УДК 621.396.677

ПРИБЛИЖЕННАЯ РЕАЛИЗАЦИЯ ДИАГРАММЫ НАПРАВЛЕННОСТИ ТИПА «КОСЕКАНС» В ЛИНЕЙНОЙ АНТЕННОЙ РЕШЕТКЕ С ПОСЛЕДОВАТЕЛЬНЫМ ВОЗБУЖДЕНИЕМ

В.В. КИЗИМЕНКО, О.А. ЮРЦЕВ

Белорусский государственный университет информатики и радиоэлектроники П.Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 17 мая 2012 года

Рассматривается приближенное амплитудно-фазовое распределение возбуждения излучателей (АФР) в линейной решетке, при котором диаграмма направленности (ДН) в заданном угловом секторе близка к диаграмме направленности типа «Косеканс» (далее косекансная ДН). Исследуется влияние приближений амплитудно-фазового распределения к синтезированному на диаграмму направленности и способ его реализации в линейной решетке с последовательным возбуждением.

Ключевые слова: линейная антенная решетка, диаграмма направленности типа «Косеканс», приближенная реализация.

Введение

Косекансная ДН используется в обзорных радиолокаторах и формируется в вертикальной плоскости. Реализация косекансной ДН в антенных решетках связана с необходимостью возбуждения излучателей с весьма сложным фазовым распределением. Это, в свою очередь, усложняет систему распределения мощности в решетке с аналоговым формированием ДН. Если в плоских антенных решетках с электронным сканированием цифровое формирование ДН производится только в горизонтальной плоскости, в вертикальной плоскости используется аналоговое формирование ДН с помощью высокочастотной системы распределения мощности. В этом случае формирование косекансной ДН в вертикальной плоскости требует возбуждения излучателей в этой плоскости со сложным фазовым распределением. Далее рассматриваются варианты упрощения фазового распределения и способа его реализации, обеспечивающие формирование ДН, близкой по форме к косекансной.

Методика теоретического анализа

Решение задачи синтеза амплитудно-фазового распределения (АФР) возбуждения излучателей линейной решетки, формирующей косекансную ДН, т.е. описываемую формулой

$$F_1(z) = \frac{1}{\sin\theta},\tag{1}$$

возможно только приближенно [1]. В выражении (1) θ – угол, отсчитываемый от нормали к решетке (угол наблюдения). При решении этой задачи задается значение θ_{min} – минимальная граница интервала углов наблюдения, в котором необходимо получить ДН, близкую к косе-кансной. В результате решения задачи синтеза определяется АФР, реализующее ДН типа

$$F_1(\theta) = \frac{\sin \theta_{\min}}{\sin \theta} \operatorname{прu} \theta \ge \theta_{\min}$$
(2)

2012

Вид ДН при θ < θ_{min} зависит от выбора некоторых вспомогательных коэффициентов. Далее при численном решении задачи синтеза использованы формулы работы [1], приближенно реализующие косекансную ДН методом парциальных ДН.

В результате решения задачи синтеза определяется ДН, близкая к заданной – R(z):

$$R(z) = z_0 \frac{p^z}{z} \operatorname{прu} z > z_0,$$
(3)

R(z) = 0 при z < 0,

$$z = \frac{L}{\lambda} \sin \theta , \qquad (5)$$

где L – длина линейной решетки, λ – длина волны, p < 1.

Синтезированная диаграмма направленности описывается формулой:

$$R_{1}(z) = z_{0} \sum_{m=1}^{M_{1}} \frac{p^{m}}{m} \cdot \frac{\sin[\pi(z-m)]}{\pi(z-m)} + A_{0} \frac{\sin(\pi z)}{\pi z}.$$
(6)

В выражениях (3) и (6) p – коэффициент, улучшающий сходимость ряда в (5); $A_0 < 1$ – коэффициент, уменьшающий различие ДН R(z) и $R_1(z)$ при нецелых значениях z.

Синтезированное амплитудное распределение (A(y)) и фазовое распределение $\Psi(y)$ возбуждения излучателей линейной решетки описываются выражениями:

$$A(y) = \sqrt{\left[A_0 - \frac{1}{2}z_0 \cdot \ln\left(1 - 2p\cos y + p^2\right)\right]^2 + \left(z_0 \arctan \frac{p\sin y}{1 - p\cos y}\right)^2},$$
(7)

$$\Psi(y) = \operatorname{arctg} \frac{z_0 \operatorname{arctg} \left(\frac{p \sin y}{1 - p \cos y} \right)}{A_0 - 0.5 z_0 \ln \left(1 - 2p \cos y + p^2 \right)}.$$
(8)

В выражениях (7), (8):

$$y = 2\pi \frac{x_n}{L},\tag{9}$$

где *x_n* – координата излучателя с номером «п» в линейной решетке:

$$x_n = D(n-1), \tag{10}$$

где *D* – расстояние между соседними излучателями в решетке.

Решетка с АФР вида (7), (8) имеет ДН, описываемую выражением (7). Если в АФР внести некоторые коррективы, упрощающие его, ДН необходимо рассчитывать с помощью общего выражения для ДН дискретной системы излучателей [2]:

$$R(\theta) = \sum_{n=1}^{N} A_n e^{i\Psi_n} e^{ikD(n-1)\sin\theta} , \qquad (11)$$

где N – число излучателей в решетке, A_n , Ψ_n – амплитуда и фаза возбуждения излучателя с номером n.

(4)

Численные результаты. Приближенные способы реализации диаграммы направленности типа «косеканс»

На рис. 1 показаны ДН решетки при рекомендуемом значении $A_0 = 0,65$ [1]; p = 0,99 $\theta_{\min} = 1,5$ и двух значениях M_1 - числе учитываемых членов ряда в выражении (6). Остальные исходные параметры: $D/\lambda = 1$; N = 30. Как видно, величина M_1 влияет на границу θ_{\max} . При $\theta < \theta_{\max}$ заданная и синтезированная ДН близки друг к другу. При $M_1 = 30$ $\theta_{\max} = 90^\circ$. На рис. 1 и последующих рисунках использованы обозначения: $1/\sin \theta$ - заданная косекансная ДН, описываемая формулами (3)–(5), ДН - синтезированная диаграмма направленности, описываемая формулой (6). На графиках обозначены $f(\theta)$ – ненормированная ДН, $F_n(\theta)$ – нормированная ДН.

Рис.1. Диаграммы направленности при: $M_1 = 5$ (*a*), $M_1 = 20$ (б)

Расчеты показывают, что при изменении θ_{\min} необходимо подбирать значение A_0 по критерию близости заданной и синтезированной ДН. На рис.2 показаны ДН при $A_0 = 0,65$ при двух значениях θ_{\min} . Этот расчет и все последующие расчеты сделаны при $M_1 = 30$.

Степень близости заданной и синтезированной ДН зависит от числа излучателей в решетке *N*. На рис.3 показаны ДН при $\theta_{\min} = 0,5^{\circ}$ при $A_0 = 0,65$ для двух случаев: N = 15 и N = 50. Этот рисунок совместно с рис.4 иллюстрирует эту закономерность.

Рис.3. ДН при различном числе излучателей в решетке: $N = 15(a); N = 50(\delta)$

Синтезированное АФР, особенно фазовое распределение, зависит от A_0 , θ_{\min} , N, p. На рис.4 показаны нормированное амплитудное распределение (A_n) и фазовое распределение (Ψ_n в градусах) в зависимости от номера п излучателя для $\theta_{\min} = 1^\circ$ при $A_0 = 0,65$; N = 30. На рис. 4 *в* и 4 *г* показана зависимость фазового распределения от θ_{\min} .

Рис.4. Амплитудное (*a*) и фазовое (б) распределение и зависимость фазового распределения от номера излучателя при: $\theta_{\min} = 0, 5^{\circ}(s); \ \theta_{\min} = 2^{\circ}(c)$

Характер АФР для получения косекансной ДН позволяет предложить упрощенный способ его реализации в линейной решетке с последовательным возбуждением. Такая решетка схематически показана на рис.5 и состоит из двух половин. Половины решетки возбуждаются со сдвигом по фазе $\Delta \Psi$.

Рис.5. Схема решетки с последовательным возбуждением

Если в пределах каждой половины расстояние между излучателями равно длине волны в питающей линии передачи ($D = \lambda_v - длина$ волны в линии), все излучатели в каждой половине возбуждаются синфазно (точнее со сдвигом по фазе $\varphi_0 = 2\pi \cdot D/\lambda_v = 2\pi$) Сдвиг по фазе возбуждения двух половин решетки равен $\Delta \Psi = \pi \cdot \Delta L/\lambda_v$, где $\Delta L -$ смещение точки соединения входной линии передачи с линией питания излучателей от центра решетки. В такой схеме фазовое распределение возбуждения в решетке ступенчатое – рис. 6 *a*. При изменении частоты фазовое распределение становится линейным – рис. 6 *б*. На графиках из разности фаз между соседними излучателями вычтено значение 360°. Амплитудное распределение в решетке – спадающее к краям. Закон изменения амплитуды возбуждения излучателей в зависимости от номера «*n*» может быть сделан близким к показанному на рис. 4 *a*.

Рис.6. Упрощенные фазовые распределения возбуждения излучателей

Результаты численного моделирования такой решетки приведены ниже. При моделировании использовалось описанное фазовое распределение. В качестве амплитудного распределения использовалось синтезированное для получения косекансной ДН.

На рис.7 приведены ДН для решетки с параметрами $D = \lambda_{\nu}$, $\theta_{\min} = 1^{\circ}$ при $A_0 = 0,3$; N=30 при различных $\Delta \Psi = 70^{\circ}$. Показано также фазовое распределение, соответствующее этому значению $\Delta \Psi$.

Рис.7. Диаграмма направленности (а) и упрощенное фазовое распределение (б)

Как видно, заданная ДН и синтезированная с упрощенным фазовым распределением близки друг к другу.

На рис.8 показаны ДН и фазовые распределения на частоте f_0 – частоте, на которой выполняется условие $D = \lambda_v$, и на частотах $f = 1,05f_0$ и $f = 0,95f_0$. На графиках фазового распределения из разности фаз между соседними излучателями (φ_0) не вычтено значение 360° Так, на частоте f_0 эта разность фаз равна 360° (рис. 4 δ). На частоте $f = 1,05f_0 \quad \varphi_0 > 360^\circ$ (рис. 4 ϵ), на частоте $f = 0,95f_0 \quad \varphi_0 < 360^\circ$ (рис. 4 ϵ).

Рис.8. Диаграмма направленности и фазовое распределение возбуждения при: $f = 0.95 f_0$ (*a*); $f = f_0$ (*б*); $f = 1.05 f_0$ (*s*)

Из приведенных результатов следует, что в области углов наблюдения $\theta > \theta_{\min}$ диаграмма направленности при использовании упрощенного фазового распределения близка к косекансной в диапазоне частот, равно примерно 10%. Этот вывод сделан на основе результатов моделировании решетки с числом излучателей N = 30. При увеличении N полоса частот уменьшается. Полученные выводы проверены путем численного моделирования микрополосковой линейной решетки с последовательным питанием. В качестве материала использован фольгированный диэлектрик с диэлектрической проницаемостью $\varepsilon = 3$ и толщиной подложки 1,52 мм. Топология решетки, созданная в программе AWR MWO-2009, показана на рис. 9. В решетке 20 излучателей. Расстояние между соседними излучателями D = 185 мм. На рис. 9 приведена зависимость коэффициента стоячей волны (*VSWR*) от частоты и ДН в диапазоне частот, рассчитанного в программе AWR MWO-2009.

Рис.9. Результаты моделирования решетки в программе *AWR MWO*-2009: *a* – коэффициент стоячей волны; *б* – диаграмма направленности на частоте 9450 МГц; *в* – диаграмма направленности на частоте 9600 МГц; *г* – диаграмма направленности на частоте 9750 МГц

Заключение

Приведенные в статье результаты моделирования линейной решетки с последовательным возбуждением подтвердили возможность реализации приближенного способа формирования диаграммы направленности, близкой к косекансной.

APPROXIMATE "COSECANT" ANTENNA PATTERN REALIZATION IN THE LINEAR ARRAY ANTENNA WITH SERIES EXCITATION

V.V. KIZIMENKO, O.A. YURTSEV

Abstract

The way of approximate "Cosecant" radiation pattern realization in the linear array with the series excitation is proposed and studied.

Список литературы

1. Зелкин Е.Г. Построение излучающей системы по заданной диаграмме направленности. М. 1963.

2. Марков Г.Т. Антенны. М. 1960.