2014 № 4 (82)

УДК 621.391.26

АЛГОРИТМ МОДЕЛИРОВАНИЯ ТРАЕКТОРИИ ДВИЖЕНИЯ ВОЗДУШНОГО ОБЪЕКТА

А.А. ДЯТКО, С.М. КОСТРОМИЦКИЙ, П.Н. ШУМСКИЙ

OAO «КБ Радар» – управляющая компания холдинга «Системы радиолокации» Коммунистическая, 11, Минск, 220029, Беларусь

Поступила в редакцию 17 апреля 2014

Приведен метод вычисления координат траектории полета летательного аппарата, заданной множеством своих опорных точек и значениями радиусов окружностей, по которым летательный аппарат должен выполнять вираж в случае изменения направления своего движения. Показано, что наиболее просто необходимые вычисления выполняются в специальной системе координат, положение которой в пространстве определяется тремя опорными точками траектории.

Ключевые слова: траектория, вираж, система координат, аффинные преобразования.

Введение

При разработке, испытаниях и эксплуатационном контроле РЈІС традиционно используются натурные испытания. Однако они имеют ряд недостатков: высокую стоимость, сложность получения повторяющихся условий, а также практическую неосуществимость на ранних стадиях разработки. В связи с этим все большее распространение получают полунатурные испытания. В этом случае совокупность сигналов и помех на входе РЈІС моделируется с помощью имитаторов. Для формирования эхосигналов в имитаторах используются математические модели радиолокационных объектов. В частности, в качестве радиолокационного объекта может выступать летательный аппарат, который движется по заданной траектории. В этом случае, для формирования отраженных от него сигналов, необходимо иметь координаты точек этой траектории.

Постановка задачи

Пусть в декартовой системе координат (СК) XYZ заданы N точек $P_1, P_2, ..., P_N$, которые определяют некоторую траекторию полета воздушного объекта без самопересечений (рис.1), под которым можно понимать, например, самолет, управляемый пилотом. В каждой заданной точке траектории известен модуль скорости объекта $v_1, v_2, ..., v_N$.

Воздушный объект должен переместиться из начальной точки P_1 в конечную точку P_N , пролетая при этом через точки $P_2, P_3, \ldots, P_{N-1}$. Будем полагать, что траектория полета воздушного объекта представляет собой набор прямолинейных отрезков, которые соединяются между собой некоторой кривой, называемой виражом [1], рис.1.

Вход и выход летательного аппарата из виража должен выполняться по касательной к траектории виража. Считаем, что вираж выполняется по окружности, радиус которой известен.

Задача заключается в том, чтобы для заданных дискретных моментов времени получить координаты точек траектории в СК $\it XYZ$.

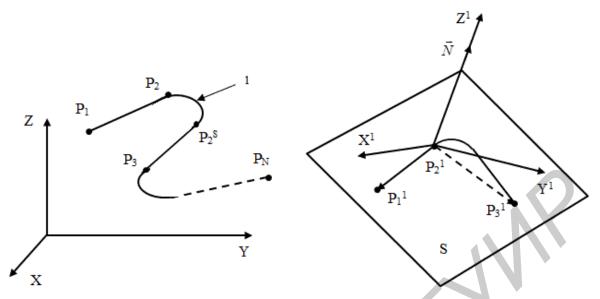


Рис. 1. Траектория движения объекта; 1- траектория виража

Рис. 2. Система координат $X^1Y^1Z^1$

Расчет координат точек сопряжения

Под точкой сопряжения будем понимать точку траектории летательного аппарата, в которой прямолинейный участок траектории переходит в вираж или вираж переходит в прямолинейный участок траектории. Другими словами, точка сопряжения - это точка траектории, где прямолинейный отрезок траектории касается окружности при входе (на рис.1 это точки P_2, P_3) или выходе (на рис. 1 это точка P_2^S) из виража.

Выполним расчет координат точек сопряжения для трех последовательных точек траектории P_{k-1}, P_k, P_{k+1} . Для удобства обозначим их как P_1, P_2, P_3 . В исходной СК XYZ решение требуемой задачи требует довольно громоздких вычислений. Поэтому мы воспользуемся другой системой координат, где эти вычисления выполняются достаточно просто.

Пусть S – плоскость, которая определяется точками P_1, P_2, P_3 . Для дальнейших вычислений перейдем от системы координат XYZ к системе координат $X^1Y^1Z^1$, плоскость X^1Y^1 которой совпадает с плоскостью S (рис. 2), а начало находится в точке P_2 . При этом направление оси Z^1 будет определяться вектором \vec{N} , нормальным к плоскости S.

$$\vec{N} = \overline{P_2 P_1} \times \overline{P_2 P_3} = (n_x, n_y, n_z)^T, \tag{1}$$

где
$$P_1 = (x_1, y_1, z_1)^T, P_2 = (x_2, y_2, z_2)^T, P_3 = (x_3, y_3, z_3)^T,$$
(2)

$$\overline{P_2P_1} = (x_{21}, y_{21}, z_{21})^T, \ \overline{P_2P_3} = (x_{23}, y_{23}, z_{23})^T,$$
 (3)

$$x_{21} = x_1 - x_2, \ y_{21} = y_1 - y_2, \ z_{21} = z_1 - z_2,$$
 (4)

$$x_{23} = x_3 - x_2, \ y_{23} = y_3 - y_2, \ z_{23} = z_3 - z_2.$$
 (5)

C учетом (2-5) выражение (1) для вектора нормали может быть представлено в форме:

$$\vec{N} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_{21} & y_{21} & z_{21} \\ x_{23} & y_{23} & z_{23} \end{vmatrix} = (y_{21}z_{23} - y_{23}z_{21})\vec{i} - (x_{21}z_{23} - x_{23}z_{21})\vec{j} + (x_{21}y_{23} - x_{23}y_{21})\vec{k} ,$$

где \vec{i} , \vec{j} , \vec{k} — единичные вектора вдоль осей X, Y, Z соответственно в СК XYZ. Переход от системы координат XYZ к системе координат $X^1Y^1Z^1$ можно представить как последовательность следующих операций: поворот СК XYZ вокруг оси Z в положительном направлении (против часовой стрелки) на угол ϕ , поворот полученной СК вокруг оси X в положительном направлении на угол θ и смещение ее начало координат в точку P_2^{θ} .

Необходимые для последующих вычислений соотношения имеют следующий вид. $\binom{P_i^1}{1} = M_1(P_2^\theta,\theta,\phi) \binom{P_i}{1} \ , \ P_i^1 = (x_i^1,\,y_i^1,\,z_i^1)^T \ , \ i=1,2,3 \ - \ \text{преобразование координат при переходе}$

от СК
$$XYZ$$
 к $X^1Y^1Z^1$, где

$$M_1(P_2^{\theta}, \theta, \varphi) = T^S(P_2^{\theta}) R_X^S(\theta) R_Z^S(\varphi), \tag{6}$$

$$\begin{pmatrix} P_2^{\theta} \\ 1 \end{pmatrix} = R_X^{S} \left(\theta \right) R_Z^{S} \left(\phi \right) \begin{pmatrix} P_2 \\ 1 \end{pmatrix}, P_2^{\theta} = \left(x_2^{\theta}, y_2^{\theta}, z_2^{\theta} \right)^{T}$$

$$R_Z^S(\phi) = \begin{pmatrix} \cos \phi & \sin \phi & 0 & 0 \\ -\sin \phi & \cos \phi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ R_X^S(\phi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \phi & \sin \phi & 0 \\ 0 & -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ T^S(\Delta P) = \begin{pmatrix} 1 & 0 & 0 & -\Delta x \\ 0 & 1 & 0 & -\Delta y \\ 0 & 0 & 1 & -\Delta z \\ 0 & 0 & 0 & 1 \end{pmatrix} - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2}$$

матрицы аффинных преобразования координат [2] при вращении системы координат вокруг оси Z, X и смещении начала координат на $\Delta P = (\Delta x, \Delta y, \Delta z)^T$.

$$\varphi = -\arctan\left(\frac{n_x}{n_y}\right) + \frac{\pi}{2} \left[2 - \operatorname{sgn}(n_x) - \operatorname{sgn}(n_x) \operatorname{sgn}(-n_y)\right], \ 0 \le \varphi < 2\pi,$$

$$\theta = \arctan\left(\frac{n_x'}{n_z'}\right) + \frac{\pi}{2} \left[2 - \operatorname{sgn}(n_x') - \operatorname{sgn}(n_x') \operatorname{sgn}(n_z')\right], \ 0 \le \theta < 2\pi,$$

где
$$\left(n_{x}', n_{y}', n_{x}', 1\right)^{T} = R_{Z}^{S}\left(\psi\right)\left(n_{x}, n_{y}, n_{x}, 1\right)^{T}$$
, $\operatorname{sgn}(x) = \begin{cases} 1, & x \ge 0 \\ -1, & x < 0 \end{cases}$

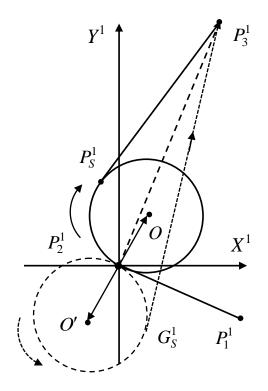
$$\psi = \arctan\left(\frac{n_y}{n_x}\right) + \frac{\pi}{2} \left[2 - \operatorname{sgn}(n_y) - \operatorname{sgn}(n_y) \operatorname{sgn}(n_x)\right], \ 0 \le \psi < 2\pi.$$

Дальнейшие вычисления выполняются в СК $X^1Y^1Z^1$. Вычислим координаты центра окружности (т. O на рис. 3) по которой выполняется вираж. Пусть (x_0^1, y_0^1) – координаты центра окружности , r_0 – радиус этой окружности (радиус виража). Тогда ее уравнение в СК $X^1Y^1Z^1$ будет иметь вид

$$\left(x^{1}-x_{0}^{1}\right)^{2}+\left(y^{1}-y_{0}^{1}\right)=r_{0}^{2}.\tag{7}$$

Так как окружность (7) проходит через начало координат (точка P_2^1) и отрезок прямой $P_1^1P_2^1$ является касательным к окружности в точке P_2^1 ($\overline{P_2^1O}\cdot\overline{P_1^1P_2^1}=0$), можно записать систему уравнений для вычисления координат центра окружности

$$\begin{cases} \left(x_0^1\right)^2 + \left(y_0^1\right)^2 = r_0^2 \\ x_0^1 x_1^1 + y_0^1 y_1^1 = 0 \end{cases}$$
 (8)



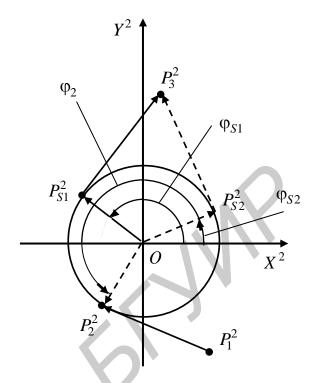


Рис. 3. Схема для выбора нужной траектории виража

Рис. 4. Схема для выбора нужной точки выхода из виража

Из (8) для $y_1^1 \neq 0$ получаем, что

$$\begin{cases} x_{01}^{1} = \frac{r_{0}}{\sqrt{1+q^{2}}} \\ y_{01}^{1} = -qx_{01}^{1} = -\frac{q}{\sqrt{1+q^{2}}} r_{0} \end{cases}, \begin{cases} x_{02}^{1} = -\frac{r_{0}}{\sqrt{1+q^{2}}} \\ y_{02}^{1} = -qx_{02}^{1} = \frac{q}{\sqrt{1+q^{2}}} r_{0} \end{cases}, q = \frac{x_{1}^{1}}{y_{1}^{1}} \end{cases}$$

Для
$$y_1^1=0$$
 находим $\begin{cases} x_{01}^1=0\\ y_{01}^1=r_0 \end{cases}$, $\begin{cases} x_{02}^1=0\\ y_{02}^1=-r_0 \end{cases}$

Найденные координаты (x_{01}^1, y_{01}^1) и (x_{02}^1, y_{02}^1) определяют центры двух окружностей (рис. 3) в точках O и O' соответственно, по которым возможно реализовать вираж. При этом окружность с центром в точке O определяет вираж для траектории без самопересечений, окружность с центром в точке O' – для траектории с самопересечением.

Мы будем использовать траекторию без самопересечений. Это приводит к необходимости определять окружность виража для этого типа траектории. Рассмотрим вектора $\overline{P_2^lO} = (x_{01}^l - x_2^l, \ y_{01}^l - y_2^l)^T = (x_{01}^l, \ y_{01}^l)^T \ \text{и} \ \overline{P_2^lP_3^l} = (x_3^l - x_2^l, \ y_3^l - y_2^l)^T = (x_3^l, \ y_3^l)^T.$

Из рис. 3 видно, что для траектории без самопересечений угол α между векторами $\overline{P_2^1O}$ и $\overline{P_2^1P_3^1}$ должен быть острым. Отсюда получаем условие выбора траектории без самопересечений $\cos\alpha = \frac{\overline{P_2^1O} \cdot \overline{P_2^1P_3^1}}{\left|\overline{P_2^1O}\right|\left|\overline{P_2^1P_3^1}\right|} = \frac{x_{01}^1x_3^1 + y_{01}^1y_3^1}{\sqrt{\left(x_{01}^1\right)^2 + \left(y_{01}^1\right)^2}} > 0$.

Теперь задача заключается в определении координат точки выхода из виража (точка P_S^1 на рис. 3), после которой следует прямолинейный участок траектории $P_S^1P_3^1$.

Для упрощения последующих вычислений переместим начало СК $X^1Y^1Z^1$ в центр окружности, по которой выполняется вираж (точка O на рис. 3). В результате получаем СК $X^2Y^2Z^2$ (рис. 4). В СК $X^2Y^2Z^2$ пересчитываем координаты точек P_1^1 , P_2^1 и P_3^1 .

$$\begin{pmatrix} P_i^2 \\ 1 \end{pmatrix} = T_{12}^S (x_0^1, y_0^1, z_0^1) \begin{pmatrix} P_i^1 \\ 1 \end{pmatrix} = T_{12}^S (R_0^1) \begin{pmatrix} P_i^1 \\ 1 \end{pmatrix}, i = 1, 2, 3,$$

$$(9)$$

где
$$R_0^1 = (x_0^1, y_0^1, z_0^1)^T = (x_0^1, y_0^1, 0)^T$$
.

Пусть P_s^2 – лежащая на окружности с центром в точке O точка выхода из виража. Как будет показано ниже, это точка P_{S1}^2 или P_{S2}^2 (рис. 4). Вычислим координаты этой точки системе координат $X^2Y^2Z^2$

Воспользовавшись условием, что точка выхода из виража лежит на окружности, определяющей вираж, и выход из виража происходит по касательной к этой окружности, можно записать систему уравнений для вычисления координат этой точки

$$\begin{cases} (x_S^2)^2 + (y_S^2)^2 = r_0^2 \\ x_S^2(x_3^2 - x_S^2) + y_S^2(y_3^2 - y_S^2) = 0 \end{cases}$$
(10)

Из (10) можно получить значения углов $\,\phi_{S1}\,$ и $\,\phi_{S2}({\rm puc.4}),$ соответствующих точкам $\,P_{S1}^2\,$ и $\,P_{S2}^2$:

$$\varphi_{S1} = \alpha + \arccos p$$
, $\varphi_{S2} = \alpha - \arccos p$,

где
$$p = \frac{r_0}{\sqrt{\left(x_3^2\right)^2 + \left(y_3^2\right)^2}}$$
, $\alpha = \arctan\left(\frac{y_3^2}{x_3^2}\right) + \frac{\pi}{2}\left[2 - \operatorname{sng}(y_3^2) - \operatorname{sng}(y_3^2)\operatorname{sng}(x_3^2)\right]$, $0 \le \alpha < 2\pi$.

Поскольку значения углов ϕ_{S1} и ϕ_{S2} должны принадлежать диапазону $[0,2\pi)$, то их значения должны вычисляться по правилу $\phi_{Si} = \begin{cases} \phi_{Si}, & \text{при } \phi_{Si} \geq 0 \\ \phi_{Si} + 2\pi, & \text{при } \phi_{Si} < 0 \end{cases}$, i=1,2.

Соответствующие декартовы координаты определяются в соответствии с выражениями

$$x_{Si}^2 = r_0 \cos \varphi_{Si}$$

 $y_{Si}^2 = r_0 \sin \varphi_{Si}$, $i = 1, 2$.

Дальнейшая задача заключается в выборе нужной точки выхода из виража P_{S1}^2 или P_{S2}^2 (рис. 4). Опуская промежуточные выкладки, приведем приведем условие выбора нужной точки:

$$P_{S}^{2} = \begin{cases} P_{S1}^{2}, & \text{при } \cos\phi_{1} > 0 \\ P_{S2}^{2}, & \text{при } \cos\phi_{2} > 0 \end{cases}$$

$$\text{ГДе } \cos\phi_{1} = \frac{(x_{3}^{2} - x_{S1}^{2})(x_{B1}^{2} - x_{S1}^{2}) + (y_{3}^{2} - y_{S1}^{2})(y_{B1}^{2} - y_{S1}^{2})}{\sqrt{(x_{3}^{2} - x_{S1}^{2})^{2} + (y_{3}^{2} - y_{S1}^{2})^{2}} \sqrt{(x_{B1}^{2} - x_{S1}^{2})^{2} + (y_{B1}^{2} - y_{S1}^{2})^{2}}},$$

$$\cos\phi_{2} = \frac{(x_{3}^{2} - x_{S2}^{2})(x_{B2}^{2} - x_{S2}^{2}) + (y_{3}^{2} - y_{S2}^{2})(y_{B2}^{2} - y_{S2}^{2})}{\sqrt{(x_{3}^{2} - x_{S2}^{2})^{2} + (y_{3}^{2} - y_{S2}^{2})^{2}} \sqrt{(x_{B2}^{2} - x_{S2}^{2})^{2} + (y_{B2}^{2} - y_{S2}^{2})^{2}}},$$

$$\begin{cases} x_{B1} = r_{0}\cos(\phi_{S1} + \delta), & \begin{cases} x_{B2} = r_{0}\cos(\phi_{S2} + \delta), & \delta = \begin{cases} -\Delta\phi, & \text{при } \cos\beta_{1} > 0 \\ \Delta\phi, & \text{при } \cos\beta_{2} > 0 \end{cases}, \end{cases}$$

$$\cos\beta_{1} = \frac{(x_{2}^{2} - x_{1}^{2})(x_{A1} - x_{2}^{2}) + (y_{2}^{2} - y_{1}^{2})(y_{A1} - y_{2}^{2})}{\sqrt{(x_{B2}^{2} - x_{2}^{2})^{2} + (y_{B2}^{2} - y_{2}^{2})^{2}}},$$

$$\cos \beta_{2} = \frac{(x_{2}^{2} - x_{1}^{2})(x_{A2} - x_{2}^{2}) + (y_{2}^{2} - y_{1}^{2})(y_{A2} - y_{2}^{2})}{\sqrt{(x_{2}^{2} - x_{1}^{2})^{2} + (y_{2}^{2} - y_{1}^{2})^{2}} \sqrt{(x_{A2} - x_{2}^{2})^{2} + (y_{A2} - y_{2}^{2})^{2}}} .$$

$$\begin{cases} x_{A1} = r_{0} \cos(\varphi_{2} - \Delta \varphi) & x_{A2} = r_{0} \cos(\varphi_{2} + \Delta \varphi) \\ y_{A1} = r_{0} \sin(\varphi_{2} - \Delta \varphi) & y_{A2} = r_{0} \sin(\varphi_{2} + \Delta \varphi) \end{cases}$$

$$\varphi_{2} = \arctan \left[\frac{y_{2}^{2}}{x_{2}^{2}} + \frac{\pi}{2} \left[2 - \operatorname{sng}(y_{2}^{2}) - \operatorname{sng}(y_{2}^{2}) \operatorname{sng}(x_{2}^{2}) \right], \ 0 \le \varphi_{2} < 2\pi,$$

∆φ – некоторое малое значение угла. При этом предполагается, что условия (11) одновременно выполняться не могут.

Расчет координат траектории виража

Определим длину дуги виража $L = r_0 |\phi_S - \phi_2| = r_0 |\Delta \Phi|$ и угловое перемещение $\Delta \phi = \frac{v_2 \Delta t}{r} \operatorname{sng}(\Delta \Phi)$ летательного аппарата за время Δt , соответствующее интервалу дискретизации координат траектории во времени, v_2 – скорость летательного аппарата во время выполнения виража, $\Delta\Phi = \varphi_S - \varphi_2$. Из условия $\Delta L = v_2 \Delta t = r_0 |\Delta \phi|$ определим угловое перемещение $\Delta \phi$ летательного аппарата за время $\Delta t : \Delta \phi = \frac{v_2 \Delta t}{r_0} \operatorname{sng}(\Delta \Phi)$. Вычислим число точек отсчета координат траектории на вираже $N_F = \frac{\Delta \Phi}{\Delta \Delta} + 1$.

При расчете координат следует учесть, что первая точка траектории виража совпадает с конечной точкой предшествующего виражу прямолинейного участка траектории. Последняя точка траектории виража (точка выхода из виража P_s^2 в СК $X^2Y^2Z^2$) является одновременно первой точкой следующего за виражом прямолинейного участка траектории.

Таким образом, в СК $X^2Y^2Z^2$ координаты точек траектории виража при его прохождении с постоянной скоростью v_2 и через временной интервал Δt можно представить в

прохождении с постоянной скоростью
$$v_2$$
 и через временной интервал Δt можно представи виде $F_i^2=(x_{Fi}^2,\,y_{Fi}^2,\,z_{Fi}^2)^T$, $i=0,1,\ldots,N_F-2$, где
$$\begin{cases} x_{Fi}^2=r_0\cos[\phi_2+(i+1)\Delta\phi],\\ y_{Fi}^2=r_0\sin[\phi_2+(i+1)\Delta\phi], & i=0,1,\ldots,N_F-2.\\ z_{Fi}^2=0 \end{cases}$$
 Пересчитаем полученное множество координат траектории виража в исходную систе

Пересчитаем полученное множество координат траектории виража в исходную систему координат ХҮХ. Воспользовавшись (6) и (9), получаем

$$\begin{pmatrix} P_i^2 \\ 1 \end{pmatrix} = T_{12}^S(R_0^1) \begin{pmatrix} P_i^1 \\ 1 \end{pmatrix} = T_{12}^S(R_0^1) M_1(P_2^\theta, \theta, \phi) \begin{pmatrix} P_i \\ 1 \end{pmatrix} = M_2(R_0^1, P_2^\theta, \theta, \phi) \begin{pmatrix} P_i \\ 1 \end{pmatrix},$$
 (12)

где $M_2(R_0^1, P_2^\theta, \theta, \phi) = T_{12}^S(R_0^1) M_1(P_2^\theta, \theta, \phi) = T_{12}^S(R_0^1) T^S(P_2^\theta) R_X^S(\theta) R_Z^S(\phi)$.

Из (12) находим, что
$$\begin{pmatrix} P_i \\ 1 \end{pmatrix} = M_2^{-1}(R_0^1, P_2^\theta, \theta, \phi) \begin{pmatrix} P_i^2 \\ 1 \end{pmatrix}$$
, где [2]

$$M_{2}^{-1}(R_{0}^{1}, P_{2}^{\theta}, \theta, \varphi) = [T_{12}^{S}(R_{0}^{1})T^{S}(P_{2}^{\theta})R_{X}^{S}(\theta)R_{Z}^{S}(\varphi)]^{-1} = R_{Z}^{S}(-\varphi)R_{X}^{S}(-\theta)T^{S}(-P_{2}^{\theta})T_{12}^{S}(-R_{0}^{1}).$$

Представим все множество рассчитанных координат траектории виража в СК $X^2Y^2Z^2$ в виде матрицы $Q^2 = \begin{pmatrix} F_0^2 & F_1^2 \dots F_{N_F-2}^2 \\ 1 & 1 \dots & 1 \end{pmatrix}$.

Тогда в СК XYZ координаты траектории виража примут вид

$$Q = \boldsymbol{M}_2^{-1}(\boldsymbol{R}_0^1, \boldsymbol{P}_2^\theta, \boldsymbol{\theta}, \boldsymbol{\phi}) Q^2 \text{, где } Q = \begin{pmatrix} Q_0 & Q_1 \dots Q_{N_{F-2}} \\ 1 & 1 & \dots & 1 \end{pmatrix}, \ \boldsymbol{Q}_i = (\boldsymbol{x}_i, \, \boldsymbol{y}_i, \, \boldsymbol{z}_i)^T \text{, } i = 0, 2, \dots, N_{F-2} \,.$$

Вычисление координат прямолинейных участков траектории трудностей не вызывает и может быть выполнено непосредственно в СК XYZ. Но при этом должен быть задан закон движения летательного аппарата на этих участках.

Заключение

Разработан метод вычисления множества координат траектории виража летательного аппарата через заданные промежутки времени. Показано, что наиболее просто необходимые вычисления выполняются в специальной системе координат, положение которой в пространстве определяется тремя опорными точками траектории летательного аппарата. Приведены необходимые преобразования для перехода из исходной системы координат к расчетной и обратно.

ALGORITHM OF MODELING THE TRAJECTORY OF AN AERIAL OBJECT

A.A. DYATKO, S.M. KOSTROMITSKI, P.N. SHUMSKI

Abstract

The method of coordinates calculation of a flight trajectory of the aircraft, adjusted by the reference points and values of radiuses of circles on which the bend in case of change of a direction of the movement should carry out the aircraft is resulted. It is shown that it's easier to carry out nessesary calculations in special system of the co-ordinates which position in space is defined by three reference points of a trajectory.

Список литературы

- 1. Остославский И.В. Динамика полета. М., 1969.
- 2. Порев В.Н. Компьютерная графика. СПб, 2002.