№ 5 (83)

УДК 621.396.96

СВОЙСТВА ФУНКЦИИ НЕОПРЕДЕЛЕННОСТИ ПСЕВДОХАОТИЧЕСКИХ ДИСКРЕТНЫХ ЧАСТОТНО-МАНИПУЛИРОВАННЫХ СИГНАЛОВ С ВЕСОВОЙ ОБРАБОТКОЙ

Е.Н. БУЙЛОВ, С.А. ГОРШКОВ, С.Ю. СЕДЫШЕВ, С.Н. ЯРМОЛИК

Военная академия Республики Беларусь Минск-57, 220057, Беларусь

Поступила в редакцию 20 марта 2014

Проведен анализ свойств функций неопределенности псевдохаотических дискретных частотно-манипулированных сигналов при использовании в качестве парциальных дискретов линейно-частотно-модулированных радиоимпульсов. Рассмотрена возможность снижения уровня боковых лепестков такого широкополосного сигнала.

Ключевые слова: дискретные частотно-манипулированные сигналы, псевдохаотическая манипуляция частоты, функция неопределенности, весовая обработка.

Введение

Одним из представителей широкополосных сигналов является дискретный частотноманипулированный сигнал (ДЧМС). Использование ДЧМС позволяет одновременно повышать разрешающую способность как по дальности, так и по скорости, повышая при этом скрытность и имитостойкость зондирующего сигнала. Определенный интерес представляет рассмотрение особенностей псевдохаотических частотно-манипулированных сигналов, а именно свойств их функций неопределенности (ФН). Известно, что псевдохаотический ДЧМС характеризуется узким пиком ФН и низким уровнем боковых лепестков (БЛ) при ненулевых рассогласованиях по времени и частоте. Для обеспечения «кнопочной» формы ФН рассматриваемого сигнала несущая частота парциальных дискретов изменяется по специальному закону. Большой вклад в разработку теории псевдослучайных оптимальных последовательностей внесли Костас, Голомб, Тейлор, Велч, Лемпель и др. [1–9].

Данная работа является второй в цикле статей, посвященных анализу свойств ФН ступенчатых ДЧМС. В первой статье [10] в качестве зондирующих сигналов рассматривались последовательности лестничных ДЧМС. Целью настоящей работы является анализ свойств ФН последовательностей псевдохаотических ДЧМС (одинаковых или различных) с ЛЧМ парциальными дискретами и иллюстрация возможности снижения уровня БЛ таких сигналов в процессе их обработки.

В настоящей статье тела неопределенности (ТН) одиночных псевдохаотических ДЧМС отображены в полном объеме, а их последовательностей – с ограничениями (ввиду больших вычислительных затрат). Вначале показана подробная структура когерентной последовательности псевдохаотических ДЧМС в пределах главного максимума (главного лепестка), а затем пределы отображения расширены до двух периодов повторения.

Одиночные дискретные частотно-манипулированные сигналы

Для обеспечения приближения Φ H к кнопочному виду возможно использование последовательности импульсов с псевдослучайными скачкообразными изменениями несущей частоты парциальных импульсов на величину δf . В этом случае частота k-го импульса последовательности отличается от центральной несущей частоты f_0 на величину [8]:

2014

 $F_k = \left(\gamma(k) - \frac{M+1}{2}\right) \delta f$, (k = 1, 2, ..., M), где $\gamma(k)$ – псевдослучайная целочисленная функция,

М – число используемых частот (парциальных импульсов).

Выбор функций $\gamma(k)$ в числовых полях с конечным числом элементов (полях Галуа) рассмотрен в [8, 9, 11]. На рис. 1, *а* приведена частотно-временная диаграмма Габора псевдохаотического ДЧМС.

Рис. 1. Частотно-временная диаграмма Габора с длиной кода Костаса-Велча М = 6: *а* – одиночного псевдохаотического ДЧМС; *б* – когерентной последовательности из двух псевдохаотических с одинаковым кодом частоты ДЧМС; *в* – когерентной последовательности из двух псевдохаотических с различным кодом частоты ДЧМС

Среди всевозможных вариантов частотно-временного кодирования, тело неопределенности (ТН) псевдохаотического ДЧМС приближается к «кнопочному» виду с уровнем БЛ 1/*M* [1, 8]. В рамках статьи анализ свойств ФН проводится на примере псевдохаотического ДЧМС с ЛЧМ дискретами при длине кода M = 1020(M + 1 - простое число) со скачком частоты $\delta f = 1 \text{ МГц}$, периодом повторения ЛЧМ дискретов $T_{ng} = 20 \text{ мкс}$, длительностью дискрета $T_{g} = 10 \text{ мкс}$, девиацией частоты дискрета $\Delta f_{M} = \Delta f_{g} = 1 \text{ МГц}$. Общая ширина полосы такого сигнала составляет $\Delta f_{0} = 1020 \text{ МГц}$, потенциальное разрешение по частоте Доплера – $\Delta F_{g} \approx 50 \text{ Гц}$. На рис. 2 приведены сечения ФН анализируемого сигнала вертикальными плоскостями F = 0, F > 0 и TH псевдохаотического ДЧМС с ЛЧМ парциальными дискретами.

Анализ полученных результатов показывает, что рассматриваемый ДЧМС характеризуется высоким уровнем БЛ в сечении ФН плоскостью F=0 (порядка –13 дБ), уменьшающимися по закону функции $[\sin(x)/x]^2$ (рис. 2, *a*). В сечении ФН плоскостью F>0 средний уровень БЛ соответствует теоретическому 1/M (порядка –30 дБ) с максимальными выбросами до 2/M (порядка –27 дБ) [8, 9]. Полученный центральный максимум ТН псевдохаютического ДЧМС обеспечивает высокую разрешающую способность не только по дальности $\Delta r = c/(2M \cdot \delta f)$, но и по радиальной скорости $\Delta V_r = c/(2T_0 f_0)$ (рис. 2, *б*).

Отмеченный факт является немаловажным при решении задач классификации радиолокационных объектов. Очевидно, что рассматриваемые широкополосные сигналы обладают приемлемым уровнем БЛ только при использовании большого числа парциальных импульсов *M*.

Рис. 2. Сечения ФН плоскостями F = 0 и F > 0 (a) и ТН псевдохаотического ДЧМС с ЛЧМ парциальными дискретами и длиной кода Костаса-Велча M = 1020 (б)

Весовая обработка одиночного дискретного частотно-манипулированного сигнала

Известно [12], что использование весовой обработки (ВО) сжатого сигнала позволяет существенно снижать уровень его БЛ. Особенностью ВО псевдохаотического ДЧМС заключается в необходимости учета того, что номер частотного дискрета растет последовательно (по «ступенчатому» закону), а значение частоты изменяется хаотически. В связи с этим каждый парциальный радиоимпульс сигнала (дискрет частоты) должен быть умножен на весовой коэффициент, соответствующий порядковому номеру дискрета частоты [1]. На рис. 3, *а* показан пример весовой функции Хемминга, обеспечивающей ВО отсчетов рассматриваемого сжатого ДЧМС сигнала (M = 1020).

Рис. 3. Временная весовая функция Хемминга, обеспечивающая: *a* – ВО одиночного псевдохаотического ДЧМС с длиной кода *M* = 1020; *б* – двойную ВО когерентной последовательности псевдохаотического ДЧМС с длиной кода *M* = 1020

С целью подтверждения факта снижения уровня БЛ ДЧМС при использовании ВО, на рис. 4 приведены сечения (плоскостями F=0, $F=F_{ng}/2$ и $F=F_{ng}$, где $F_{ng}=1/MT_{ng}$ – частота повторения парциальных дискрет) ФН псевдохаютического ДЧМС с ЛЧМ парциальными дискретами.

Результаты анализа сечений ФН рассматриваемого сигнала показывают, что использование весовой функции снижает уровень БЛ только в сечении плоскостью F = 0 (например, для функции Хемминга –43 дБ), что полностью соответствует теоретическим данным [12]. В остальных же сечениях уровень боковых остатков достаточно высок (порядка –30 дБ) и определяется только числом дискретов сигнала 1/M.

Рис. 4. Сечения ФН плоскостями F = 0, $F = F_{ng}/2$ и $F = F_{ng}$ одиночного псевдохаотического ДЧМС с длиной кода M = 1020 (использована ВО функцией Хемминга)

Когерентная последовательность дискретных частотно-манипулированных сигналов

Для улучшения энергетического потенциала радиолокационных станций, селекции движущихся целей на фоне пассивных помех и повышения точности сопровождения объектов по радиальной скорости, используют зондирующие сигналы в виде когерентных последовательностей ДЧМС [8] с одинаковыми (рис. 1, б) или различными (рис. 1, в) законами псевдохаотической частотной манипуляции.

Анализ характеристик ФН проведен на примере когерентной последовательности из 10 (N = 10) псевдохаотических ДЧМС с ЛЧМ дискретами и длиной кода M = 102, величиной скачка частоты $\delta f = 10$ МГц, шириной спектра ЛЧМ дискрета $\Delta f_{\rm d} = 10$ МГц, длительностью $T_{\rm d} = 10$ мкс и периодом повторения дискрета $T_{\rm nd} = 20$ мкс. Длительность одиночного ДЧМС $T_0 = 2,04$ мс Общая ширина спектра сигнала $\Delta f_0 = 1020$ МГц, длительность когерентной последовательности $T_0N = 20,4$ мс. На рис. 5 приведены сечения ФН вертикальными плоскостями $F = 0; F_{\rm nd} / 2; F_{\rm nd}$.

Рис. 5. Сечения ФН плоскостями, F = 0, $F = F_{ng}/2$ и $F = F_{ng}$ когерентной последовательности из 10 псевдохаотических ДЧМС с ЛЧМ дискретами и длиной кода Костаса-Велча M = 102

Результаты анализа показывают, что при нулевой расстройке по частоте F = 0 сечение ФН характеризуется высоким уровнем БЛ (порядка –13 дБ), снижающимся по закону функции $[\sin(x)/x]^2$. Максимальный уровень БЛ соответствует сечению ФН при $F = F_{ng}$. Применительно к рассматриваемому сигналу (с одинаковым кодом частоты) фрагмент TH и его сечение горизонтальной плоскостью $\rho(\tau, F) = \text{const}$ представлены на рис. 6.

Анализ полученных результатов показывает, что вдоль оси частот располагаются ярко выраженные пики (на частотах кратных $\pm F_{ng}$). При этом уровень частотных пиков вдоль оси времени составляет порядка –20 дБ, что соответствует уровню 1/*M* одиночного ДЧМС. Между пиками наблюдается провал до уровня порядка (–35…–40) дБ. Увеличивая частоту повторения F_{ng} возможно расширить зоны с пониженным уровнем боковых остатков.

Рис. 6. Фрагмент TH (*a*) и сечение TH горизонтальной плоскостью ρ (τ, *F*) = const когерентной последовательности из 10 псевдохаотических ДЧМС с ЛЧМ дискретами и длиной кода Костаса-Велча *M* = 102 (*б*)

Весовая обработка когерентной последовательности дискретных частотноманипулированных сигналов

Интерес вызывает исследование возможности снижения уровня боковых остатков зондирующего сигнала в виде когерентной последовательности псевдохаотических ДЧМС с ЛЧМ дискретами. С этой целью целесообразно использовать известные функции ВО [12]. На рис. 7 приведены сечения ФН каждого ДЧМС из рассматриваемой последовательности вертикальными плоскостями при различных расстройках по частоте.

Рис. 7. Сечения ФН плоскостями *F* = 0, *F* = *F*_{пд}/2 и *F* = *F*_{пд} когерентной последовательности из 10-ти псевдохаотических ДЧМС с ЛЧМ дискретами, ВО функцией Хемминга и длиной кода *M* = 102

Анализ полученных результатов показывает, что использование функции Хемминга снижает уровень боковых остатков ДЧМС до –43 дБ (согласуется с результатами [12]) только при F = 0. При ненулевых расстройках по частоте ($F = F_{ng} / 2$ и $F = F_{ng}$) уровень БЛ остался неизменным относительно сечений ФН ДЧМС до ВО (рис. 5). На рис. 8 отображены фрагменты ТН когерентной последовательности из 10 псевдохаотических ДЧМС с ЛЧМ дискретами и различными вариантами кода частоты при ВО каждого сигнала в отдельности и дополнительной ВО всей последовательности (двойная ВО). Такой подход позволяет снизить уровень боковых остатков сжатого сигнала, как вдоль оси времени, так и вдоль оси частот до теоретического (например, для функции Хемминга –43 дБ). На рис. 8, *а* код частоты в каждом ДЧМС одинаковый (рис. 1, δ). Уровень БЛ в частотных сечениях кратных $\pm F_{ng}$ определяется величиной 1/M (порядка –20 дБ).

На рис. 8, б код частоты в каждом ДЧМС различный (рис. 1, в). В отличии от результатов рис. 8, а, наблюдается увеличение уровня боковых остатков сжатого сигнала, как вдоль оси частот, так и вдоль оси времени до -45 дБ. Уровень БЛ в частотных сечениях кратных $\pm F_{ng}$ остается неизменным и определяется величиной 1/M (порядка -20 дБ). Использование рассматриваемой когерентной последовательности ДЧМС позволяет повысить помехозащищенность радиолокационных станций от воздействия активных шумовых помех.

Рис. 8. Фрагмент ТН когерентной последовательности из 10 псевдохаотических ДЧМС с ЛЧМ дискретами после двойной ВО и одинаковым (*a*) и различным (*б*) кодами частоты в каждом ДЧМС

На рис. 3, б показан вид двойной весовой функции, обеспечивающей минимизацию боковых остатков сигнала в сечениях по времени и частоте, при использовании зондирующего сигнала в виде когерентной последовательности псевдохаотических ДЧМС. Рассматриваемая функция представляет собой произведение десяти весовых функций псевдохаотических сигналов на общую весовую функцию всей последовательности.

Вид тела неопределенности когерентной последовательности дискретных частотноманипулированных сигналов на интервалах времени 2*T*_п и частоты *F*_п

Необходимость данного анализа обусловлена тем, что представленный фрагмент ТН ДЧМС (рис. 8) отображает лишь небольшую часть ТН вдоль осей времени ($4T_{ng}/100$) и частоты ($2F_{ng}$). В связи с этим рассматривается ТН когерентной последовательности ДЧМС в следующих пределах: вдоль оси времени ($-T_n - T_n$), вдоль оси частот ($0 - F_n = 1/T_{ng}$).

На рис. 9 отображен фрагмент TH на примере когерентной последовательности из 5 (N=5) псевдохаотических ДЧМС с ЛЧМ дискретами и длиной кода M=10, величиной скачка частоты $\delta f = 1 \,\mathrm{MFu}$, шириной спектра ЛЧМ дискрета $\Delta f_{\mathrm{d}} = 1 \,\mathrm{MFu}$, длительностью дискрета $T_{\mathrm{d}} = 10 \,\mathrm{mkc}$ и периодом повторения дискретов $T_{\mathrm{nd}} = 20 \,\mathrm{mkc}$. Длительность одиночного ДЧМС $T_0 = 0,2 \,\mathrm{mc}$. Общая ширина спектра ДЧМС и всего сигнала $f_0 = 10 \,\mathrm{MFu}$, а его длительность $T_0 N = 1 \,\mathrm{mc}$. Шаг дискретизации по времени $\Delta t = 20 \,\mathrm{kc}$.

На рис. 9, а использован одинаковый код частоты в каждом ДЧМС. Главные лепестки (ГЛ) ТН последовательности ДЧМС располагаются на частотах кратных $\pm F_{\rm n}$. На частотах кратных F_{ng} , и при временных расстройках кратных $\pm T_n$, значение БЛ определяется величиной 1/M (порядка –10 дБ), а их количество – числом дискрет ДЧМС (M = 10). Уровень ГЛ убывает по закону $[\sin(x)/x]^2$ в пределах ширины спектра всей последовательности (10 МГц). Вдоль оси времени ГЛ следуют с шагом кратным $\pm T_{\rm n}$, а их уровень снижается по параболе. Среднее значение боковых остатков составляет порядка -30 дБ, и зависит от скачка частоты δf . Их минимальный уровень достигается при $\delta f = \Delta f_{\pi}$. Интервал между ГЛ ТН ДЧМС вдоль оси времени Т_п характеризует интервал однозначного определения дальности $r_{\text{олн}} = cT_{\text{п}}/2 = 30 \text{ км}$. Интервал между лепестками ТН ДЧМС вдоль оси частот характеризует интервал однозначного определения доплеровского смешения частоты $F_{\rm д \ odh} = F_{\rm n} = 1/T_{\rm nd} = 50 \, {\rm k} \Gamma {\rm u}$. Однако это не исключает проблему неоднозначности оценивания дальности и частоты (неоднозначности будут возникать на дальностях кратных 3000 м и частотах кратных 5 кГц).

Рис. 9. Фрагмент TH когерентной последовательности из 5 псевдохаотических ДЧМС с ЛЧМ дискретами: *a* – без ВО; *б* – после двойной ВО; *в* – главного лепестка после двойной ВО

На рис. 9, б представлен фрагмент ТН ДЧМС с учетом проведения двойной ВО. На частотах кратных $F_{n,r}$ и при временных расстройках кратных $\pm T_n$ значение БЛ определяется величиной 2/M (порядка –7 дБ). Средний уровень боковых остатков на временных интервалах кратных $\pm T_{n,r}$ и на частотах кратных $\pm F_{n,r}$ составляет порядка –25 дБ. В сечении $\tau=0$ уровень остатков между БЛ составляет менее –43 дБ. Однако во временных сечениях кратных $\pm T_n$ уровень боковых остатков достигает порядка –35 дБ. Основным недостатком применения двойной весовой обработки является расширение ГЛ ТН, что приводит к ухудшению разрешающей способности как по дальности, так и по частоте Доплера. При этом потери в отношении сигнал-шум составляют порядка 1,7 дБ.

На рис. 9, *в* представлен ГЛ ДЧМС после двойной ВО (временной интервал $\pm 2/\Delta f_{\pi}$ (рис. 9, *a*)). Вдоль оси времени уровень боковых остатков вблизи ГЛ (от $-1/\Delta f_{\pi}$ до $1/\Delta f_{\pi}$), составляет порядка –35 дБ. При увеличении базы сигнала уровень боковых остатков стремится к пределу, определяемому видом весовой функции. В других временных сечениях, не кратных $\pm 1/\Delta f_{\pi}$, и вдоль оси частот не кратных $\pm F_{\pi\pi}$, уровень БЛ снижается до -43 дБ и менее. Огибающая ГЛ вдоль оси времени определяется квадратом модуля корреляционной функции одиночного ЛЧМ дискрета (преобразованием Фурье от квадрата модуля амплитудночастотного спектра). Ширина зубца вдоль осей времени и частоты определяет разрешающую способность по дальности $\Delta r = c/2\Delta f_0 = 15$ м и частоте Доплера $\Delta F_{\pi} = 1/MT_{\pi} = 1$ кГц. Расстояние между зубцами ГЛ ТН ДЧМС вдоль оси времени равно 1 мкс (обратно пропорционально ширине спектра одиночного дискрета Δf_{π}), что соответствует 150 м.

В случае использования когерентной последовательности ДЧМС с различными кодами частотной манипуляции (рис. 1, *в*), уровень боковых остатков вдоль оси времени вблизи ГЛ (от $-1/\Delta f_{\rm d}$ до $1/\Delta f_{\rm d}$) возрастает до -20 дБ (по сравнению с использованием одинакового закона частотной манипуляции). Уровень БЛ вдоль оси частот (без учета лепестков, кратных $\pm F_{\rm nd}$) достигает -20 дБ и зависит от базы сигнала.

Заключение

Проведен анализ свойств ФН когерентных последовательностей псевдохаотических ДЧМС с ЛЧМ дискретами. Модулированные парциальные дискреты (например, ЛЧМ) обеспечивают не только высокое разрешение по дальности, но и независимое управление частотными и временными параметрами сигнала. Использование последовательностей рассматриваемых сигналов улучшает энергетический потенциал РЛС и повышает точность сопровождения объектов по радиальной скорости. При высокой разрешающей способности по дальности (за счет увеличения ширины спектра) и частоте Доплера (за счет увеличении времени наблюдения) появляется возможность формировать дальностные и частотные радиолокационные портреты целей, что позволяет переходить к решению задач распознавания. Формирование ДЧМС, с учетом современных цифровых и аналоговых технологий, оказывается технически не очень сложным.

PROPERTIES OF UNCERTAINTY FUNCTION OF THE PSEUDO-CHAOTIC DISCRETE FREQUENCY MANIPULATED SIGNALS WITH WEIGHT PROCESSING

E.N. BUILOV, S.A. GORSHKOV, S.Y. SEDISHEV, S.N. YARMOLIK

Abstract

The analysis of uncertainty functions properties of pseudo-chaotic discrete frequencymanipulated signals with use of linearly-frequency-modulated radio impulses as partial discrete is carried out. Possibility of decrease in level of lateral petals of such broadband signal is considered.

Список литературы

- 1. Плекин В.Я. Широкополосные дискретно-кодированные сигналы в радиотехнике и радиолокации. М., 2005.
- 2. Кук Ч., Бернфельд М. Радиолокационные сигналы. Теория и применение. М., 1971.
- 3. Levanon N., Mozeson E. Radar Signals. New Jersey, 2004.
- 4. James D. Taylor. Ultra-Wideband Radar Technology. New York, 2000.
- 5. Computer simulation of aerial target radar scattering, recognition, detection and tracking / Editor Y.D. Shirman. Boston–London, 2002.
- 6. Wehner D. High Resolution Radar. Norwood, 1987.
- 7. Орленко В.М., Ширман Я.Д. // Электромагнитные волны и электронные системы. 1999. № 4. С. 86–89.
- 8. Радиоэлектронные системы: основы построения и теория. Справочник. / Под ред. Я.Д. Ширмана. М., 2007.
- 9. Варакин Л.Е. Системы связи с шумоподобными сигналами. М., 1985.
- 10. Буйлов Е.Н., Горшков С.А. // Докл. БГУИР. 2014. № 3 (81). С. 78-84.
- 11. Виноградов И.М. Основы теории чисел. М., 1952.
- 12. Цифровой спектральный анализ и его приложения / Под ред. И.С. Рыжака. М., 1990.