УДК 539.2:533.9

# РАДИАЦИОННАЯ СТОЙКОСТЬ КРЕМНИЕВЫХ НАНОСТРУКТУРИРОВАННЫХ ФОТОВОЛЬТАИЧЕСКИХ ЭЛЕМЕНТОВ, ПОЛУЧЕННЫХ В КОМПРЕССИОННОЙ ПЛАЗМЕ

## В.В. УГЛОВ<sup>1</sup>, Н.Т. КВАСОВ<sup>2</sup>, В.М. АСТАШИНСКИЙ<sup>3</sup>, Ю.А. ПЕТУХОВ<sup>2</sup> А.М. КУЗЬМИЦКИЙ<sup>3</sup>, И.Л. ДОРОШЕВИЧ<sup>2</sup>, С.В. ЛАСТОВСКИЙ<sup>4</sup>

<sup>1</sup>Белорусский государственный университет Независимости, 4, Минск,220080, Беларусь

<sup>2</sup>Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

> <sup>3</sup>Институт физики им. Б.И. Степанова НАНБ Независимости, 70, Минск, 220072Беларусь

<sup>4</sup>Научно-практический центр НАНБ по материаловедению, Минск, Беларусь П. Бровки, 19, Минск, 220072, Беларусь

Поступила в редакцию 10 сентября 2012

Приводятся результаты исследований фотовольтаического эффекта, впервые обнаруженного авторами в легированном кремнии после облучения импульсами компрессионной плазмы. Определены оптимальные режимы обработки, обеспечивающие максимальное значение фотоЭДС. Установлены зависимости фотоЭДС от дозы облучения высокоэнергетическими электронами.

Ключевые слова: фотовольтаический эффект, кремний, радиационные дефекты, компрессионная плазма.

#### Введение

Явление возникновения фотоиндуцированной электродвижущей силы (фотоЭДС) в полупроводниковых образцах при облучении светом состоит в формировании в их структуре определенной разности потенциалов  $U_{\phi}$ .

Полная фотоЭДС в этом случае может быть записана следующим образом:

$$U_{\phi} = \oint \frac{D_n \frac{dn}{dx} - D_p \frac{dp}{dx}}{\mu_p p + \mu_n n} dx, \qquad (1)$$

где  $D_n$  и  $D_p$  – коэффициенты диффузии электронов и дырок;  $\mu_n$  и  $\mu_p$  – их подвижности, соответственно; *n* и *p* – концентрации носителей заряда.

При освещении однородных полупроводников фотоЭДС возникает за счет существенного различия коэффициентов диффузии электронов и дырок. Разделение носителей заряда при освещении светом может быть обеспечено также встроенными электрическими полями. Так, в неоднородных полупроводниках объемная фотоЭДС обусловлена формированием внутреннего электрического поля из-за наклона энергетических зон относительно уровня Ферми. Фотоэлектроны и фотодырки разделяются этим полем, создавая разность потенциалов. Имеет место, также, возникновение поверхностной фотоЭДС, связанной с наличием вблизи поверхности потенциального барьера. Наиболее широко используется способ получения фотоЭДС с помощью p-n-переходов, сформированных в приповерхностном слое полупроводника. Сегодня это, как правило, многослойные сложные гетероструктуры.

Нами фотовольтаический эффект был обнаружен в кремниевых образцах *p*- и *n*- типа, облученных компрессионной плазмой [1].

### Методика проведения эксперимента и результаты исследований

Для исследований закономерностей формирования фотоЭДС в кремнии, облученном компрессионной плазмой, использовались образцы монокристаллического кремния различных кристаллографической ориентации, типа и концентраций примеси: КЭФ-20; КДБ-0,3; КДБ-10; КДБ-12. Облучение плазмой производилось при различных значениях напряжения на электродах ускорителя плазмы, что позволяло менять ее энергию и, соответственно, структуру модифицированного приповерхностного слоя кремния. На рис. 1–3 приведены полученные методом Оже-электронной спектроскопии распределения элементов в образцах для различных концентраций примеси бора и режимов обработки. Глубина проникновения азота и кислорода в объем кремния не превышает 100 нм. Проведен рентгеноструктурный анализ модифицированных слоев кремния.

Результаты замеров фотоЭДС облученных плазмой образцов сведены в табл. 1-4.



Рис. 1. Распределение элементов в поверхностном слое кремния (КДБ-0,3), обработанного компрессионным плазменным потоком воздуха (13 Дж/см<sup>2</sup>, 1 импульс)







Рис. 3. Распределение элементов в поверхностном слое кремния (КДБ-12), обработанного компрессионным плазменным потоком воздуха (13 Дж/см<sup>2</sup>, 1 импульс)

| 16 |              |                                            |                    |                 |                                                |             |                                                        |
|----|--------------|--------------------------------------------|--------------------|-----------------|------------------------------------------------|-------------|--------------------------------------------------------|
|    | №<br>образца | Напряжение<br><i>U</i> , 10 <sup>3</sup> В | Число<br>импульсов | Давление,<br>Па | Расстояние до об-<br>разца, 10 <sup>-2</sup> м | Рабочий газ | ФотоЭДС,<br><i>U</i> <sub>ф</sub> , 10 <sup>-3</sup> В |
|    | 1            | 4,0                                        | 1                  | 400             | 12                                             | воздух      | 270-290                                                |
|    | 2            | 4,0                                        | 3                  | 400             | 12                                             | воздух      | 300                                                    |
|    | 3            | 2,5                                        | 1                  | 400             | 12                                             | водород     | 210-300                                                |
|    | 4            | 2,7                                        | 1                  | 400             | 12                                             | водород     | 300-380                                                |
|    | 5            | 3,0                                        | 1                  | 400             | 12                                             | водород     | 250-295                                                |
|    | 6            | 3.5                                        | 1                  | 400             | 12                                             | водород     | 200                                                    |

Таблица 1. Значения фотоЭДС в образцах легированного кремния КДБ-0,3

Таблица 2. Значения фотоЭДС в образцах легированного кремния КДБ-10

| №<br>образца | Напряжение<br><i>U</i> , 10 <sup>3</sup> В | Число<br>импульсов | Давление,<br>Па | Расстояние до об-<br>разца, 10 <sup>-2</sup> м | Рабочий газ | ФотоЭДС,<br><i>U</i> <sub>ф</sub> , 10 <sup>-3</sup> В |
|--------------|--------------------------------------------|--------------------|-----------------|------------------------------------------------|-------------|--------------------------------------------------------|
| 1            | 4,0                                        | 1                  | 400             | 12                                             | воздух      | 280                                                    |
| 2            | 4,1                                        | 1                  | 400             | 12                                             | азот        | 170                                                    |
| 3            | 4,3                                        | 1                  | 400             | 12                                             | азот        | 280-334                                                |

Таблица 3. Значения фотоЭДС в образцах легированного кремния КДБ-12

| №<br>образца | Напряжение<br><i>U</i> , 10 <sup>3</sup> В | Число<br>импульсов | Давление,<br>Па | Расстояние до<br>образца, 10 <sup>-2</sup> м | Рабочий газ | ФотоЭДС,<br><i>U</i> <sub>ф</sub> , 10 <sup>-3</sup> В |
|--------------|--------------------------------------------|--------------------|-----------------|----------------------------------------------|-------------|--------------------------------------------------------|
| 1            | 4,0                                        | 1                  | 400             | 12                                           | воздух      | 130-170                                                |
| 2            | 2,7                                        | 1                  | 400             | 12                                           | водород     | Центр: до 200,<br>Периферия: 10–60                     |

| Таблица 4 Значения с  | <b>ь</b> отоЭЛС в обі | лязнях пегилован  | ного кремния | ı КЭ <b>Ф-2</b> 0                              |
|-----------------------|-----------------------|-------------------|--------------|------------------------------------------------|
| таолица т. эпалении с |                       | лазцал лет прован | more kpcmmn  | $1 \text{ M} \mathcal{J} \Psi^{-} \mathcal{U}$ |

| №<br>образца | Напряжение<br>U, 10 <sup>3</sup> В | Число<br>импульсов | Давление,<br>Па | Расстояние до об-<br>разца, 10 <sup>-2</sup> м | Рабочий газ | ФотоЭДС,<br><i>U</i> <sub>ф</sub> , 10 <sup>-3</sup> В |
|--------------|------------------------------------|--------------------|-----------------|------------------------------------------------|-------------|--------------------------------------------------------|
| 1            | 4,0                                | 1                  | 467             | 12                                             | воздух      | 60                                                     |
| 2            | 3,4                                | 1                  | 467             | 12                                             | водород     | 1–2                                                    |

Исследования оптической микроскопией показали, что фотоЭДС индуцируется как в образцах с развитым микрорельефом и цилиндрическими структурами, так и в образцах с гладкой поверхностью. Кроме того, наноструктурирование поверхности проводилось путем магнетронного осаждения наноразмерных частиц кремния (50–100 нм) на обработанную компрессионной плазмой поверхность кремния. Облучение электронами таких структур с последующим замером фотоЭДС показало, что радиационные дефекты в наночастицах практически отсутствуют.

Для исследования стабильности фотоэлектрических свойств кремния, обработанного компрессионной плазмой, было проведено облучение кремниевых пластин (КДБ-0,3) электронными пучками с энергией 2 МэВ и интенсивностью  $1,5 \cdot 10^{16} \text{ м}^{-2} \cdot \text{c}^{-1}$ . Доза облучения составляла  $2,5 \cdot 10^{16} - 2,75 \cdot 10^{17} \text{ м}^{-2}$  (рис. 4). Как видно из полученных зависимостей, при дозе электронного облучения ~2,5  $\cdot 10^{16} \text{ м}^{-2}$  значение фотоЭДС практически не изменяется, а при дозе (2,5–2,75)  $\cdot 10^{17} \text{ м}^{-2}$  уменьшается в 1,5–1,7 раза по сравнению с необлученным кремнием, обработанным плазмой.

Концентрация радиационных дефектов *n<sub>d</sub>* в кристаллах, облученных электронами, может быть оценена по следующей формуле:

$$n_d = D\sigma N, \qquad (2)$$

где D – доза облучения,  $\sigma$  – сечение взаимодействия налетающего электрона с атомом мишени, N – концентрация атомов мишени.

Известно, что дефекты возникают в диапазоне углов рассеяния атомов от  $\phi = 0$  до  $\phi = \phi_m$ , причем  $\phi_m$  определяется из выражения

$$\varphi_m = \arccos\left(\frac{E_d}{E_m}\right)^{1/2},\tag{3}$$

где  $E_d$  – пороговая энергия смещения (для кремния  $E_d \sim 22$  эВ, железа  $E_d \sim 50$  эВ),  $E_m$  – максимальная энергия, передаваемая атому электроном при столкновении.





В радиационной физике твердого тела для σ (при облучении электронами) используется следующее выражение (формула Кейна) [2]:

$$\sigma(E) = \left(\frac{8\pi Ze^2}{\varepsilon_0 mc^2}\right)^2 \left(\frac{1-a^2}{a^4}\right) \left[\frac{1}{2} \operatorname{tg}^2 \varphi_m + \frac{Ze^2 a}{20\varepsilon_0 hc} \frac{\sin^2(\varphi_m/2)}{\cos\varphi_m} + a \left(a + \frac{Ze^2}{40\varepsilon_0 hc}\right) \ln\left(\cos\varphi_m\right)\right], \quad (4)$$
  
rge  $a = \frac{\left[\frac{E}{mc^2} \left(2 + \frac{E}{mc^2}\right)\right]^{1/2}}{1 + \frac{2E}{Mc^2} + \left(\frac{E}{mc^2}\right)^2}, m$  – масса электрона,  $M$  – масса атома мишени,  $Z$  – его зарядовое

число, Е – энергия электронов.

Здесь речь идет о первично смещенных атомах в тонких образцах ( $d < 10^{-3}$  м). На основе (2)–(4) была определена зависимость концентрации радиационных дефектов  $n_d$  в кремнии и железе от энергии электронов *E*. Результаты представлены на рисунке.



Рис. 5. Зависимость концентрации радиационных дефектов  $n_d$  в кремнии (1) и железе (2) от энергии *Е* электронов

#### Заключение

В результате анализа полученных результатов установлено, что наибольший фотовольтаический эффект наблюдается у легированного бором кремния с высокой проводимостью. Область отрицательного заряда располагается у обработанной поверхности. Проведенные дополнительные исследования (лазерная обработка и облучение интенсивными потоками электронов с энергией 25 кэВ, приводящими к плавлению кремния) не подтвердили действие известных на сегодняшний день механизмов формирования фотоЭДС в полупроводниках. Уменьшение фотоЭДС при облучении образцов высокоэнергетическими электронами связано, очевидно, с генерацией в структуре точечных дефектов, являющихся центрами захвата (ловушками) носителей заряда.

# RADIATION RESISTANCE OF SILICON NANOSTRUCTURED PHOTOVOLTAIC ELEMENTS FORMED IN COMPRESSION PLASMA

## V.V. UGLOV, N.T. KVASOV, V.M. ASTASHYNSKI, Yu.A. PETUKHOU, A.M. KUZMITSKI, I.L. DOROSHEVICH, S.B. LASTOVSKI

### Abstract

Photovoltaic effect in silicon doped by the action of compression plasma pulses is investigated for the first time. Plasma treatment parameters providing maximum values of photo-emf are optimized. Dependences of photo-emf on the dose of electron high-energy post-irradiation are studied.

## Список литературы

1. Асташинский В.М., Дорошевич И.Л., Квасов Н.Т. и др. // Тез. докл. XLI Междунар. конф. по физике взаимодействия заряженных частиц с кристаллами. Москва, 2011. С. 119. 2. Вавилов В.С., Кекелидзе Н.П., Смирнов Л.С. Действие излучений на полупроводники. М., 1988.