УДК 621.382

ВЛИЯНИЕ ГАММА-ИЗЛУЧЕНИЯ НА ЭЛЕМЕНТЫ АНАЛОГОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ

О.В. ДВОРНИКОВ¹, В.А. ЧЕХОВСКИЙ², В.Л. ДЯТЛОВ¹, Ю.В. БОГАТЫРЕВ³, С.Б. ЛАСТОВСКИЙ³

¹ОАО «МНИПИ» Я. Коласа, 73, Минск, 220113, Беларусь

²Национальный научно-учебный центр физики частиц и высоких энергий Белгосуниверситета М. Богдановича, 153, Минск, 220040, Беларусь

> ³Научно-практический центр НАН Беларуси по материаловедению П. Бровки 19, Минск, 220072, Беларусь

Поступила в редакцию 31 января 2012

Рассмотрено влияние гамма-излучения Co^{60} на характеристики элементов аналоговых интегральных схем (ИС): входную вольтамперную характеристику (ВАХ) в схеме с общей базой (ОБ), выходную ВАХ в схеме общим эмиттером (ОЭ), зависимость статического коэффициента передачи тока в схеме с ОЭ (β) от коллекторного тока (I_C) для *n-p-n-* и *p-n-p*транзисторов, выходную ВАХ полевого транзистора с *p-n*-переходом и каналом *p*-типа (*p*-ПТП) в схеме с общим истоком (ОИ). Установлено, что уменьшение напряжения отсечки *p*-ПТП не превышает 3 %, а максимального тока стока – менее 5 % при поглощенной дозе D = 5,345 Мрад. Максимум зависимости $\beta = f(I_C)$ *n-p-n-* и *p-n-p*-транзисторов уменьшается и сдвигается в область больших коллекторных токов при D < 0,845 Мрад. При поглощенной дозе, превышающей 0,845 Мрад, максимум β *n-p-n*-транзисторов слабо снижается, а для *pn-p*-транзисторов – немного увеличивается (частично восстанавливается).

Ключевые слова: радиационно-стойкие транзисторы, гамма-излучение, аналоговые интегральные схемы.

Введение

Проблемы разработки радиационно-стойких интегральных схем рассмотрены в ряде работ [1–4], в некоторых из них сформулирован вывод о том, что синтез высококачественных аналоговых ИС, малочувствительных к воздействию проникающей радиации, целесообразно выполнять на биполярных транзисторах (БТ) и ПТП с большой граничной частотой [3, 4]. Высокая граничная частота БТ обычно достигается путем формирования тонкой активной базы, которая также обеспечивает незначительное изменение коэффициента передачи β при воздействии потока нейтронов. Радиационная стойкость ПТП объясняется тем, что их функционирование обусловлено движением основных носителей заряда вдали от поверхности и радиационное изменение состояния поверхности не оказывает существенного влияния на параметры.

Одним из ключевых моментов проектирования радиационно-стойких аналоговых ИС является необходимость учета влияния радиации на интегральные элементы при схемотехническом моделировании, главным образом, на параметры и характеристики транзисторов, наиболее значимых для аналоговых устройств, а именно: входную ВАХ транзисторов в схеме с ОБ (зависимость напряжения на прямосмещенном эмиттерном переходе U_{BE} от эмиттерного тока I_E), которая определяет рабочий режим транзисторов, влияет на корректную работу источников тока и опорного напряжения [5]; выходную ВАХ транзисторов в схеме с ОЭ (зависимость I_C от

2012

напряжения на промежутке коллектор-эмиттер U_{CE}), описывающую область допустимого коллекторного напряжения для активного режима работы БТ и выходное малосигнальное сопротивление r_{OUTB} , влияющее на коэффициент усиления напряжения; зависимость $\beta = f(I_C)$, характеризующую входной ток и входное сопротивление каскадов с ОЭ; выходную ВАХ ПТП в схеме с ОИ (зависимость тока стока I_D от напряжения на промежутке сток-исток U_{DS}).

Ранее нами выработан подход к проектированию радиационно-стойких ИС, в рамках которого выявлены «Spice-параметры» транзисторов, наиболее значимые при схемотехническом моделировании аналоговых устройств, и описано влияние проникающей радиации на «Spice-параметры» с помощью коэффициентов радиационного изменения параметров (концентрации, подвижности, скорости рекомбинации носителей заряда) полупроводников [6]. Применение созданного подхода позволило моделировать все указанные характеристики ($U_{BE} = f(I_E)$, $I_C = f(U_{CE})$, $\beta = f(I_C)$, $I_D = f(U_{DS})$) для типовых значений радиационных коэффициентов.

Целью настоящей работы является экспериментальное изучение изменения ВАХ элементов аналоговых ИС (вертикальных *n-p-n-*, горизонтальных *p-n-p*-транзисторов и *p*-ПТП) при воздействии гамма-излучения Co^{60} , а также описание этого изменения при схемотехническом моделировании.

Методика

Эксперименты проводились на тестовых транзисторах, изготовленных в ОАО «Интеграл» по эпитаксиально-планарной технологии с проектной нормой 1,5 мкм. К конструктивнотехнологическим особенностям типовой структуры следует отнести: эпитаксиальный слой *n*типа проводимости толщиной 2,3 мкм и удельным сопротивлением 1,0 Ом·см; комбинированную изоляцию элементов диэлектриком и *p*+-скрытым слоем; малые глубины залегания и высокие концентрации примесей во всех полупроводниковых слоях; толщина активной базы *n-pn*-транзистора составляет около 0,15 мкм, базы горизонтального *p-n-p*-транзистора – 1,5 мкм, токопроводящего канала *p*-ПТП – 1 мкм; конструктивное исключение соприкосновения областей *n*+-эмиттера и диэлектрической изоляции.

Облучение образцов гамма-квантами *Со⁶⁰* выполнялось на установке «Исследователь» при температуре около 300 К, суммарная поглощенная доза после сеансов облучения составляла: 0,065; 0,195; 0,520; 0,845; 1,045; 3,045; 5,345 Мрад.

Тестовые транзисторы при облучении находились как в пассивном (все выводы закорочены), так и в активном режиме. В последнем случае режим работы транзисторов устанавливался максимально близким к типовому: для БТ ток эмиттера был около 300 мкА, напряжение коллектор-база – 2,5 В, для ПТП напряжение затвор-исток – 0, исток-сток – 5,0 В.

Измерения выполнялись с помощью измерителя параметров полупроводниковых приборов ИППП-1 в соответствии с разработанными ранее методиками [7, 8]. Вначале изучались основные ВАХ ($I_C = f(U_{CE})$, $I_D = f(U_{DS})$) всех транзисторов, а затем для отобранных образцов с характеристиками, близкими к средним значениям, проводилось измерение всех ВАХ и идентификация «Spice-параметров».

Экспериментальные результаты и их обсуждение

Экспериментальные исследования позволили выявить некоторые особенности (всего – 8) радиационного изменения ВАХ транзисторов, часть из которых может быть объяснена с помощью существующих моделей и математических соотношений.

1. При поглощенной дозе D = 5,345 Мрад уменьшение напряжения отсечки *p*-ПТП (U_{TH}) не превышает 3 %, а максимального тока стока (I_{DMAX}) – менее 5 %.

Известно, что U_{TH} и I_{DMAX} описываются соотношениями [9]:

$$I_{DMAX} = \frac{\mu_{CH} q^2 N_{CH}^2 a^3 W}{3L \epsilon \epsilon_0}, U_{TH} = \frac{q N_{CH} a^2}{2\epsilon \epsilon_0}$$

где μ_{CH} – подвижность основных носителей заряда в канале ПТП; q – заряд электрона; N_{CH} – концентрация основных носителей заряда в канале; a – половина толщины токопроводящей

части канала ПТП при отсутствии внешнего напряжения; *W*, *L* – ширина и длина затвора ПТП; ε – относительная диэлектрическая проницаемость полупроводника; ε₀ – диэлектрическая проницаемость вакуума.

Так как оба параметра U_{TH} и I_{DMAX} при облучении уменьшаются, то можно предположить, что основной причиной изменения параметров *p*-ПТП является небольшое уменьшение концентрации основных носителей заряда в канале *p*-типа. В связи с тем, что радиационное изменение концентрации обратно пропорционально ее начальной величины [10].

$$\frac{n_F}{n_0} = \exp(-K_N F),$$
(1)
$$K_N = \frac{1}{c n_0^{\gamma}},$$
(2)

где K_N – коэффициент радиационного изменения концентрации основных носителей заряда; F – интегральный поток частиц (гамма-квантов); c, γ – эмпирические коэффициенты, зависящие от вида частиц (электроны, протоны, гамма-кванты, нейтроны) и их энергии, типа проводимости полупроводника. Здесь и далее нижним индексом «F» обозначаем параметры после воздействия радиации, а индексом «0» – до облучения. Тогда радиационное изменение концентрации основных носителей заряда во всех сильнолегированных полупроводниковых слоях типовой структуры (за исключением эпитаксиальных) будет пренебрежимо мало.

2. Радиационное изменение параметров биполярных и полевых транзисторов, находящихся при гамма-облучении в активном и пассивном режиме, практически одинаково.

3. Влияние поглощенной дозы облучения на входную ВАХ транзисторов в схеме с ОБ не выявлено. Так, напряжение U_{BE} при IE = 300 мкА изменяется менее чем на 3 мВ для *n-p-n-* и *p-n-p*-транзисторов при поглощенной дозе до 5,345 Мрад.

4. Максимум зависимости $\beta = f(I_C)$ *n-p-n-* и *p-n-p*-транзисторов уменьшается и сдвигается в область больших коллекторных токов при D < 0,845 Мрад (рис. 1). При поглощенной дозе, превышающей 0,845 Мрад, максимум β *n-p-n*-транзисторов слабо снижается, а для *p-n-p*транзисторов – немного возрастает (частично восстанавливается), происходит так называемый «самоотжиг» *p-n-p*-транзисторов при облучении в активном и пассивном режимах работы.

5. В связи с тем, что форма выходной ВАХ транзисторов в схеме с ОЭ и ОИ зависит от набора параметров, то для выявления радиационных изменений рекомендуется проводить сравнение нормированных ВАХ (рис. 2). При этом зависимости целесообразно нормировать на величину тока, максимально близкую к началу области ВАХ с высоким выходным малосигнальным сопротивлением. Так, зависимость $I_C = f(U_{CE})$ целесообразно нормировать на величину I_C при $U_{CE} = 1$ В (I_{C1}), для $I_D = f(U_{DS})$ – осуществлять нормирование на I_D при $U_{DS} \ge U_{TH}$ (для исследуемых *p*-ПТП нормирование осуществлялось на ток I_{D3} при $U_{DS} = 3$ В, $U_{GS} = 0$).

6. Нормированные зависимости $I_C/I_{C1} = f(U_{CE})$ *n-p-n*-транзисторов и $I_D/I_{D3} = f(U_{DS})$ *p*-ПТП совпадают для всех поглощенных доз с погрешностью менее 2 %. Таким образом, сопротивления коллекторных областей *n-p-n*-транзисторов и истоковых областей ПТП, определяющие вид начального участка этих ВАХ, не изменяются при воздействии гамма-излучения. Одинаковая форма нормированных ВАХ при большом напряжении подтверждает крайне слабое изменение напряжения пробоя. Полученные результаты также свидетельствуют о пренебрежимо малом изменении концентрации носителей заряда в полупроводниковых слоях.

Рис. 1. Зависимость коэффициента β от тока коллектора при различной дозе: *a*) *n-p-n*-транзистора; *б*) *p-n-p*-транзистора. 1 – *D* = 0; 2 – 0,520, 3 – 3,045, 4 – 5,345 Мрад

Рис. 2. Выходная характеристика в схеме с общим эмиттером *p-n-p*-транзистора при различной дозе и $I_B = 8$ мкА (1 – D = 0; 2 – 1,045, 3 – 3,045, 4 – 5,345 Мрад): a – не нормированная; δ – нормированная. 1 – переменная $I_C/104,7$; 2 – $I_C/56,92$, 3 – $I_C/54,91$, 4 – $I_C/67,40$ мкА

7. «Самоотжиг» параметров *p-n-p*-транзисторов наблюдается также на зависимости $I_C/I_{C1} = f(U_{CE})$, приведенной на рис. 2, и в результатах, представленных в таблице. Так, выходное малосигнальное сопротивление уменьшается до дозы 0,52 Мрад, затем увеличивается, а при дозах, равных 3,045 и 5,345 Мрад, r_{OUTB} становится больше, чем в нормальных условиях.

Применяя комбинированную модель Гуммеля-Пуна, выходное малосигнальное сопротивление *r*_{OUTB} представим в виде [9]:

$$r_{OUTB} \approx \frac{VAF}{I_C} \left(1 - \frac{|V_{BE}|}{VAR} \right), \tag{3}$$

$$VAF = \frac{Q_{B0}}{C_{JC0}} \sim N_B \sqrt{\frac{1}{N_B} + \frac{1}{N_C}},$$
(4)

где *VAF* (*VAR*) – напряжение Эрли при прямом (инверсном) включении; N_C , N_B – концентрация основных носителей заряда в коллекторе и базе; Q_{B0} – удельная плотность «встроенного» заряда в базе (на единицу площади); C_{JC0} – удельная барьерная емкость коллекторного перехода (на единицу площади).

Для горизонтального *p-n-p*-транзистора $N_C >> N_B$, поэтому $VAF \sim N_B^{0.5}$. Можно предположить, что до проявления «самоотжига» уменьшение r_{OUTB} вызвано уменьшением концентрации носителей в базе горизонтального *p-n-p*-транзистора (слаболегированной эпитаксиальной пленке) при увеличении поглощенной дозы.

8. Изменение при облучении параметров *p*-ПТП, а также r_{OUTB} для *n-p-n*- и $U_{BE} = f(I_E)$ для *n-p-n*- и *p-n-p*-транзисторов можно не учитывать при схемотехническом моделировании.

Основные экспериментальные результаты обобщены в таблице, в которой: β_{MAX} (β_{MAXR}) – максимум зависимости $\beta = f(I_C)$ при $U_{CB} = 0$ в прямом (инверсном) включении БТ; *IKF* – коллекторный ток, при котором β спадает до 0,5 β_{MAX} . В связи с тем, что выходное малосигнальное сопротивление в соответствии с (3) зависит от коллекторного тока, то для его описания в таблице приведена величина переменной $r_{OUTB} \cdot I_C \approx VAF$.

Параметр	Поглощенная доза гамма-излучения, Мрад						
	0	0,195	0,520	0,845	1,045	3,045	5,345
п-р-п-транзистор							
β_{MAX}	120,32	112,26	97,11	93,16	91,23	85,12	86,71
β_{MAXR}	3,0	2,31	1,98	1,88	1,86	1,75	1,77
<i>IKF</i> , мА	7,15	7,61	8,45	8,75	8,75	9,07	8,99
$r_{OUTB} \cdot I_C$, B	18,5	18,5	18,9	18,7	18,7	18,6	18,3
<i>p-п-р-</i> транзистор							
β_{MAX}	13,18	8,42	6,74	6,58	7,37	6,56	7,54
β_{MAXR}	1,28	0,92	0,81	0,82	0,84	1,04	1,18
<i>IKF</i> , мА	0,523	0,790	0,951	0,988	0,887	1,001	0,898
$r_{OUTB} \cdot I_C$, B	5,7	5,0	4,8	5,0	5,1	6,1	6,8

Результаты измерений параметров БТ при различных поглощенных дозах гамма-излучения

Из анализа экспериментальных результатов следует, что для описания влияния гаммаоблучения на параметры БТ при дозах до 0,52 Мрад достаточно учесть изменение концентрации основных носителей в эпитаксиальной пленке и увеличение скорости поверхностной рекомбинации. В ранее разработанных моделях транзисторов [9] концентрация носителей в эпитаксиальной пленке характеризовалась соотношениями (1), (2) и величиной эмпирического коэффициента *с*, взятой из литературных источников, а поверхностная рекомбинация приводила к изменению параметра модели *ISE* в соответствии с выражением (5) для *п-p-n-* и (6) для горизонтальных *p-n-p*-транзисторов:

$$ISE_{F} = ISE_{0}\frac{d_{EF}}{d_{E}} + qn_{I}v_{SF}K_{SURF}\frac{n_{I}}{N_{B}}P_{E}\left(d_{EF} + d_{SURF}\right),$$
(5)

$$ISE_{F} = ISE_{0} \frac{d_{EF}}{d_{E}} + qn_{I}v_{SF}K_{SURF} \frac{n_{I}}{N_{B}}P_{E}W_{BA},$$
(6)

где d_{EF} – ширина области пространственного заряда (ОПЗ) эмиттерного *p*-*n*-перехода; n_I – собственная концентрация носителей; v_S – скорость поверхностной рекомбинации; K_{SURF} – эмпирический коэффициент радиационного изменения скорости поверхностной рекомбинации, зависящий от вида частиц (электроны, протоны, гамма-кванты, нейтроны) и их энергии, типа проводимости полупроводника; P_E – периметр эмиттера; d_{SURF} – ширина дополнительной ОПЗ на поверхности, появившейся из-за влияния положительного заряда в окисле, созданного при облучении; W_{BA} – протяженность активной базы.

При уточнении модели были изменены следующие эмпирические коэффициенты: c – от 8,7·10¹⁰ до 1,2·10⁷; K_{SURF} – от 1,5·10⁴ до 1,0·10⁴, а также параметр *ISE*₀ для *p*-*n*-*p*-транзистора увеличен в 2,75 раза, а для *n*-*p*-*n*-транзистора – уменьшен в 3,7 раза. Это небольшое изменение минимального количества параметров модели привело к достаточной для схемотехнического проектирования точности моделирования основных ВАХ (рис. 3, 4) и подтверждает сделанные предположения об основных причинах изменения параметров БТ при гамма-облучении Co^{60} .

Заметим, что уточненная модель корректна при поглощенной дозе до 0,52 Мрад, т.е. она не описывает стабилизацию и «самоотжиг» параметров транзисторов, наступающих при больших поглощенных дозах гамма-излучения.

Эффект «самоотжига» (восстановления) параметров горизонтальных *p-n-p*транзисторов (рис. 2, таблица) при больших дозах облучения объясняется влиянием процессов встраивания заряда в защитный окисел на поверхности базовой области [11]. Рост скорости поверхностной рекомбинации приводит к уменьшению β за счет возрастания поверхностной составляющей тока базы. Для *n-p-n*-транзисторов увеличение положительного заряда в окисле приводит к возрастанию рекомбинации инжектированных из эмиттера электронов, которые притягиваются положительным зарядом к поверхности базовой области. В *p-n-p*-транзисторах положительный заряд в окисле отталкивает от указанной поверхности (границы раздела Si-SiO₂) инжектированные из эмиттера дырки, что обусловливает уменьшение тока рекомбинации, т. е. частичное восстановление основных параметров. Влияние положительного заряда окисла проявилось только при больших дозах радиации, поскольку накопление зарядов в защитном окисле идет в относительно невысоких электрических полях.

Рис. 3. Зависимость коэффициента β от тока коллектора для: *a* – *n*-*p*-*n*-транзистора в нормальных условиях; *б* – *n*-*p*-*n*-транзистора при поглощенной дозе 0,52 Мрад; *в* – *p*-*n*-*p*-транзистора в нормальных условиях; *г* – *p*-*n*-*p*-транзистора при поглощенной дозе 0,52 Мрад. Сплошная линия соответствует результатам моделирования, пунктирная – измерениям

Заключение

В результате исследования влияния гамма-излучения Co^{60} на ВАХ элементов аналоговых ИС (вертикальных *n-p-n-*, горизонтальных *p-n-p-* и полевых транзисторов с *p-n*-переходом и каналом *p*-типа), изготовленных по радиационно-стойкой технологии, установлено, что при поглощенной дозе до 5,345 Мрад изменение ряда параметров незначительно (2÷5 % и менее), поэтому его можно не учитывать при схемотехническом моделировании.

Рис. 4. Нормированная выходная характеристика *p*-*n*-*p*-транзистора в схеме с ОЭ при D = 0.52 Мрад и $I_B = 8$ мкА. 1 – моделирование переменной IC/55,3 мкА; 2 – измерение переменной IC/50,7 мкА

Максимум зависимости статического коэффициента передачи тока от коллекторного тока *n-p-n-* и *p-n-p-*транзисторов уменьшается и сдвигается в область больших токов при D < 0,845 Мрад. При поглощенной дозе, превышающей 0,845 Мрад, максимум β *n-p-n*-транзисторов слабо снижается, а для *р-п-р*-транзисторов – немного увеличивается. Выходное малосигнальное сопротивление *p-n-p*транзисторов уменьшается до дозы 0,52 Мрад, затем начинает увеличиваться, а при дозах, равных 3,045 и 5,345 Мрад, оно становится больше, чем в нормальных условиях. Таким образом, при D > 0,845 Мрад параметры *n-p-n*-транзисторов стабилизируются, а *p-n-p*-транзисторов – немного восстанавливаются.

Из анализа экспериментальных результатов следует, что для описания влияния гаммаоблучения на параметры БТ при поглощенной дозе до 0,52 Мрад целесообразно учесть изменение концентрации основных носителей заряда в эпитаксиальной пленке и увеличение скорости поверхност-

ной рекомбинации. Корректировка эмпирических коэффициентов моделей, описывающих указанные радиационные изменения, позволила получить достаточную для схемотехнического проектирования точность моделирования выходной ВАХ и токовой зависимости β.

INFLUENCE OF GAMMA RADIATION ON ANALOG IC-ELEMENTS

O.V. DVORNIKOV, V.A. TCHEKHOVSKI, V.L. DIATLOV, Yu.V. BOGATYREV, S.B. LASTOVSKI

Abstract

Influence of gamma radiation Co^{60} on analog IC-characteristics (common base input IVcharacteristics, common emitter output IV-characteristics, current gain (β), collector current (I_C) dependences for *n-p-n* and *p-n-p*-transistors, *p*-JFET common source output IV-characteristics) is considered. It is established that *p*-JFET threshold voltage reduction doesn't exceed 3 %, and the maximum drain current – less than 5 % at absorbed dose D = 5,345 Mrad. The $\beta = f(I_C)$ dependence maximum for *n-p-n* and *p-n-p*-transistors decreases and moves in large collector currents at D < 0,845Mrad. At the absorbed dose exceeding 0,845 Mrad, the maximum β *n-p-n*-transistors poorly reduces, and for *p-n-p*-transistors – increases a little (partially restored).

Список литературы

1. Прибыльский А.В. Конструктивно-схемотехнические методы проектирования, тестирования и контроля интегральных схем. Минск, 2003.

2. Дворников О., Гришков В., Громыко О. // Современная электроника. 2010. №5. С. 54-61.

3. Дворников О.В., Крутчинский С.Г., Прокопенко Н.Н. и др. // Проблемы разработки перспективных микроэлектронных систем. 2006. С. 200–205.

4. *Дворников О.В.* // Проблемы разработки перспективных микро- и наноэлектронных систем. 2010. С. 283–288.

5. Старченко Е.И. Стабилизаторы напряжения с компенсационно-параметрическими каналами. Шахты, 2009.

6. Дворников О.В., Гришков В.Н. // Проблемы разработки перспективных микро- и наноэлектронных систем. 2010. С. 301–306.

7. Дворников О., Шульгевич Ю. // Современная электроника. 2009. №6. С. 52–61.

8. Дворников О., Шульгевич Ю. // Современная электроника. 2009. №8. С. 50–57.

9. Абрамов И.И, Дворников О.В. Проектирование аналоговых микросхем для прецизионных измерительных систем. Минск, 2006.

10. Вологдин Э.Н., Лысенко А.П. Интегральное радиационное изменение параметров полупроводниковых материалов. М., 1998.

11. Першенков В.С. // Научная сессия МИФИ. 2007. Т. 1. С. 74–75.