2011

УДК 532.783: 35.771:535.36

ПРОПУСКАНИЕ И ОТРАЖЕНИЕ СВЕТА АНСАМБЛЕМ СФЕРИЧЕСКИХ КАПЕЛЬ ЖИДКОГО КРИСТАЛЛА С ЦИЛИНДРИЧЕСКИ СИММЕТРИЧНОЙ ВНУТРЕННЕЙ СТРУКТУРОЙ

В.А. ЛОЙКО¹, А.В. ЕМЕЛЬЯНЕНКО², Е.Р. ПОЖИДАЕВ³, А.В. КОНКОЛОВИЧ¹, А.А. МИСКЕВИЧ¹

¹Институт физики им. Б.И. Степанова Национальной академии наук Беларуси Независимости, 68, Минск, 220072, Беларусь

²Московский государственный университет им. М.В. ЛОМОНОСОВА Ленинские горы, 1, Москва, 119992, Россия

> ³ Физический институт им. П.Н. Лебедева РАН Ленинский пр., 53, Москва, 119991 Россия

> > Поступила в редакцию 29 апреля 2011

Разработана оптическая модель для анализа коэффициентов направленного пропускания и зеркального отражения света при нормальном освещении монослоя капель нематического жидкого кристалла, диспергированных в полимерной матрице. Она основана на обобщении приближения Вентцеля-Крамерса-Бриллюэна на векторный случай. Проанализированы коэффициенты когерентного пропускания и отражения света при различной ориентации оптических осей капель.

Ключевые слова: капсулированные полимером жидкие кристаллы, рассеяние света, приближение Вентцеля-Крамерса-Бриллюэна.

Введение

В последние десятилетия интенсивно исследуются капсулированные полимером жидкокристаллические (КПЖК) пленки. Это обусловлено рядом новых возможностей которые открывает использование таких материалов в системах отображения и обработки оптической информации, телекоммуникациях, фотонике, оптоэлектронике и т.д. Оптические эффекты в КПЖК-пленках обусловлены изменением ориентации оптических осей (директоров) капель и конфигурации молекул жидкого кристалла (ЖК) в каплях под действием электрических и магнитных полей, температуры и т.д., что позволяет реализовывать управляемое светорассеяние [1–3].

Исследования оптического отклика в КПЖК-пленках проводятся в основном экспериментально. Это связано со сложностью теоретического анализа эффектов светорассеяния, при описании которых нужно учитывать специфику рассеяния отдельной анизотропной каплей и многократное рассеяние.

Строгой теории решения задач рассеяния на отдельных ЖК-каплях произвольной формы и внутренней ориентационной структуры молекул ЖК не существует. Поэтому используют приближенные методы [4–6]. С их помощью можно проводить анализ рассеяния света отдельными ЖК-каплями лишь в отдельных диапазонах размеров. Наиболее общее приближенное решение для оптически мягких изотропных частиц можно получить с помощью метода Вентцеля-Крамерса-Бриллюэна (ВКБ) [7]. Нам неизвестны работы, использующие этот метод для анализа рассеяния на анизотропных каплях жидкого кристалла.

№5 (59)

В данной работе рассматривается однорядный слой (монослой) сферических ЖК капель, диспергированных в связующей полимерной матрице. Интерес к таким системам возрос в последние годы, поскольку они перспективны для создания гибких дисплеев. Нами разработана оптическая модель для анализа коэффициентов когерентного (направленного) пропускания и когерентного (зеркального) отражения света монослоем капель ЖК при нормальном освещении неполяризованным световым излучением. Она основана на обобщении скалярного приближения Вентцеля-Крамерса-Бриллюэна для изотропных частиц на случай решения задач рассеяния анизотропными каплями ЖК. В рамках ВКБ-приближения получены аналитические выражения для элементов амплитудной матрицы рассеяния по направлению строго вперед и строго назад для капель нематического ЖК с однородно ориентированной внутренней структурой. Для ЖК-капель с более сложной внутренней структурой, обладающих цилиндрической или зеркальной симметрией, при описании прямого и обратного рассеяния света использованы ВКБ-приближение и приближение эффективной среды [8, 9].

Коэффициенты когерентного пропускания и отражения

Рассмотрим рассеяние света однорядным дисперсным слоем, образованным оптически анизотропными ЖК каплями в изотропной полимерной матрице. При освещении слоя по нормали неполяризованным монохроматическим светом, выражения для коэффициентов когерентного пропускания *T_c* и отражения Rc имеют вид:

$$T_{c} = \frac{T_{c}^{\parallel} + T_{c}^{\perp}}{2}, \qquad (1)$$

$$R_{c} = \frac{R_{c}^{\parallel} + R_{c}^{\perp}}{2}, \qquad (2)$$

где $T_c^{\parallel,\perp}$ и $R_c^{\parallel,\perp}$ – коэффициенты когерентного пропускания и отражения слоя для поляризаций света параллельной (\parallel) и ортогональной (\perp) главной плоскости, в которой ориентированы оптические оси ЖК капель. Используя модель амплитудно-фазового экрана [10], для коэффициентов когерентного пропускания $T_c^{\parallel,\perp}$ и отражения $R_c^{\parallel,\perp}$ получим следующие соотношения:

$$T_{c}^{\parallel} = 1 - \frac{4}{\rho^{2}} \eta \operatorname{Re} S_{2}^{0} + \frac{4}{\rho^{4}} \eta^{2} \left((\operatorname{Re} S_{2}^{0})^{2} + (\operatorname{Im} S_{2}^{0})^{2} \right),$$
(3)

$$T_{c}^{\perp} = 1 - \frac{4}{\rho^{2}} \eta \operatorname{Re} S_{1}^{0} + \frac{4}{\rho^{4}} \eta^{2} \left((\operatorname{Re} S_{1}^{0})^{2} + (\operatorname{Im} S_{1}^{0})^{2} \right),$$
(4)

$$R_{c}^{\parallel} = \frac{4}{\rho^{4}} \eta^{2} \left((\operatorname{Re} S_{2}^{\pi})^{2} + (\operatorname{Im} S_{2}^{\pi})^{2} \right),$$
(5)

$$R_{c}^{\perp} = \frac{4}{\rho^{4}} \eta^{2} \left((\operatorname{Re} S_{1}^{\pi})^{2} + (\operatorname{Im} S_{1}^{\pi})^{2} \right), \tag{6}$$

где η – коэффициент заполнения (перекрытия) монослоя, численно равный отношению площади проекций ЖК-капель на плоскость монослоя к площади, на которой они распределены, $\rho = 2\pi a n_p / \lambda$ – параметр дифракции, a – радиус ЖК-капли, n_p – показатель преломления связующей полимерной матрицы, λ – длина волны падающего света, $S_{2,1}^0$ и $S_{2,1}^{\pi}$ - диагональные элементы амплитудной матрицы рассеяния света [11] по направлению строго вперед и назад, соответственно. При выводе соотношений (3)–(6) мы предполагали, что ЖК-капли монодисперсны и их оптические оси ориентированы в одном направлении. Из полученных выражений (1)–(6) видно, что для анализа коэффициентов когерентного пропускания и отражения света КПЖК-монослоем необходимо решение задачи рассеяния на отдельной ЖК-капле и нахождение диагональных элементов амплитудной матрицы прямого и

обратного рассеяния $S_{21}^{0,\pi}$.

Приближение Вентцеля-Крамерса-Бриллюэна для описания рассеяния на сферической капле нематического жидкого кристалла

Для нахождения элементов амплитудной матрицы рассеяния света отдельной ЖКкаплей воспользуемся интегральным представлением векторной амплитудной функции рассеяния $f(\mathbf{e}_i, \mathbf{e}_s)$ [12]. Запишем его в виде:

$$\mathbf{f}(\mathbf{e}_{i},\mathbf{e}_{s}) = \frac{ik^{3}}{4\pi} \int_{V} \left\{ \mathbf{e}_{s} \times \left[\mathbf{e}_{s} \times \left(\underbrace{\varepsilon}_{=}(\mathbf{r}) - \underbrace{1}_{=} \right) \mathbf{E}(\mathbf{e}_{i},\mathbf{r}) \right] \right\} \exp(-ik\mathbf{e}_{s}\mathbf{r}) dV , \qquad (7)$$

где интегрирование ведётся по объему ЖК-капли $V, \underline{\varepsilon}(\mathbf{r})$ – локальный тензор относительной диэлектрической проницаемости элементарного объёма с радиус-вектором $\mathbf{r}, \underline{1}$ – единичная матрица 3×3, \mathbf{e}_i и \mathbf{e}_s – единичные векторы в направлении падения и рассеяния света, $\mathbf{E}(\mathbf{e}_i,\mathbf{r})$ - электрическое поле световой волны внутри ЖК-капли, $k=2\pi n_p/\lambda$ – волновое число в окружающей среде (полимере). Отметим, что выражение (7) является точным представлением векторной амплитудной функции рассеяния $\mathbf{f}(\mathbf{e}_i,\mathbf{e}_s)$ в дальней зоне через электрическое поле световой волны $\mathbf{E}(\mathbf{e}_i,\mathbf{r})$ внутри ЖК-капли.

Рассмотрим нематическую ЖК-каплю с однородно ориентированной внутренней структурой, когда локальный директор **n** параллелен оптической оси **N** во всем объеме капли (см. рис. 1).

Рис.1. Схематическое представление отдельной ЖК-капли в КПЖК-монослое и геометрия рассеяния света: xyz – лабораторная система координат, в которой плоскость yz совпадает с плоскостью монослоя, \mathbf{k}_i – волновой вектор падющего света, \mathbf{k}_b – волновой вектор в направлении обратного рассеяния света, \mathbf{N} – оптическая ось (директор) ЖК-капли, θ – угол ориентации директоров ЖК-капель в главной плоскости xy относительно направления освещения, a – радиус капли, \mathbf{n} – оптическая ось элементарного объема капли.

В таком случае локальный тензор относительной диэлектрической проницаемости $\underline{\varepsilon}$ в выражении (7) не зависит от радиус-вектора **r** и имеет диагональный вид. Применим ВКБ-приближение для описания внутреннего поля **E**(**e**_{*i*},**r**) в оптически анизотропной ЖК-капле. Тогда, проделав ряд преобразований, которые мы опускаем в силу их громоздкости, используя выражение (7), для диагональных элементов амплитудной матрицы при рассеянии света в направлениях строго вперед и назад $S_{2,1}^{0,\pi}$, найдем:

$$S_{2,1}^{0,\pi} = -\frac{ik^3}{4\pi} V I_{y,z}^{0,\pi},$$
(8)

где интегралы $I_{y,z}^{0,\pi}$ имеют вид:

$$I_{y,z}^{0,\pi} = \frac{2}{V} \left(n_{y,z} - 1 \right) \int_{V} \exp F_{y,z}^{0,\pi} dV .$$
(9)

Недиагональные элементы амплитудной матрицы равны нулю,

$$S_{3,4}^{0,\pi} = 0. (10)$$

В выражении (9) n_y и n_z – показатели преломления для необыкновенной и обыкновенной волн, поляризованных вдоль осей *y* и *z* лабораторной системы координат. Функции $F_{y,z}^{0,\pi}$ описывают фазовые изменения для необыкновенной и обыкновенной волн с учетом предыстории прохождения света внутри ЖК-капли. Для однородно ориентированной внутренней структуры ЖК-капли имеют место соотношения:

$$n_{y} = \frac{n_{e}n_{o}}{n_{p}\sqrt{n_{e}^{2}\cos^{2}\theta + n_{o}^{2}\sin^{2}\theta}},$$
(11)

$$n_{z} = \frac{n_{o}}{n_{p}},$$
(12)

$$F_{y,z}^{0} = i\Delta_{y,z}(x - x_{inp}),$$
(13)

$$F_{y,z}^{\pi} = i\Delta_{y,z}(x - x_{inp}) + 2ikax,$$
(14)

$$\Delta_{y,z} = ka(n_{y,z} - 1).$$
(15)

Здесь n_o и n_e – обыкновенный и необыкновенный показатели преломления жидкого кристалла, x_{inp} – координата поверхности ЖК-капли в точке вхождения падающего света, θ – угол ориентации оптических осей капель в слое относительно нормали.

Выполнив интегрирование в выражении (9), для действительных и мнимых частей элементов амплитудной матрицы рассеяния $S_{2,1}^{0,\pi}$ найдем следующие аналитические соотношения:

$$\operatorname{Re} S_{2,1}^{0} = \rho^{2} \operatorname{Re} K \left(2\rho(n_{y,z} - 1) \right), \tag{16}$$

$$\operatorname{Im} S_{2,1}^{0} = \rho^{2} \operatorname{Im} K \left(2\rho(n_{y,z} - 1) \right), \tag{17}$$

$$\operatorname{Re} S_{2,1}^{\pi} = \rho^{2} \frac{n_{y,z} - 1}{n_{y,z} + 1} \left\{ \operatorname{Re} K \left(2\rho n_{y,z} \right) - \operatorname{Re} K \left(2\rho \right) \right\},$$
(18)

$$\operatorname{Im} S_{2,1}^{\pi} = -\rho^2 \frac{n_{y,z} - 1}{n_{y,z} + 1} \left\{ \operatorname{Im} K\left(2\rho n_{y,z}\right) + \operatorname{Im} K\left(2\rho\right) \right\},$$
(19)

где К – функция Хюлста [11].

Выше были рассмотрены капли с однородной ориентацией жидкого кристалла. Однако, в рамках ВКБ-приближения в сочетании с приближением эффективной среды [8, 9], соотношения (16)–(19) можно использовать для описания рассеяния света сферическими нематическими ЖК-каплями с более сложной внутренней структурой. Для этого необходимо ввести в рассмотрение эффективные показатели преломления капель n_y и n_z для необыкновенной и обыкновенной волн.

Для капель с биполярной конфигурацией и подвижными полюсами:

$$n_{y} = n_{iso} + \frac{1}{3} \Delta n S_{d} \left(1 - 2S_{fx} \right), \tag{20}$$

$$n_z = n_{iso} - \frac{1}{3} \Delta n S_d \,, \tag{21}$$

где

$$n_{iso} = \frac{2n_o + n_e}{3}, \qquad (22)$$

и ∆*n*=*n_e*-*n_o*- оптическая анизотропия ЖК, *S_d*- скалярный параметр порядка ЖК-капли [13], *S_{fx}*- *x*-компонента тензорного параметра порядка КПЖК-монослоя [8].

Обратим внимание, что применимость приближения эффективной среды для анализа рассеяния света ЖК-каплями ограничена необходимым условием диагональности среднего по объему капли тензора диэлектрической проницаемости.

Результаты расчетов

Результаты расчетов коэффициентов когерентного пропускания T_c , отражения R_c и степени поляризации света P (см. выражение (23)) КПЖК-монослоем в зависимости от параметра дифракции ρ представлены на рис. 2–7.

Рис. 2. Зависимость коэффициента когерентного пропускания неполяризованного света *T_c* КПЖК-монослоем от параметра дифракции ρ при планарной ориентации оптических осей капель в плокости монослоя (θ = π / 2) и разных значениях коэффициента заполнения η

Рис. 3. Зависимость степени поляризации света *P* КПЖК-монослоем от параметра дифракции ρ при планарной ориентации оптических осей капель в плокости монослоя (θ = π / 2) и разных значениях коэффициента заполнения η

Рис. 4. То же самое, что на рис. 2 при ориентации оптических осей ЖК-капель в слое под углом θ = π / 4 относительно нормали

Рис. 5. То же самое, что на рис.3 при ориентации оптических осей ЖК-капель в слое под углом $\theta = \pi / 4$ относительно нормали

Рис. 6. Зависимость коэффициента когерентного отражения неполяризованного света *R_c* КПЖКмонослоем от параметра дифракции ρ при планарной ориентации оптических осей капель в плокости монослоя (θ = π / 2) и разных значениях коэффициента заполнения η

Рис. 7. То же самое, что на рис. 6 при ориентации оптических осей ЖК-капель в слое под углом $\theta = \pi / 4$ относительно нормали

Расчеты выполнены на основе выражений (1) –(6), (11), (12), (16)–(19) для обыкновенного $n_o=1,5$ и необыкновенного $n_e=1,7$ показателей преломления ЖК, показателя преломления полимера $n_p=1,5$, углов ориентации оптических осей капель в слое $\theta=\pi/2$ (планарная *у*-ориентированная структура) и $\theta=\pi/4$ при разных значениях коэффициента заполнения слоя η .

Из рис. 2, 4 видно, что для выбранного значения показателя преломления полимера $(n_p = n_o)$ коэффициент когерентного пропускания неполяризованного света T_c превышает значение равное 0,5. При этом степень поляризации света

$$P = \frac{T_c^{\perp} - T_c^{\parallel}}{T_c^{\parallel} + T_c^{\perp}}$$
(23)

может достигать значений *P* ≈ 1.

Коэффициент когерентного отражения R_c в расматриваемом случае нематических ЖКкапель в слое имеет малые значения, и, как видно из рис. 6, 7, не превышает 0,004 при планарной ориентации оптических осей капель ($\theta = \pi/2$).

Заключение

Разработана оптическая модель для анализа коэффициентов когерентного пропускания и отражения света монослоем сферических нематических ЖК-капель при нормальном освещении неполяризованным светом. Она основана на приближении Вентцеля-Крамерса-Бриллюэна, развитом в работе для описания рассеяния света оптически анизотропными ЖК-каплями, и приближении эффективной среды.

Проанализированы коэффициенты когерентного пропускания, отражения и степени поляризации прямопрошедшего света монослойными КПЖК-пленками при различных углах ориентации оптических осей капель.

Результаты могут быть использованы для оценки пропускания и отражения света монослоями холестерических ЖК-капель при планарной ориентации их оптических осей и нормальном освещении слоя.

TRANSMITTANCE AND REFLECTANCE OF LIGHT BY ENSEMBLE OF SPHERICAL LIQUID-CRYSTAL DROPLETS WITH CYLINDRICALLY SYMMETRIC INTERNAL STRUCTURE

V.A. LOIKO, A.V. EMELYANENKO, E.P. POZHIDAEV, A.V. KONKOLOVICH, A.A. MISKEVICH

Abstract

The optical model is developed for the analysis of directed transmittance and mirror reflectance of light at normal illumination of a monolayer of droplets of nematic liquid crystal, dispersed in a polymeric matrix. It is based on generalization of the Wentzel-Kramers-Brillouin approach on a vector case. Coherent transmittance and reflectance at various orientation of optical axes of droplets are analyzed

Литература

1. Пикин С.А.Структурные превращения в жидких кристаллах. М., 1981.

2. Беляков В.А., Сонин А.С. Оптика холестерических жидких кристаллов. М., 1982.

3. Жаркова Г.М., Сонин А.С. Жидкокристаллические композиты. Новосибирск, 1994.

4. Zumer S., Doane J.W. // Phys. Rev. A. 1986. V.34, №4. P. 3373-3386.

5. Zumer S. // Phys. Rev. A. 1988. V.37, No10. P. 4006-4015.

6. Яковлев Д.А., Афонин О.А. // Опт. и спектр. 1997. Т. 82, №1. С. 86-92.

7. Klett J.D., Sutherland R. A. // Applied Optics. 1992. V.31, No.3. P.373-386.

8. Лойко В.А., Машке У., Зырянов В.Я. и др. // ЖЭТФ. 2008. Т.134, В.4 (10). С. 806–814.

9. Loiko V.A., Konkolovich A.V., Miskevich A.A. // Phys. Rev. E. 2006. V.74. P. 031704(1)-(7).

10. Иванов А.П., Лойко В.А., Дик В.П. Распространение света в плотноупакованных дисперсных средах. Минск, 1988.

11. Хюлст Г. Рассеяние света малыми частицами. М., 1961.

12. Исимару А. Распространение и рассеяние волн в случайно-неоднородных средах. М., 1981.

13. Simoni F. Nonlinear Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals. Singapore, 1997.