2012

УДК 621.396.96

АДАПТИВНАЯ ЮСТИРОВКА ДЛЯ ФОРМИРОВАНИЯ И УПРАВЛЕНИЯ ДИАГРАММОЙ НАПРАВЛЕННОСТИ ПРИЕМНОЙ ЦИЛИНДРИЧЕСКОЙ ФАР

А.В. РОМАНОВ, А.Е. ОХРИМЕНКО, М.М. МУЗЫЧИН

ЧНПУП «НТЛаб – системы» Сурганова, 41, Минск, 220013, Беларусь

Поступила в редакцию 25 января 2012

Описываются методика и способы адаптивной юстировки диаграмма-образующих модулей, формирования и управления диаграммой направленности приемной цилиндрической ФАР.

Ключевые слова: многопозиционные полуактивные РЛС с посторонним подсветом, приемная цилиндрическая ФАР, диаграмма-образующие модули, адаптивная юстировка, комплексная самонастройка, управление диаграммой направленности.

Введение

В минувшем десятилетии в радиолокации обозначились три основные тенденции:

 во-первых, отказ от технологий активной радиолокации, поскольку из-за совмещения в пространстве пунктов излучения и приема такие системы не обладают радиотехнической скрытностью и, как следствие, имеют низкую живучесть вплоть до физического уничтожения самонаводящимися по радиоизлучению снарядами;

- во-вторых, отказ от технологий пассивной радиолокации, хотя и обеспечивающих радиолокационное наблюдение объектов по их собственным радиоизлучениям, однако в условиях режима радиомолчания происходит полная потеря эффективности таких систем;

- в-третьих, решительное применение технологий скрытной полуактивной радиолокации с посторонним подсветом.

Скрытная полуактивная радиолокация с посторонним подсветом, особенно при использовании цифрового телевизионного сигнала подсвета стандарта DVB-T с широко развитой сетью радиотелевизионных передающих станций, обладает рядом неоспоримых достоинств:

1) полная радиотехническая скрытность в связи с отсутствием на приемной позиции источника радиоизлучения;

2) сниженная, примерно вдвое, стоимость в связи с отсутствием затрат на создание сигнала подсвета;

3) радиолокационное наблюдение маловысотных целей ($h_{\rm u} \leq 100$ м) благодаря использованию высоких мачт TV-центров ($h_{\rm TV} = 100 \div 500$ м), что обеспечивает зону подсвета, которую не имеет ни одна из существующих наземных активных РЛС ($82 \div 133$ км);

4) радиолокационное наблюдение малоразмерных целей ($\sigma_u < 1 \text{ м}^2$) благодаря большой мощности и энергии непрерывного DVB-T сигнала подсвета $P_{\text{TV}} = 1 \div 10 \text{ кBr}$;

5) однозначное определение дальности и скорости целей благодаря «кнопочной» функции неопределенности DVB-T сигнала подсвета с большой базой (около 10⁵);

6) высокая разрешающая способность по дальности (~20 м) благодаря большой ширине спектра DVB-T сигнала подсвета (7,61 МГц);

№ 3 (65)

7) удовлетворительная разрешающая способность по скорости ($15 \div 30 \text{ м/c}$) благодаря большому времени наблюдения (T_H =10 мс) и непрерывности сигнала подсвета с угловой (фазовой) модуляцией, достаточная для доплеровской селекции современных воздушных целей;

8) высокая разрешающая способность по угловым координатам, азимуту и углу места (десятые доли градуса), благодаря трансформации высокой разрешающей способности по дальности в угловое разрешение при электрических размерах антенны, обеспечивающих направленность приема, которая согласована с направленностью предполагаемых источников подсвета (около 15 градусов), необходимой и достаточной только для угловой идентификации сигналов от целей;

9) высокая точность измерения параметров целей в режиме обзора (с их идентификацией) и в режиме сопровождения нескольких наиболее опасных целей порядка единиц – десятых долей метра (по дальности), единиц – десятых долей метров в секунду (по скорости), единиц – десятых долей угловых минут (по азимуту), десятков – единиц угловых минут (по углу места), десятков метров (по высоте).

Такие высокие характеристики полуактивных РЛС с цифровым телевизионным подсветом в сочетании с многофункциональностью могут быть достигнуты при использовании приемной антенны в виде цилиндрической ФАР, обладающей свойством осевой симметрии, в составе трехпозиционной полуактивной РЛС с двумя источниками подсвета (телевизионными центрами) и одной приемной позицией. При этом дополнительными достоинствами такого варианта построения полуактивной РЛС (рис. 1) являются:

- во-первых, отсутствие аппаратуры межпозиционной синхронизации и связи;

- во-вторых, простота решения задачи угловой идентификации принимаемых и совместно обрабатываемых сигналов, относящихся к одной цели, которая сводится всего лишь к решению канонического квадратного уравнения;

- в-третьих, как следствие предыдущего достоинства, простота решения задачи однозначного определения координат и параметров движения сопровождаемых целей;

- в-четвертых, высокий темп обновления информации, который, в отличие от синфазной антенной решетки с механическим перемещением по азимуту на 360° за время 10 с, при использовании полноценной цилиндрической ФАР с электронным управлением, построенной из 8 антенных блоков по 8 столбцов и 8 строк диаграмма-образующих модулей, расположенных по ее периметру, оказывается на порядок выше (период обновления информации о сопровождаемых целях сокращается до 1 с при том же времени наблюдения каждого углового направления на каждой из двух частот TV-центров $T_{\rm H}=10$ мс).

Рис. 1. Трехпозиционная полуактивная РЛС, состоящая из двух полуактивных бистатических РЛС

Методика и способ адаптивной юстировки диаграмма-образующих модулей

Для решения задачи угловой идентификации принимаемых и совместно обрабатываемых сигналов необходимо обеспечить определенную ширину диаграммы направленности приемной цилиндрической ФАР [1]:

- ее ширина в угломестной плоскости согласовывается с зоной угломестного подсвета от предполагаемых источников — радиопередающих телевизионных центров $\Delta \theta_{\epsilon} \approx \Delta \epsilon_{\text{полсв}} \approx 15^{\circ};$

- ее ширина в азимутальной плоскости определяется максимальным требуемым числом сопровождаемых целей $N_{\text{и макс}}$ в круговом секторе подсвета $\Delta\beta_{\text{подсв}}=360^\circ$, прошедших проце-

дуру угловой (азимутальной) идентификации $\Delta \theta_{\beta} = \frac{\Delta \beta_{\text{подсв}}}{N_{\text{ц макс}}} = 15^{\circ}$, $N_{\text{ц макс}} = 24$.

При этом размеры раскрыва приемной цилиндрической ФАР в горизонтальной (азимутальной) и вертикальной (угломестной) плоскостях должны удовлетворять условию

$$L_{a\beta,\varepsilon} = \frac{\lambda}{\Delta \theta_{\beta,\varepsilon}}$$

Для квазинепрерывного раскрыва с интервалом между элементами приемной цилиндрической ФАР $\Delta l = \frac{\lambda}{2}$ число диаграмма-образующих модулей в каждой из плоскостей должно быть $N_{\text{дом}\beta,\varepsilon} = \frac{L_{a \beta,\varepsilon}}{\Delta l} = \frac{2 \cdot L_{a \beta,\varepsilon}}{\lambda} = \frac{2}{\Delta \theta_{\beta,\varepsilon}} (\text{рад }) = \frac{2 \cdot 57,3}{\Delta \theta_{\beta,\varepsilon}} \approx 8.$

Общее число диаграмма-образующих модулей, формирующих диаграмму направленности приемной цилиндрической ФАР $N_{\text{дом}\Sigma} = N_{\text{дом}\beta} \cdot N_{\text{дом}\varepsilon} = 64$. Они располагаются в восьми строках ($N_{\text{строк}} = N_{\text{дом}\varepsilon} = 8$) и восьми столбцах ($N_{\text{столбцов}} = N_{\text{дом}\beta} = 8$).

В силу множества причин все диаграмма-образующие модули характеризуются априорной неопределенностью начального распределения комплексных коэффициентов передачи $K_n(k,l) = |K_n(k,l)| e^{i\varphi_n(k,l)}$,

где k – номер строки $\{1...N_{\text{дом } \epsilon}\}$, l – номер столбца $\{1...N_{\text{дом } \beta}\}$.

Для полного устранения неопределенности $K_n(k,l) - K_{\text{юст}}(k,l) = 0$ необходимы 64 цепи самонастройки, обеспечивающие одновременную (параллельную) юстировку комплексных коэффициентов передачи $K_n(k,l)$.

Самонастройка должна быть комплексной [2–4], важным достоинством которой является линейность ее звеньев. Функциональная схема адаптивной юстировки многоканальной цилиндрической ФАР с попеременным использованием источника опорных колебаний на частотах двух TV-центров, входящих в структуру трехпозиционной полуактивной РЛС, показана на рис. 2.

Здесь полуволновой вибратор, помещенный в центр осевой симметрии цилиндрической Φ AP, имеющий гальваническую связь с источником (генератором) опорных колебаний на частотах телевизионных центров $f_{01,2}$, выполняет роль излучателя электромагнитных волн, возбуждающих колебания в полуволновых вибраторах цилиндрической Φ AP, расположенных на ее поверхности.

Рис. 2. Функциональная схема адаптивной юстировки диаграмма-образующих модулей приемной цилиндрической ФАР трехпозиционной полуактивной РЛС с двумя TV-центрами подсвета

Дискриминатор сигнала ошибки каждой цепи самонастройки является перемножителем колебания, наведенного в полуволновом вибраторе цепи самонастройки на частоте $f_{01,2}$, и разности сравниваемых колебаний (опорного и альтернативного) в канале с управляемым коэффициентом передачи K_n на частоте $f_{01,2} - f_{np}$. На выходе дискриминатора формируется сигнал ошибки в виде колебания на промежуточной частоте f_{np} , комплексная амплитуда которого пропорциональна комплексному рассогласованию в цепи самонастройки.

На выходе формирующего фильтра Винера-Калмана, передаточная характеристика которого определяется изображением по Лапласу задающего воздействия (начального рассогласования в цепи самонастройки как функции времени), формируется управляемое колебание на частоте $f_{\rm np}$, комплексная амплитуда которого определяет весовой коэффициент передачи управляемого смесителя-перемножителя K_n . На выходе управляемого смесителяперемножителя двух колебаний – колебания, наведенного на выходе полуволнового вибратора *n*-ой цепи самонастройки, и управляемого колебания с выхода формирующего фильтра, формируется опорное колебание на частоте $f_{01,2} - f_{\rm np}$, являющееся альтернативой для сравнения с исходным опорным колебанием на той же частоте $f_{01,2} - f_{\rm np}$.

Состояние устойчивого равновесия в цепи самонастройки достигается в том случае, когда сигнал ошибки в цепи самонастройки становится равным нулю, т.е. когда комплексные амплитуды исходного опорного колебания и альтернативного управляемого колебания становятся одинаковыми.

Адаптивная юстировка диаграмма-образующих модулей заканчивается фиксацией квадратурных составляющих x_{Kn} , y_{Kn} управляемых весовых коэффициентов $K_n = x_{Kn} + iy_{Kn}$, способ формирования которых показан на рис. 2.

Методика и способ формирования диаграммы направленности

Формирование диаграммы направленности, т.е. пространственное когерентное сложение сигналов с выхода $N_{\rm KH} = N_{\rm дом\,\beta} \cdot N_{\rm дом\,\epsilon} = 64$ диаграмма-образующих модулей, осуществляется перед пространственной когерентной компенсацией мешающих излучений от источников подсвета, которая из соображений высокой эффективности должна выполняться в цифровой форме. Поэтому пространственное когерентное сложение сигналов может быть только цифро-

вым. Оно должно осуществляться согласно алгоритму $S = \sum_{n=1}^{N_{KH}} \eta_n \cdot K_n^* = x_s + iy_s$

с использованием:

- во-первых, квадратурных составляющих входных сигналов $\eta_n = x_{\eta n} + i y_{\eta n}$,

- во-вторых, квадратурных составляющих весовых коэффициентов $K_n = x_{Kn} + iy_{Kn}$,

$$x_{S} = \operatorname{Re} S = \sum_{n=1}^{N_{\mathrm{KH}}} \operatorname{Re}(\eta_{n} \cdot K_{n}^{*}) = \sum_{n=1}^{N_{\mathrm{KH}}} (x_{\eta n} x_{Kn} + y_{\eta n} y_{Kn}), y_{S} = \operatorname{Im} S = \sum_{n=1}^{N_{\mathrm{KH}}} \operatorname{Im}(\eta_{n} \cdot K_{n}^{*}) = \sum_{n=1}^{N_{\mathrm{KH}}} (y_{\eta n} x_{Kn} - x_{\eta n} y_{Kn}).$$

Функциональная схема пространственного когерентного сложения сигналов с использованием результатов адаптивной юстировки диаграмма-образующих модулей показана на рис. 3.

Рис. 3. Функциональная схема пространственного когерентного сложения сигналов

Управление диаграммой направленности приемной цилиндрической ФАР

Цилиндрическая ФАР в азимутальной плоскости обладает свойством осевой симметрии. Это означает, что фазовые распределения для всех $N_{\beta} = \frac{\Delta\beta_{\text{подсв}}}{\Delta\theta_{\beta}} = N_{\text{ц макс}} = 24$ угловых (азимутальных) направлений шириной $\Delta\theta_{\beta} = \frac{2 \cdot 57,3}{N_{\text{дом }\beta}} \approx 15^{\circ}$ должны быть одинаковыми и, в частности, равномерными (ϕ_n = const.). Перемещение ДНА осуществляется изменением центра β_0 соответствующего «окна» – амплитудного распределения $A_n(\beta_0) = \text{const.}$ для 64 модулей, расположенных в восьми строках и восьми столбцах пространства $\beta_0 \pm 7,5$ град.

Геометрическая площадь раскрыва ФАР, состоящей из 64 приемных модулей, расположенных в восьми строках и восьми столбцах, равна:

$$S_{\text{a from}} = L_{\text{ab}} \cdot L_{\text{ac}} = \left(N_{\text{mb}} \cdot \frac{\lambda}{2}\right) \cdot \left(N_{\text{mb}} \cdot \frac{\lambda}{2}\right) = N_{\text{mb}} \cdot \left(\frac{\lambda}{2}\right)^2 = 16\lambda^2 = 4 \text{ m}^2, \ \lambda = 0,5 \text{ m}$$

Коэффициент направленного действия такого раскрыва приемной цилиндрической ФАР, т.е. отношение полного телесного угла 4π стерадиан к телесному углу главного лепестка диаграммы направленности, равен

$$G_{0} = \frac{4\pi}{\frac{\lambda}{L_{a\beta}} \cdot \frac{\lambda}{L_{a\varepsilon}}} = \frac{4\pi \cdot L_{a\beta} \cdot L_{a\varepsilon}}{\lambda^{2}} = \frac{4\pi S_{a \text{ reom}}}{\lambda^{2}} = \pi N_{\text{дом }\beta} N_{\text{дом }\varepsilon} = \pi \cdot 64 \approx 200 .$$

Согласно закону сохранения энергии, коэффициент усиления G, коэффициент направленного действия G_0 и относительный уровень боковых лепестков $\eta_{\text{бок}}$ связаны соотношени-

ем
$$\frac{1}{G} = \frac{1}{G_0} + \eta_{\text{ бок}}$$

Полагая $\eta_{60\kappa} = \frac{1}{G_0}$, находим $G = \frac{G_0}{2} = \frac{4\pi S_{a \ 3\phi\phi}}{\lambda^2}$, откуда следует, что эффективная площадь раскрыва приемной цилиндрической ФАР из 64 диаграмма-образующих модулей в 2 раза меньше ее геометрической площади $S_{a \ 3\phi\phi} = \frac{S_{a \ reom}}{2} = 8\lambda^2 = 2 \ {\rm M}^2$, $\lambda = 0,5 \ {\rm M}$.

Точность и быстродействие адаптивной юстировки

Отличительной особенностью цепей самонастройки, обеспечивающих адаптивную юстировку диаграмма-образующих модулей приемной цилиндрической ФАР, является огромная энергетическая избыточность тестовых опорных сигналов по сравнению со спектральной плотностью собственных шумов.

Например, даже при мощности излучения источника тестового сигнала $P_0 = 10^{-6}$ Вт, обеспечивающей безусловную скрытность, мощность наведенных в приемных диаграммаобразующих модулях сигналов (при радиусе цилиндрической ФАР $R_0 = 2,5$ м, с учетом изотропности излучения $G_{_{\rm H3Л}} = 1$, а также худшего варианта случайно ориентированных полуволновых вибраторов $\sigma_{_{\lambda 2}} = 0,17\lambda^2$) оказывается $\sigma_0^2 = \frac{P_0 \cdot G_{_{\rm H3Л}} \cdot \sigma_{_{\lambda 2}}}{4\pi R_0^2} \approx 5 \cdot 10^{-10}$ Вт, а их энергия Θ_0 при времени тестового контроля на два порядка меньшем времени наблюдения $T_{_{\rm KOHTP}} = 0,01 T_{_{\rm H}} = 100$ мкс оказывается значительно больше спектральной плотности внутренних шумов N_0 диаграмма-образующих модулей с коэффициентом шума $k_{_{\rm H}} = 2$:

$$\Theta_0 = \sigma_0^2 \cdot T_{\text{контр}} = 5 \cdot 10^{-16} \, \text{Дж} ,$$

$$N_0 = k \cdot k_{uu} \cdot T(K) = 1,38 \cdot 10^{-23} \cdot 2 \cdot 300 \approx 10^{-20} \frac{BT}{\Gamma u}$$

а отношение сигнал/шум $\rho = \frac{\mathcal{P}_0}{N_0} \approx 5 \cdot 10^4$.

При этом спектральная плотность возмущающего воздействия системы самонастройки комплексного коэффициента передачи диаграмма-образующих модулей оказывается [5]

$$S_{_{\mathrm{ЭКВ,ДОМ}}} = \frac{\left|\Delta K_{_{n}}\right|^{2} \left(1+\rho\right) T_{_{\mathrm{KOHTp}}}}{4\pi\rho^{2}} \approx \frac{\left|\Delta K_{_{n}}\right|^{2} T_{_{\mathrm{KOHTp}}}}{4\pi\rho} \approx 10^{-10} \frac{(\mathrm{pag})^{2}}{\Gamma \mathrm{u}},$$

где $|\Delta K_n| = 1$ рад — диапазон блужданий (область неопределенности начального рассогласования) комплексного коэффициента передачи.

При полосе замкнутой цепи самонастройки (полосе адаптации $\Delta f_a = 10 \,\mathrm{k\Gamma u}$), обеспечивающей переход к состоянию устойчивого равновесия за время $T_a = \frac{1}{\Delta f_a} = 100 \,\mathrm{mkc}$, соизмеримое со временем тестового контроля $T_{\mathrm{контр}}$, дисперсия флуктуационной ошибки адаптивной юстировки $\sigma_{\phi n, \mathrm{косr}}^2 = S_{_{3\mathrm{KB}, \mathrm{дом}}} \cdot \Delta f_a \approx 10^{-10} \cdot 10^4 \approx 10^{-6} (\mathrm{pag})^2$, а среднеквадратичное значение флуктуационной ошибки $\sigma_{\phi n, \mathrm{косr}} \approx 10^{-3} \,\mathrm{pag}$, при которой эффективность пространственного когерентного сложения сигналов практически не снижается.

Выводы

Полученные оценки ошибок и быстродействия самонастройки дают основание предельно просто организовать управление диаграммой направленности приемной цилиндрической ФАР.

1. На основании определенного порядка организации обзора пространства и сопровождения целей по результатам их ранжирования по степени опасности, назначается требуемое угловое направление β_0 .

2. Без всяких предварительных вычислений (только на основании свойства осевой симметрии приемной цилиндрической ФАР) устанавливаются равномерные фазовое и амплитудное распределения группы из $N_{\text{дом}\Sigma} = N_{\text{дом}\beta} \cdot N_{\text{дом}\varepsilon} = 64$ диаграмма-образующих модулей, расположенных в восьми соответствующих столбцах и строках цилиндрической ΦAP , определяющих диаграмму направленности данного углового направления $\beta_0 \pm 7,5$ град.

3. Включается режим одновременной (параллельной) адаптивной юстировки комплексных коэффициентов передачи всех 64 диаграмма-образующих модулей искомого углового направления и в установившемся режиме цепей самонастройки (примерно через 100 мкс) фиксируются их комплексные коэффициенты передачи.

4. Включается режим формирования диаграммы направленности, т.е. пространственного когерентного сложения сигналов с выхода 64 диаграмма-образующих модулей данного углового направления и осуществляется:

- во-первых, четырехканальная пространственная когерентная компенсация мешающих излучений от двух источников подсвета, проникающих по боковым лепесткам сформированной диаграммы направленности;

- во-вторых, спектрально-временная селекция и когерентное накопление сигналов, находящихся во всех элементах разрешения по скорости и дальности с использованием многоканального матричного коррелятора.

5. Одновременно осуществляется процедура угловой идентификации принимаемых и совместно обрабатываемых сигналов и вычисляются координаты и параметры движения обнаруженных и сопровождаемых целей.

THE ADAPTIVE CORRECTION FOR FORMING AND CONTROL OF DIRECTION DIAGRAM OF RECEIVING CYLINDRICAL PHASED ARRAY

A.V. ROMANOV, A.E. OKHRIMENKO, M.M. MUZICHIN

Abstract

The article describes the methods of adaptive correction of beam forming devices for control of direction diagram of receiving cylindrical phased array.

Список литературы

1. Охрименко А.Е. и др. Эскизный проект «Трехпозиционная полуактивная РЛС с цифровым телевизионным сигналом подсвета и взаимно-перпендикулярными базами (3П ПАРЛС DVB-T)». 2011.

2. Охрименко А.Е., Олейников О.А. Теоретические основы радиолокации. Минск, 1976.

3. Романов А.В., Охрименко А.Е., Шаляпин С.В. и др. // Докл. национальной академии наук Беларуси. 2008. Т. 52, №2, С. 88–93.

4. Храпун И.С., Охрименко А.Е., Давыденко И.Н. // Докл. БГУИР. 2009. №8. С 5–12.

5. Охрименко А.Е. Основы обработки и передачи информации. Минск, 1990.