2012 No 3 (65)

УДК 620.22 — 026.61

ВЛИЯНИЕ СОДЕРЖАНИЯ ПОРОШКООБРАЗНОГО НАПОЛНИТЕЛЯ В КОМПОЗИЦИОННЫХ МАТЕРИАЛАХ НА ИХ ОПТИЧЕСКИЕ СВОЙСТВА

Д.В. СТОЛЕР, Т.А. ПУЛКО, Т.В. БОРБОТЬКО, А.Л. ГУРСКИЙ, Н.В. РЖЕУЦКИЙ*

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

*Институт физики им. А.Б. Степанова НАН Беларуси пр-т. Независимости, 68, Минск, 220072, Беларусь

Поступила в редакцию 28 февраля 2012

Исследовано влияние процентного содержания порошкообразных наполнителей на спектральные характеристики композиционных материалов в оптическом и ближнем ИК- диапазонах длин волн 400...2400 нм.

Ключевые слова: спектрально-поляризационные характеристики, оптические свойства, композиционные материалы, порошкообразные наполнители.

Введение

Композиционные материалы нашли широкое применение в различных областях техники. Их уникальность обусловлена возможностью комбинирования объемного содержания входящих в них компонентов, что позволяет получать конструкции на их основе с требуемыми значениями механической прочности, жаропрочности, модуля упругости, абразивной стойкости, а также создавать композиции с необходимыми магнитными, диэлектрическими, радиопоглощающими и другими специальными свойствами. Такие композиции широко применяются для формирования различных покрытий, в том числе используемых в оптике. Например, на их основе можно создавать оптические рассеивающие покрытия, спектрально-поляризационные характеристики которых могут варьироваться в зависимости от концентрации и размеров частиц порошкообразного наполнителя. В этом случае рассеяние электромагнитного излучения оптического диапазона обуславливается его преломлением и дифракцией на частицах порошкообразного наполнителя [1].

Цель настоящей работы заключалась в исследовании влияния концентрации порошкообразных наполнителей (таурит, шунгит и диоксид титана) на спектрально-поляризационные характеристики композиционных материалов, формируемых на их основе.

Методика проведения эксперимента

Выбор в качестве порошкообразных наполнителей мелкодисперсных таурита, шунгита и диоксид титана (рутил) обусловлен развитой поверхностью таких материалов, их стойкостью к фотодеструкции под воздействием ультрафиолетового излучения, что позволит обеспечить хорошую адгезию со связующим веществом и стабильность оптических характеристик соответственно. Для создания композиции использовалось связующее вещество — прозрачный силикон, стойкий к воздействию температур в диапазоне –40...+150°C, позволяющий получать гибкие композиционные материалы, обладающие низкой истираемостью при влажной очистке.

Использовались порошкообразные материалы с одинаковым размером фракций (20 мкм), из которых были сформированы три группы образцов: первая – выполненная на основе таурита, вторая – шунгита, третья – диоксида титана. Концентрация порошкообразного на-

полнителя в образцах каждой группы составляла 20%, 30% и 40%. Увеличение концентрации более 40% приводило к значительному снижению прочностных характеристик образцов.

Для исследования образцов материалов в видимом и ближнем ИК-диапазонах длин волн (400...2400 нм) использовались гониометрическая установка и спектрорадиометр ПСР-02 (спектральное разрешение в диапазоне длин волн 400...1050 нм – 3 нм, 1050...2400 нм – 15 нм) с поляризационной насадкой, позволяющий регистрировать спектральную плотность энергетической яркости (СПЭЯ) (погрешность измерения в диапазоне длин волн 400...1050 нм – не более 7%, 1050...2400 нм не более 12%) образцов при различных положениях оси поляроида.

В качестве источника света применялась галогеновая лампа КГМ-250, имеющая максимум СПЭЯ на длине волны порядка 1,0 мкм (цветовая температура ≈ 3000 °K). Угол падения коллимированного пучка света на исследуемый объект (γ) составлял 45°. Использовалось три положения оси поляроида относительно вертикальной плоскости: 0°, 45° и 90°. Углы наблюдения (β) изменялись от 20° до 40°. Отсчет углов γ и β выполнялся относительно оси, перпендикулярной плоскости образца.

Питание осветительной лампы стабилизировалось и контролировалось, поэтому яркость источника освещения не изменялась в процессе измерений. Спектрорадиометр регистрировал СПЭЯ излучения, отраженного от образца, в диапазоне длин волн 400...2400 нм. Полученные данные использовались для вычисления спектрального коэффициента яркости (СКЯ) и степени поляризации.

Для анализа спектров отражения и вычисления СКЯ исследуемого объекта были получены спектры отражения для эталонного образца, выполненного на основе молочного стекла МС-20 с равномерной индикатрисой рассеяния при условиях измерений, аналогичных условиям для исследуемых образцов. Спектральный коэффициент яркости вычислялся как отношение СПЭЯ исследуемого материала к СПЭЯ материала с равномерной индикатрисой рассеяния.

Для описания состояния отраженного света были рассчитаны параметры Стокса на основе первичных значений: I_0 , I_{45} , I_{90} — СПЭЯ для соответствующих ориентаций поляроида. На основе параметров Стокса была рассчитана степень поляризации (P) для исследуемых образцов материалов [2].

Обсуждение результатов

Значение СКЯ связующего вещества (силикон) составляет не более 0,2 при углах наблюдения 5°, 25°, 65° в диапазоне длин волн 400...2400 нм (рис. 1). При угле наблюдения 45° СКЯ составляет не более 0,5 в видимой области спектра и не более 0,3 в ближнем ИК- диапазоне длин волн. Степень поляризации связующего вещества не превышает 0,3 в исследуемом диапазоне длин волн.

СКЯ композитных материалов на основе порошкообразного диоксида титана характеризуются увеличением спектральной яркости до 0,67 в диапазоне длин волн 400...2400 нм при возрастании угла визирования до 65° (рис. 2). Увеличение объемного содержания порошкообразного наполнителя на 20% снижает СКЯ композита на 0,06...0,09 в видимом диапазоне длин волн и 0,05...0,1 в ближнем ИК-диапазоне длин волн. Поляризация отраженного излучения для такого композита в видимом диапазоне длин волн наблюдается при углах визирования более 25°, максимальное значение которой составляет 0,28. В ближнем ИК- диапазоне степень поляризации значительно выше и составляет 0,3...0,9. Различие в значениях степени поляризации от объемного содержания порошкообразного наполнителя в композите в ближнем ИК-диапазоне практически не наблюдается.

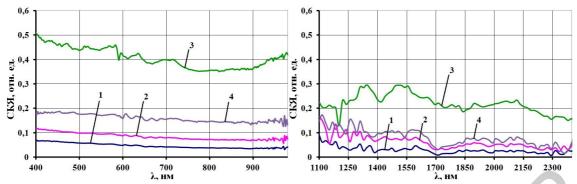


Рис. 1. Зависимость СКЯ силикона от длины волны излучения видимого и ближнего ИК- диапазона при углах визирования: $1-5^\circ$; $2-25^\circ$; $3-45^\circ$; $4-65^\circ$

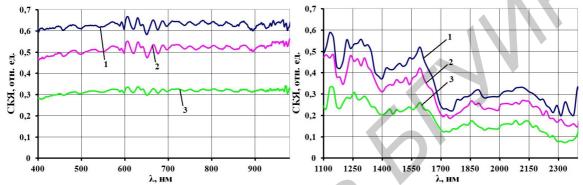


Рис. 2. Зависимость СКЯ от длины волны для композитного материала на основе порошкообразного диоксида титана при угле визирования 65° в видимом и ближнем ИК- диапазоне, где объемное содержание порошкообразного наполнителя: 1-20%; 2-30%; 3-40%

Композитные материалы, выполненные на основе порошкообразного шунгита и таурита, имеют идентичную тенденцию увеличения СКЯ с 0,05 до 0,24 (шунгит) и с 0,01 до 0,22 (таурит) в диапазоне длин волн 400...2400 нм, при росте угла визирования с 5° до 65° (рис. 3, 4). Увеличение объемного содержания в таких композитах порошкообразного наполнителя в пределах 20...30% не позволяет варьировать значения СКЯ в столь широких пределах, как для диоксида титана. Степень поляризации излучения для таких материалов существенно зависит от угла визирования и варьируется в пределах 0,04...0,82 для таурита и 0,06...0,9 для шунгита в видимом диапазоне длин волн и 0,29...0,98 в ближнем ИК-диапазоне длин.

Установлено, что применение порошкообразного таурита с объемным содержанием 40% в исследуемых композитах позволяет снизить степень поляризации отраженного и рассеянного излучения для такого материала на 0,05...0,3 при увеличении угла визирования с 25° до 65° .

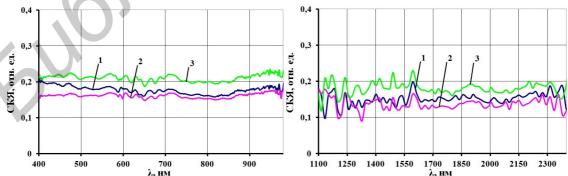


Рис. 3. Зависимость СКЯ от длины волны излучения видимого и ИК-диапазона для композитного материала на основе порошкообразного шунгита при угле визирования 65° , где объемное содержание порошкообразного наполнителя: 1-20%; 2-30%; 3-40%

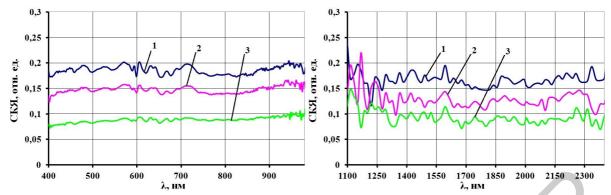


Рис. 4. Зависимость СКЯ от длины волны излучения видимого и ближнего ИК-диапазона для композитного материала на основе порошкообразного таурита при угле визирования 65° , где объемное содержание порошкообразного наполнителя: 1-20%; 2-30%; 3-40%

Заключение

Исследованы оптические свойства композитных материалов, полученных путем закрепления порошкообразного наполнителя (диоксид титана, шунгит, таурит, лавр, хна) в связующем веществе (прозрачный силикон), выбор которого обусловлен его стойкостью к воздействию температур в диапазоне —40...+150 С. Такой метод позволяет получать гибкие композитные материалы, обладающие низкой истираемостью при влажной очистке. Установлено, что изменение объемного содержания порошкообразного материала в композите с 20% до 40% позволяет управляемо изменять СКЯ и степень поляризации излучения, отраженного и рассеянного этими композитными материалами. Увеличение объемного содержания порошкообразного материала (диоксид титана, шунгит, таурит) в композите более 40% является нецелесообразным, так как при этом значительно снижаются прочностные характеристики материала.

AGENCY OF THE CONTENT OF POWDERY FILLER IN COMPOSITES ON THEIR OPTICAL PROPERTIES

D.V. STOLER, T.A. PULKO, T.V. BORBOTKO, A.L. GURSKII, N.V. RZHEUTSKII

Abstract

Agency of percentage of powdery fillers on spectral characteristics of composites in optical and IR-range of lengths of waves 400...2400 nm is explored.

Список литературы

- 1. Ван де Хюлст Г. Рассеяние света малыми частицами. М., 1961.
- 2. Беляев Б.И., Катковский Л.В. Оптическое дистанционное зондирование. Минск, 2006.