.
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Figure 9: Temperature dependencies of the exponent 𝑝 for different𝑛 values. From top to down, 𝑛= 200, 100, 50, 15, 5, and 2, respectively.

In the second attempt, we take into account the gap
smearing with 𝑇 increase [61],

𝑔 (𝐸, 𝑇)
= 𝑔0 [𝛾 (𝑇) + [1 − 𝛾 (𝑇)] 󵄨󵄨󵄨󵄨𝐸 − 𝐸𝐹󵄨󵄨󵄨󵄨𝑛[Δ (𝑇) /2]𝑛 + 󵄨󵄨󵄨󵄨𝐸 − 𝐸𝐹󵄨󵄨󵄨󵄨𝑛] .

(11)

The parameter 𝛾 describes a “residual” DOS at the Fermi level
and Δ is the width of the gap.

Substitution of themodified expression (11) to (9) allowed
comparing the value of the critical exponent 𝜉 with the
experimental data and finding the temperature dependencies𝛾(𝑇) and Δ(𝑇), which adequately describe the experiment.
This result is presented in Figure 10 for two 𝑛 values, 𝑛 = 2.5
and 3.0.

It follows from Figure 10 that 𝛾 varies in the range 0.1–1.
At 𝑇 > 10K, 𝛾 → 1, and the first constant term in (11)
dominates. This corresponds to the Mott-type VRH. When𝛾 = 1 (i.e., at 𝑇 > 15K), the result becomes insensitive
to the Δ values. At low temperatures 𝛾 ≪ 1 and the main
contribution is due to the term |𝐸 − 𝐸𝐹|𝑛. The parameterΔ, which characterizes the width of the gap, decreases with
increasing temperature, which is in contradiction with the
result usually reported [61, 62]. Thus, the result of the fitting
procedure found that the agreement with the experiment is
achieved only taking into account the filling of the gap states
between the Hubbard bands and suggested the narrowing of
the gap with increasing temperature, during the crossover to
the Mott-type DOS. In addition, insensitivity of the model
to the value of 𝑛 at 𝑛 > 3 has been revealed. Therefore, it is
obvious that there is a need to modify the formula for the
DOS, in order to reflect the tendency both for smearing of
the gap and its growth with increasing temperature. These
are characteristic features of the HG. Moreover, the integer
exponent 𝑛 should be temperature independent.

Δ
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Figure 10: 𝛾(𝑇) and Δ(𝑇) dependencies as obtained using (11) for
fitting the 𝜌(𝑇) data. Calculated curves correspond to the range of
the exponent 𝑛 = 2.5–3.0. The 𝛾 values are in arbitrary units. The Δ
values are normalized to 𝜖4.

Within these assumptions the reasonable approximation
for the DOS is of the following empiric type:

𝑔 (𝐸, 𝑇) = 𝑔0 [𝛼 (𝑇)𝑤4 (𝐸) + 𝛽 (𝑇)𝑤2 (𝐸) + 𝛾 (𝑇)]
× exp(−[𝑤 (𝐸)

𝜎 (𝑇) ]
4) , (12)

where 𝑤(𝐸) = (𝐸 − 𝐸𝐹)/0.5𝜖4 and 𝛼, 𝛽, 𝛾, and 𝜎 are
phenomenological temperature dependent coefficients.

The shape of theDOS in this case depends on𝑇 according
to the 𝛼, 𝛽, 𝛾 and 𝜎 versus 𝑇 dependencies. In particular, the
first term corresponds to the HG, the second one is for the
soft gap, the parameter 𝛾 is responsible for the filling of the
HG with 𝑇 and 𝜎 is responsible for the width of the Hubbard
band. Indeed, the exponential term serves for smoothing of
the overall DOS and for modelling of the Hubbard bands, in
particular, their width. In other words, empirical expression
(12) allows reproducing not only the HG, its filling, but also
the width of the Hubbard bands. In this work, we assumed
the identical widths of the upper and lower Hubbard bands.
Widening of the UHB was taken into account by filling the
HG. Function (12) reflects the change of the DOS with 𝑇,
from HG at low 𝑇 (with the dip between Hubbard bands)
to the constant DOS close to the Fermi level at high 𝑇. This
was enough for the experimental data interpretation. The
fitting procedurewas as for previous expressions for theDOS;
that is, we substitute (12) into (9) and looked for such 𝜉
values which adequately describe the 𝜌(𝑇) data. The result
of the fitting procedure is shown in Figure 11. It follows that
we were able to describe experimental data with very high
accuracy in the 𝑇 range 2–20K. On the basis of the obtained𝜉(𝑇) dependence it is possible to evaluate 𝑟max, the maximal
hopping length which still allows the connectivity. For the
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Figure 12: DOS at different temperatures as obtained from the
experimental data within the proposed model (see (12)).

range 5–20K we get 𝑟max = 17.6–22.0 nm, while for the
interval 2–4K the result is 𝑟max = 27.5–38.5 nm.

On the basis of the obtained model parameters, it is
possible to reproduce the DOS at different temperatures.This
result is shown in Figure 12. As it follows, the DOS evolves
fromHGat 2K to almost filled states betweenHubbard bands
at 15 K. At that the widening of the Hubbard bands also
occurs (within our approach,UHB andLHB are symmetrical;
actually, they may differ in width and height, but this issue
requires additional investigation and is outside the objectives
of this work). Parameters of themodel are changed as follows.
The parameter 𝛼, which corresponds to the HG width is
almost constant and is equal to 1 for the whole 𝑇 range. The
parameter 𝛽 (characteristic of the soft gap) is almost constant
with temperature, 𝛽 = −0.7 except the region 15–21 K, where

𝛽 = −2. The parameter 𝛾, which is responsible for the HG
filling, is changed from 0 at 2 K to 6 at 21 K. Finally, the
parameter 𝜎, the characteristic of the width of the Hubbard
bands, also increases with temperature, from 1.5 to 2.3.

At the end of this section we summarize that, the
conductivity in the 𝑇 interval 5–20K is of the hopping-type.
On the whole, it obeys the Mott law and is determined by
two type of hops: to UO neutral and to SO impurity sites.
In the range 5–11 K the contribution of the spin dependent
hopping dominates. This is valid also in the range 2–4K.
Simulations of the DOS revealed that in this 𝑇 range hops
are regulated by the HG. The presence of nonsmeared HG
between Hubbard bands in the 𝑇 range 2–4K together with
the spin dependent hops in the UHB provides reentrance of
the SAD. The latter provides a nonlinearity of the current-
voltage characteristics at small bias voltage, which leads to
negative differential resistance at electrical fields smaller than
1 V/cm [63]. It is unlikely that this effect may be due to the ES
VRH, for which the delocalization occurs at significantly higher
electrical fields.

5. Conclusions

In conclusion, we performed the systematic study of the
transport mechanisms in 𝑛-type noncompensated Si in the
temperature range 2–300K. Samples were grown by the
Czochralski method, containing donor impurities of Sb with
a concentration of 1×1018 cm−3, It was found that, depending
on the temperature range, it is possible to identify 4 different
mechanisms of the electron transport. All of them include the
upper and lower Hubbard bands.

In the 𝑇 range 110–300K the usual activation to the edge
of the conduction band occurs.

At lower𝑇, in the range 2–90K, the conductivity of silicon
is mainly due to the impurities and is caused by the hopping
and band electron transport involving two Hubbard bands.
In the high 𝑇 range of this interval (28–90K) electronic
states are delocalized and charge transport occurs via the SO
neutral donors, while in the low 𝑇 range (2–20K) electronic
states are localized and the hopping prevails. The hopping
region is characterized by two types of hops, on UO and SO
sites, as well as by two modes, the Mott-type and SAD. The
Mott regime, in turn, is characterized by two types of hops
and two mechanisms of the MR, mainly the spin polarized
mechanism in the 𝑇 range 5–11 K and the mechanism, for
which contribution of the spin polarization is approximately
equal to the contribution of the wave function contraction
(11–20K). In the𝑇 interval 2–4K the conductivity is governed
by the HG and the charge transport is associated mainly
with the spin dependent hopping in the UHB. To improve the
identification of the observed Mott-type VRH-SAD crossover
and enhance the temperature interval of SAD the energy range
of the impurity states as well as the level of the injection of the
electrons should be increased [63].

Simulation of the DOS within the model of crossover
between the Mott-type VRH and SAD were carried out for
two types of DOS, soft gap and HG. We showed that, the
use of the interpolation expression for the CG-like DOS, but
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with the exponent 𝑛 greater than 2 and neglecting the gap
smearing, leads to the necessity of noticeable increase of the
exponent 𝑛 to get the exponent 𝑝 = 1 at 𝑇 < 4K. Simulation
of the CG-like DOS taking into account the width of the
gap and smearing of the region between Hubbard bands
showed that, with increasing𝑇 both smearing and decreasing
of the gap occurs that does not quite correspond to the 𝑇
dependence of the soft gap known from literature. Finally,
simulation within the HG approach considering smearing,
growth of the HG, and widening of the Hubbard bands
with increasing 𝑇 allowed describing with high accuracy the
experimental 𝜌(𝑇) dependence in the low 𝑇 range 2–20K.
The latter confirms the adequacy of the proposed HG model
for interpretation of the conductivity in the range 2–4K,
although more detailed experimental and theoretical studies
are required to clarify better the impact of the HG on the
low 𝑇 electron transport. In particular, direct spectroscopic
measurements of the density of states or conductivity measure-
ments for n-type Si with impurities of various energy levels and
different compensation degree could be potentially useful for
these purposes.
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