2011

УДК 621.385.6

УМНОЖЕНИЕ ЧАСТОТЫ В ГИРОКОНЕ С ПРОДОЛЬНЫМ МАГНИТНЫМ ПОЛЕМ

В.В. МАТВЕЕНКО, А.К. СИНИЦЫН

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 3 ноября 2010

Найдены оптимальные режимы и установлены предельные параметры гироконаумножителя частоты, в котором при одинаковом уровне сигнала реализуется $2^x - 4^x$ кратное умножение частоты с электронным КПД более 90%. Приведены оптимальные параметры и анализ выходных характеристик двух-четырех-каскадных гиротонов.

Ключевые слова: СВЧ-усилитель, гирокон, умножение частоты, вычислительный эксперимент.

Введение

В вакуумной СВЧ-электронике принцип умножения частоты позволяет конструировать эффективные источники излучения на высоких частотах ($n\omega$), управляемые низкочастотным сигналом (ω) от генератора небольшой мощности.

В классических СВЧ-приборах О-типа (клистрон, твистрон, каскадный оротрон...) умножение частоты основано на том факте, что в результате скоростной модуляции пучка во входном резонаторе в сгруппированном в области дрейфа электронном потоке в силу нелинейных эффектов присутствуют гармоники тока достаточно большой амплитуды, вплоть до $n\sim10$. Поэтому, при соответствующей настройке выходной секции прибора, в ней возбуждаются колебания на частоте, кратной частоте сигнала [1]. Следует отметить, что ввиду плохого качества пучка, сгруппированного на частотах n_{00} , КПД таких умножителей заметно понижается с ростом номера гармоники.

Среди умножителей частоты О-типа можно выделить клистрон-удвоитель с поперечной модуляцией, в котором за счет прохождения пучка в неоднородном магнитном поле в области дрейфа начальная поперечная модуляция приводит к формированию основной гармоники тока на удвоенной частоте сигнала [2]. В этом случае КПД такого удвоителя не ниже, чем у обычного клистрона.

Принципиально другой тип умножения частоты в СВЧ-приборах с круговой модуляцией релятивистского электронного пучка во вращающейся E_{110} -моде на частоте ω резонатора модулятора (гиротонах) предложен в работе А.А. Кураева [3]. В таком умножителе развернутый по кругу РЭП возбуждает в выходном резонаторе вращающуюся $E_{n1\ell}$ или $H_{n1\ell}$ моду на частоте $n\omega$, т.е. номер гармоники совпадает с азимутальным номером.

Основное преимущество гиротона-умножителя состоит в том, что в силу отсутствия продольной группировки в нем реализуется близкий к идеальному по эффективности механизм усиления – все электроны достаточно тонкого пучка независимо от фазы влета в модулятор находятся в одинаковых условиях отдачи энергии и при правильной настройке и отсутствии потерь электронный КПД приближается к 100%.

Одним из первых реализованных приборов с круговой разверткой РЭП является гирокон, предложенный Будкером [4]. Более совершенная его конструкция – гирокон с продольным магнитным полем исследовалась в работе [5].

№5 (59)

В настоящей статье выполнены расчеты и найдены параметры, при которых реализуется 2^x – 4^x кратное умножение частоты с электронным КПД более 90% в гироконе с продольным магнитным полем и «тонким» электронным пучком.

Схема и принцип действия гирокона-умножителя

Конструктивная схема рассматриваемого гирокона-умножителя и распределение ВЧ-полей в резонаторах приведены на рис.1.

Рис. 1. Схема гирокона-умножителя

Прямолинейный релятивистский электронный поток 2, формируемый ускорителем 1, входит по оси в модулирующий резонатор 3, в котором возбуждается E_{110} -поле, вращающееся с частотой сигнала ω_0 . Под действием поперечной магнитной составляющей этого поля происходит разворот электронного потока. Электронный поток проходит далее в трубке дрейфа 4, вращаясь во внешнем, нарастающем вдоль оси магнитном поле B_0 . В конце трубки дрейфа электроны, достигая максимального удаления от оси в верхней точке циркуляции, входят в щель выходного отбирателя 5, состоящего из последовательности резонаторов на вращающейся с частотой $n\omega_0$ моде E_{n10} . Благодаря тому, что азимутальная скорость вращения такой моды не зависит от *n*, электроны пучка, независимо от фазы влета в резонатор модулятора на вращающейся с частотой ω_0 моде E_{110} при правильной настройке проходят отбиратель на вращающейся с частотой *п*₀₀ моде *E*_{*n*10} в одинаковой тормозящей фазе. После прохождения отбирателя электронный поток осаждается на коллекторе 6. Соленоид 7 обеспечивает требуемое распределение магнитного поля $B_0(z)$ вдоль оси соленоида.

Существенно, что на входе отбирателя электроны, за счет прохождения в неоднородном магнитном поле, наряду с продольной составляющей скорости v_z , имеют азимутальную v_{ϕ} и радиальную v_r составляющие, которые способствуют более длительному прохождению пучка в тормозящем поле продольной электрической составляющей E_{n10} -колебания.

Как показывают расчеты, для обеспечения отбора энергии толщина одного резонатора не должна превышать $(0,5\div1,5)\lambda_0/(2\pi)$ для $n=4\div1$, что приводит к значительной амплитуде E_{n10} -колебания необходимой для полного торможения электронов. Каскадная конструкция отбирателя позволяет за счет распределенного отбора уменьшить требуемую амплитуду пропорционально количеству каскадов.

Используемая для расчетов математическая модель

Благодаря отсутствию зависимости механизма взаимодействия электронов с полями резонаторов от фазы влета при моделировании достаточно ограничиться для тонкого потока расчетом одной траектории. Для исследования и оптимизации гирокона использовалась следующая система безразмерных уравнений траектории электронного пучка:

$$\frac{d\gamma \ \beta}{dz} = -\left\{A_i\left(\vec{E}_i + \begin{bmatrix}\vec{\beta} & \vec{B}_i\end{bmatrix}\right) + \begin{bmatrix}\vec{\beta} & \vec{F}\end{bmatrix}\right\} / \beta_z; \quad \frac{d\vec{r}_\perp}{dz} = \frac{\beta_\perp}{\beta_z}; \quad \frac{d\theta}{dz} = \frac{1}{\beta_z}.$$
(1)

Здесь 0 < z < L, $\vec{r}_{\wedge} = \frac{\omega_0}{c} \vec{r}'_{\wedge} = x\vec{x}_0 + y\vec{y}_0 = \phi\vec{\phi}_0 + r\vec{r}_0$; $\vec{\beta} = \vec{v} / c = \vec{\beta}_{\perp} + \beta_z \vec{z}_0$; \vec{v} – скорость электронов пучка, $\vec{\beta}_{\perp} = \beta_x \vec{x}_0 + \beta_y \vec{y}_0 = \beta_{\phi} \vec{\phi}_0 + \beta_r \vec{r}_0$; (используется декартова и цилиндрическая системы координат), $\theta = \omega_0 t$ – угол пролета, $\omega_0 = 2\pi c / \lambda_0$ – частота сигнала, λ_0 – его длина волны в открытом пространстве, $\gamma = 1 / \sqrt{1 - |\vec{\beta}|^2}$ – релятивистский фактор, $(L_i, L_{ii+1}) = \frac{\omega_0}{c} (L'_i, L'_{ii+1})$ – приведенные длины резонаторов и областей дрейфа (размерные помечены штрихом).

Нормированные компоненты $\{\vec{E}_i, \vec{B}_i\}$ вращающейся E_{n10} – моды резонатора на резонансной частоте $n \omega_0$ имеют вид:

(2)

$$\vec{E}_{i} = \frac{J_{n}(nr)}{J_{n}(\mu_{n1})} \cos(n(t-\phi) - \psi_{i})\vec{z}_{0};$$

$$\vec{B}_{i} = \frac{J_{n-1}(nr) - J_{n+1}(nr)}{2J_{n}(\mu_{n1})} \sin(n(t-\phi) - \psi_{i})\vec{\phi}_{0} + \frac{J_{n-1}(nr) + J_{n+1}(nr)}{2J_{n}(\mu_{n1})} \cos(n(t-\phi) - \psi_{i})\vec{r}_{0}$$

Приведенный радиус резонатора $R_i = v_{n1} / n$; $J_n(v_{n1}) = 0$, $J'_n(\mu_{n1}) = 0$; $A_i = eE_{mi} / (m_0\omega_0c)$, E_{mi} – амплитуда, ψ_i – фаза СВЧ-поля в *i*-м резонаторе; $\vec{F} = F_r(r,z)\vec{r_0} + F_z(r,z)\vec{z_0} = \vec{B_0}e / (m_0\omega)$ – магнитостатическое поле задавалось постоянным в резонаторах модулятора ($F_z = F_1$) и в резонаторах отбирателя ($F_z = F_2$), а в области дрейфа оно плавно возрастало вдоль оси от F_1 до F_2 .

Начальные условия задавались следующим образом. Для расчета усилителя электронный поток подавался по оси входного резонатора: при z=0; $\theta=0$; $\beta_z=\beta_0$, $\beta_x=0$, $\beta_y=0$, x=0, y=0.

Для исследования предельных возможностей отбирателя электронный поток, имеющий скорость β_0 и питч-фактор $q_0 = |\beta_{\perp}| / \beta_z$, подавался под заданным углом на определенном радиусе r_0 входа в резонатор: при z=0; $\theta=0$; $\beta_z=\beta_{z0}$, $\beta_{\phi}=\beta_{\phi0}$, $\beta_r=\beta_{r0}$, $x=r_0$, y=0.

Электронный КПД для электрона, проходящего резонатор, определялся как

$$\eta = \frac{\gamma(z_{in}) - \gamma(z_{ou})}{\gamma(z_{in}) - 1};$$
(3)

 z_{in}, z_{ou} – координаты входа и выхода из резонатора.

Максимальная напряженность электрического поля в резонаторе выражается через параметр *A_i* и длину волны, соответствующую частоте сигнала следующим образом:

$$E_{mi}\left[\frac{\mathrm{KB}}{\mathrm{cM}}\right] = 10A_{i}\frac{m_{0}\omega_{0}c}{e} = 3200\frac{A_{i}}{\lambda_{0}[\mathrm{cM}]}.$$
(4)

Для медных резонаторов потери в стенках выражаются в виде

$$P_{\sigma i}^{E_{n10}}[\text{KBT}] = \frac{260A_i^2}{\sqrt{\lambda_0[c_M]}} \frac{J_n'^2(v_{n1})}{v_{n1}^2} R_i^3(L_i + 2R_i)n^{5/2} = \alpha_{\sigma i} \frac{A_i^2}{\sqrt{\lambda_0[c_M]}}$$
(5)

Результаты расчетов

Оптимизированные параметры однокаскадных отбирателей на модах резонаторов E_{n10} с частотой $n\omega_0$ и характеристики электронов тонкого пучка представлены в табл. 1. На рис. 2 представлены характеристики отбора для E_{210} моды. Напряжение пучка U_0 выбрано равным 460КВ ($\beta_0=0,85$) исходя из условий наилучшего соотношения мощности потерь в резонаторах гирокона и выходной мощности. Ширина L_i резонаторов подбиралась такой, чтобы обеспечить для всех резонаторов монотонный отбор с КПД=0,982 и минимальной амплитуде A_i . При меньшей ширине монотонный отбор достигается при больших амплитудах. При большей ширине на начальном участке идет накачка энергии СВЧ в пучок (КПД отрицательный), на последующем участке реализуется монотонный отбор, но требуемая при этом амплитуда возрастает.

· · · ·		r r	· · · · I	
п	1	2	3	4
β_0	0,85	0,85	0,85	0,85
A_2	0,677	1,31	1,93	2,55
Ψ2	-1,60	-0,80	-0,54	-0,43
L_2	2,00	1,05	0,72	0,57
r_0	1,81	1,49	1,395	1,325
q_0	0,35	0,45	0,49	0,52
$\beta_{\phi 0}$	0,278	0,35	0,375	0,39
β_{r0}	0,042	0,02	0,00	0,00
F_2	0,2-0,4	0,4-0,5	0,4-0,5	0,4-0,5
α_{σ}	1530	670	422	308
η_{Σ}	0,982	0,982	0,982	0,982
	•	•	•	•

Таблица 1. Оптимальные параметры отбирателей с одним резонатором на Е_{п10}

Рис. 2. Поперечная траектория электрона

Анализ вариантов из табл. 1 показывает, что для обеспечения оптимальных условий отбора необходимо, чтобы на входе в резонатор пучок имел достаточно большое значение поперечной азимутальной составляющей скорости β_{φ} , направленной в сторону вращения поля, за счет которой обеспечивается более длительное нахождение электронов в тормозящей фазе E_z компоненты поля. Радиус входа пучка в резонатор r_0 близок к радиусу, на котором находится максимум E_z компоненты. С увеличением коэффициента умножения частоты *n*, ввиду уменьшения области тормозящей фазы, уменьшается оптимальная ширина резонатора и, как следствие, возрастает амплитуда поля A_2 в резонаторе. Как видно из рис. 2 (см. кривая 4 и поперечная траектория x_e , y_e) траектория пучка проходит вблизи максимума E_z компоненты ($r_{max}=\mu_{21}/2=1,502$). Оптимальное значение ψ_2 соответствует началу тормозящей фазы поля, в точке входа электрона в резонатор. В оптимальных условиях происходит монотонный отбор энергии пучка – как продольная, так и его поперечная составляющие скорости (β_z , β_l) уменьшаются (см. кривые 2,3 на рис. 2).

Варианты умножителей получались подбором амплитуды поля A₁ модулятора, длины области дрейфа L_{12} и значения магнитного поля F_1 , F_2 исходя из обеспечения условий на входе в отбиратель, близких к оптимальным, приведенным в табл. 1. Расчет показал, что если зафиксировать амплитуду A_1 и небольшое значение $F_1 \cong 0,1$ (при увеличении F_1 требуется увеличивать амплитуду модуляции), то варьируя L₁₂ и F₂ возможно с некоторой погрешностью обеспечить требуемые условия оптимального отбора. В результате выполненной таким образом оптимизации были получены варианты усилителей, параметры которых приведены в табл. 2. Характеристики варианта удвоителя представлены на рис. 3. В приведенных вариантах реализованы одинаковые условия модуляции (зафиксирована амплитуда A₁ и ширина L₁), что позволяет сравнить характеристики умножителей с одинаковым входным сигналом. Как видно из таблицы 2, амплитуда в отбирающем резонаторе усилителя A₂ соответствует оптимальному значению в табл. 1. Для обеспечения оптимальных условий на входе отбирателя необходимая длина дрейфа L_{12} уменьшается, а значение F_2 немного увеличивается с увеличением коэффициента умножения n. Ввиду уникального механизма взаимодействия в гироконе-умножителе частоты, коэффициент усиления при одинаковом уровне сигнала остается одинаковым Ки≅18Дб и не зависит от коэффициента умножения.

Таблица 2. Оптимальные параметры двухкаскадных умножителей

Рис. 3. Поперечная траектория электрона

Используя двухкаскадный модулятор и двухкаскадный отбиратель, применяя методику расчетов, описанную выше, мы получаем варианты, параметры которых приведены в табл. 3.

Terbiperkackadibir ymrownresien					
1	2	3	4		
0,85	0,85	0,85	0,85		
0,21	0,21	0,21	0,21		
1	1	1	1		
-4e-4	-4e-4	-4e-4	-4e-4		
2	2	2	2		
0,19	0,19	0,19	0,19		
2	1,88	1,56	1,38		
0,037	0,041	0,05	0,052		
6,6	7,2	7,2	7,8		
0,10	0,10	0,10	0,10		
0,46	0,5	0,5	0,5		
0,32	0,6	1	1,3		
4,62	4,32	4,52	3,82		
0,1	1,5	2,1	1,6		
1,85	0,95	0,57	0,45		
1	1	1	1		
0,516	0,509	0,527	0,524		
0,374	0,363	0,353	0,334		
0,927	0,913	0,93	0,91		
33,7	33,6	33,7	33,6		
	$ \begin{array}{r} 1 \\ 0,85 \\ 0,21 \\ 1 \\ -4e-4 \\ 2 \\ 0,19 \\ 2 \\ 0,037 \\ 6,6 \\ 0,10 \\ 0,46 \\ 0,32 \\ 4,62 \\ 0,1 \\ 1,85 \\ 1 \\ 0,516 \\ 0,374 \\ 0,927 \\ 33,7 \\ \end{array} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Таблица 3. Оптимальные параметры четырехкаскалных умножителей

Рис. 4. Поперечная траектория электрона

Характеристики варианта удвоителя представлены на рис. 4 для моды E_{210} в отбирателе. Как видно из табл. 3, амплитуды в отбирающем резонаторе усилителя уменьшены вдвое, амплитуды модуляторов уменьшены и обеспечивают коэффициент усиления K_u ~34Дб. В остальном характеристики вариантов двух- и четырехкаскадных усилителей схожи.

Предельные возможности умножителей на частотах, кратных частоте сигнала

Основным ограничивающим фактором при создании гирокона является необходимость торможения электронов высоких энергий на коротком расстоянии при больших значениях амплитуды ВЧ-поля. Если принять, что пробивная напряженность поля $E_{np}\sim200$ кВ/см, то из (4) получаем оценку предельной длины волны сигнала гирокона-умножителя $\lambda > 16A$ см. Отсюда, исходя из значений A_i табл. 1, получаем при n=1,2,3,4 предельное значение длины волны сигнала $\lambda_{np}\sim10, 20, 30, 40$ см для электронного пучка с напряжением 450 кВ.

Как показали расчеты (табл. 3), за счет использования двухкаскадного отбирателя максимальную амплитуду полей можно уменьшить в два раза. За счет чего, например, в четырехкаскадном гироконе удвоителе, имея сигнал на частоте, соответствующей λ =10 см можно на выходе получить сигнал на λ =5 см с K_u ~33 Дб. В гироконе-учетверителе для этого понадобится сигнал той же мощности но с длиной волны λ =20 см.

Вторым важным фактором, влияющим на использование гирокона, является отношение мощности потерь в выходном резонаторе к выходной мощности. Используя (5) и значения $\alpha_{\sigma n}$, A_{2n} табл. 1 получаем для n=1,2,3,4 мощности потерь $P_{\sigma n}$ в однокаскадном отбирателе для выше найденных предельных значений длины волны сигнала $\lambda_{np}\sim10, 20, 30, 40$ см: $P_{\sigma n}\sim221, 257, 286, 316$ КВт соответственно. Если учесть, что например, для тока пучка 200 А выходная мощность (на частоте, соответствующей $\lambda=10$ см для всех рассматриваемых умножителей) составляет при этом 85 МВт, то потери составляют 0,4% от выходной мощности. Эти потери значительно уменьшаются для двухкаскадного отбирателя. Потери в резонаторе модулятора для $\lambda_{np}\sim10, 20, 30, 40$ см составляют соответственно 33, 10, 5, 3 кВт, при том, что мощность сигнала при одно-каскадном модуляторе $P_{cur}=86$ КВт).

Заключение

Впервые предложен и на основе вычислительного эксперимента обоснован гироконумножитель частоты, в котором, ввиду специфического механизма усиления сигнала, достигается 2^x – 4^x кратное умножение частоты при одинаковом коэффициенте усиления с КПД, большим 90%, что в принципе невозможно в известных клистронах-умножителях.

Показано, что в оптимальном режиме работы гирокона-умножителя электронный поток при входе в резонатор отбирателя имеет величину азимутальной составляющей скорости, направленной в сторону вращения поля, соответствующую значению питч-фактора $q\sim0,45-0,5$, при этом момент входа соответствует началу тормозящей фазы вращающейся E_{n10} -моды. Такой разворот пучка достигается при его движении в нарастающем магнитном поле в области дрей-фа.

Для тонкого электронного пучка с напряжением U_0 =460 Кв без учета сил поля пространственного заряда найдены таблицы вариантов геометрических и электродинамических параметров, а также выходных характеристик двух- и четырехкаскадных гироконов умножителей частоты с коэффициентом умножения 2–4 при коэффициенте усиления 18 ДБ в двухкаскадной и 33 ДБ в четырехкаскадной схеме прибора.

Выполненный анализ предельных по пробивному напряжению амплитуд возбуждаемых полей и соотношению потерь в стенках резонаторов с выходной мощностью показывает, что гирокон-умножитель с продольным магнитным полем является перспективным источником СВЧ-мощности 100–500 МВт в диапазоне частот f < 6 ГГц, имеющим КПД более 90%.

В перспективе дальнейших исследований следует выполнить расчеты по установлению зависимости величины входных и выходных щелей резонаторов от начальной толщины, напряжения и тока пучка.

MULTIPLICATION OF FREQUENCY IN A GYROCON WITH A LONGITUDINAL MAGNETIC FIELD

V.V. MATVEENKO, A.K. SINITSYN

Abstract

Optimum regimes are found and the limiting parameters doing twice-quadruple multiplication of frequency in a gyrocon – multiplication on constant signal with electronic efficiency more than 90% are adjusted. Optimum parameters and the analysis of output characteristics of two-four cascade gyrocons are resulted.

Литература

1. Берзин В.М. и др. Электронные приборы СВЧ. М., 1985.

2. Кураев А.А., Синицын А.К. // Докл. АН БССР. 1989. Т. 33, №7. С. 614–616.

3. Кураев А.А. // Докл. АН БССР. 1989. Т. 33, №1. С. 32–35.

4. Будкер Г.И. Электронный прибор СВЧ-гирокон. А.С.34045. Опубликовано 05.08.76. Бюл. №29.

5. Дикун Т.Ф., Кураев А.А., Парамонов Б.М. и др. // Радиотех. и электр. 1983. Т. 28, №8. С.1624–1632.