2011 № 6 (60)

УДК 621.357.7

ОПТИМИЗАЦИЯ УСЛОВИЙ ЭЛЕКТРООСАЖДЕНИЯ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ ОЛОВО-УЛЬТРАДИСПЕРСНЫЙ АЛМАЗ

И.И. КУЗЬМАР, В.А. ВАКУЛЬЧИК, Л.К. КУШНЕР, А.А. ХМЫЛЬ

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 20 сентября 2011

Методом математического моделирования оптимизирован состав электролита и режимы электролиза для получения композиционных электрохимических покрытий (КЭП) на основе олова, модифицированных наночастицами ультрадисперсного алмаза (УДА).

Ключевые слова: композиционные электрохимические покрытия (КЭП), дисперсная фаза, ультрадисперсный алмаз (УДА), оловянные покрытия, нестационарный электролиз.

Введение

Нами установлена перспективность использования электролита оловянирования, модифицированного частицами ультрадисперсного алмаза, для формирования покрытий с высокими защитными свойствами и паяемостью, которая сохраняется в течение длительного времени [1]. Для прогнозирования функциональных свойств наноматериалов необходимо знание большого числа электрохимических характеристик, экспериментальное и аналитическое определение которых затруднено, а иногда и невозможно. Современные тенденции развития электрохимии предполагают применение методов математического моделирования для обоснованного научного выбора условий осаждения. Для оптимизации количества нанодисперсной фазы в электролите-суспензии и режимов электроосаждения обобщили существующие методологические подходы [1—4] и провели расчеты применительно к сульфатному электролиту оловянирования.

Методика расчета

Для оптимизации количества дисперсной фазы ультрадисперсного алмаза в электролите-суспензии воспользовались теоретическими обоснованиями, предложенными Бородиным И.Н. [1], Антроповым Л.И. и Лебединским Ю.Н. [3], Гурьяновым Г.В. [4] и теорией Смолуховского [2].

Согласно [1], концентрацию дисперсной фазы в электролите-суспензии c_0 для получения покрытий заданного состава при условии, что выход по току осаждаемого металла близок к 100 %, частицы порошка легко поглощаются матрицей покрытия, а доставка частиц к катоду происходит по конвективно-диффузионному механизму, можно определить по формуле

$$c_0 = \frac{c^{\vee}}{1 - c^{\vee}} \frac{i_k B T_{\kappa} \Im_{K\pi}}{\rho_M} \frac{1}{B}, \ c_M = c_0 \rho_S, \tag{1}$$

где c^v – требуемая объемная доля порошка в покрытии; c_M – массовая концентрация порошка в суспензии; i_k – катодная плотность тока; BT_{κ} – катодный выход металла по току; $\Theta_{\mathrm{K}\pi}$ – электрохимический эквивалент; ρ_s – плотность вещества дисперсной фазы; ρ_M – плотность

вещества матрицы покрытия;
$$B = \left[\frac{18,15 \times 10^3 q}{R^{\frac{1}{3}} R^{\frac{2}{3}}} + \frac{6,65 \times 10^{11} q R^2}{R_u} + \nu_{\text{отн}} \right]$$
, здесь $q = \frac{kT}{6\pi\eta}$;

 $k = \frac{R}{N_A}$ — постоянная Больцмана, Т — температура электролита, η — динамическая вязкость

электролита, R — средний радиус частиц порошка; R_u — радиус реагирующих ионов; $v_{\text{отн}}$ — относительная скорость частиц; $v_{\text{отн}} = \frac{4R^2\left(\rho_s - \rho_M\right)g}{18\eta}$, ρ_s — плотность электролита.

Авторы [3] предложили методику расчета необходимой концентрации дисперсной фазы в электролите-суспензии $m_{_{3}}$ применительно к микрогетерогенным и грубодисперсным системам. Метод основан на прогнозировании свойств композиционных покрытий, исходя из знания таких параметров, как концентрация частиц в объеме электролита и в КЭП, оптимальное содержание частиц в единице объема электролита $n_{_{V}}$ для перехода их в КЭП при вероятности включения в покрытие B, время $t_{_{3}}$ и скорость электролиза $v_{_{9}}$, которые можно установить математически либо получить экспериментально:

$$m_{9} = \frac{n_{\nu}}{Bt_{9}\nu_{9}}m_{\rm q}. \tag{2}$$

В [2] отмечается, что для высокодисперсных систем стремление повысить количество включений в покрытии за счет увеличения концентрации дисперсных частиц в электролите суспензии не оправдано. Это объясняется тем, что из-за их быстрой коагуляции в осадки включаются рыхлые агрегаты, которые ухудшают физико-механические и коррозионные свойства КЭП. Для обеспечения агрегативной устойчивости электролита-суспензии выбор количества дисперсной фазы в электролите-суспензии ограничивается теорией Смолуховского

$$\begin{cases} v_0 = \frac{3\eta}{8kT\theta}, \\ m_{\rm q} = 0.523\rho_s d_{\rm cp}^{9\kappa^3}, \\ V_0 = m_{\rm q} C_{\rm VZA}^o \end{cases}$$
 (3)

где V_0 - количество частиц дисперсной фазы в единице объема гетерофазной системы; θ - период коагуляции; $m_{\rm q}$ - масса одной дисперсной частицы; V_0 - допустимая объемную концентрацию частиц дисперсной фазы в электролите-суспензии; $C_{\rm VJA}^{\rm o}$ - содержание частиц дисперсной фазы в электролите-суспензии.

Гурьянов Г.В., обобщая опыт эксплуатации электролитов-суспензий и имеющиеся литературные данные, показывает [4], что для получения стабильной гальванической ванны необходимо использовать значение θ =1 ч.

Выбор предпочтительных режимов нестационарного электролиза для осаждения КЭП олово-УДА проводили, используя методики, предложенные в работах [2, 5, 6].

Исходя из условий массопереноса, определили параметры импульсного тока: длительность импульса $T_{\rm u}$ по формуле для переходного времени τ , при превышении которого достигается предельный ток $I_{\rm max}$ (4); длительность паузы $T_{\rm u}$ (учитывая предполагаемую частоту и постоянную времени диффузии) (5); толщину пульсирующего диффузионного слоя δ_n (6).

$$T_{\text{имп}} \le \tau_{\text{переход}} = \frac{\pi}{4} D \left(\frac{zF}{i_{\text{neg}}^{\text{cp}}} c_0 \right)^2, \tag{4}$$

$$T_{\Pi} \ge (4 \div 5)\tau_{\Lambda} = (16 \div 20) \frac{\delta_{\Pi}^2}{\pi^2 \cdot D},$$
 (5)

$$\delta_{\Pi} = \sqrt{\frac{4 \cdot D \cdot T_{\Pi} \cdot \left(1 - \frac{T_{\Pi}}{T}\right)}{\pi}} . \tag{6}$$

Методологический подход, приведенный в [1-6], адаптирован к условиям формирования КЭП с наноразмерными частицами.

Результаты и их обсуждение

Используя комплексный подход, оптимизировали количество дисперсной фазы ультрадисперсного алмаза в сернокислом электролите оловянирования. Расчеты проводили для сернокислого электролита лужения (40 г/л SnSO₄, 100 г/л H₂SO₄, 5 г/л OC-20), модифицированного наночастицами УДА, которые вводили в электролит в виде водной суспензии, предварительно активированной ультразвуком, при следующих параметрах электролита-суспензии [7-9]: температура T=293 К, радиус реагирующих ионов R_u =0,102 нм, толщина стационарного диффузионного слоя δ_c =1,3·10⁻³ дм, коэффициент диффузии олова 0,31·10⁹ м²/с, плотность электролита 1,0757·10³ кг/м³, динамическая вязкость η =2,80 сП. Для упрощения расчетов предположили, что наночастицы УДА имеют сферическую форму диаметром 4-30 нм, плотность частиц дисперсной фазы 3,2·10³ кг/м³, массовая концентрация порошка в нанокомпозите 0,2 масс. %. Предел прочности олова на разрыв $\sigma_{\rm M}$ =2·10⁸ П.

Расчеты показали, что с увеличением рабочей плотности тока возможно увеличение концентрации частиц в электролите-суспензии для получения качественных КЭП. Рекомендуемая рецептурная концентрация частиц согласно расчетам по методикам, представленным в [1] и [2], соответственно равны 4,28 и 5,42 г/л. Расчеты, проведенные согласно теории Смолуховского показали, что рекомендуемое содержание частиц дисперсной фазы в электролите-суспензии 3,26 г/л. Анализируя полученные результаты расчетов, предположили, что концентрация наночастиц ультрадисперсного алмаза в электролите лужения должна быть не менее 3 г/л, но не больше 6 г/л. Это позволит обеспечить агрегативную устойчивость дисперсных частиц в электролите, а также сформировать покрытия с заданным составом и свойствами.

Выбор режима электролиза при формировании композита олово-УДА определяет структуру и свойства покрытий. Для получения качественных мелкокристаллических покрытий на периодическом токе необходимо знать длительность импульса $T_{\rm u}$, длительность паузы $T_{\rm n}$, частоту f, скважность q [5]. По потенциодинамическим вольтамперным характеристикам (рис. 1) [7] и хронопотенциограммам электродного процесса (рис. 2) [8] определили предельную поляризацию $\eta_{\rm np}$ и предельную плотность тока $I_{\rm np}$ процесса (см. табл. 2).

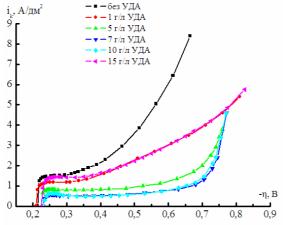


Рис. 1. Вольтамперная характеристика процесса оловянирования

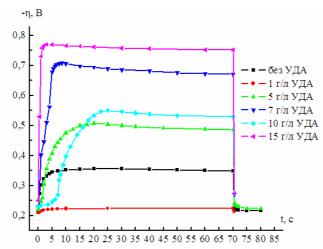


Рис. 2. Хронопотенциограмма осаждения олова, i_k =1,0 A/дм²

При поляризации электрода прямоугольными импульсами для определения $T_{\rm u}$ в [5] предложено исходить из критериев заряжения поляризационной емкости электрода и условий массопереноса. В первом случае, используя хронопотенциограммы процесса оловянирования, величину $T_{\rm u}$ определили как отрезок времени от начала импульса до начальной точки горизонтального участка $\eta(t)$ (табл. 1).

Таблица 1. Значение предельной поляризации $\eta_{\rm np}$ и предельной плотности тока $I_{\rm np}$ процесса оловянирования при различной концентрации УДА

Концентрация УДА, г/л	Вольтамперная характеристика		Хронопотенциограмма $\eta(t)$		
	η_{np} , B	$I_{\rm np}$, $A/дм^2$	η_{np},B	$T_{\scriptscriptstyle \rm H}$, с	
0	-0,334	1,55	-0,356	20,0	
1	-0,360	1,05	-0,230	3,5	
5	-0,675	0,85	-0,508	20,0	
7	-0,773	0,56	-0,706	7,5	
10	-0,705	0,64	-0,550	25,0	
15	-0,325	1,44	-0,770	3,0	

Результаты расчетов параметров импульсного тока (длительности импульса $T_{\rm u}$ (4), длительность паузы $T_{\rm n}$ (5), толщины пульсирующего диффузионного слоя $\delta_{\rm n}$ (6)), исходя из условия массопереноса, представлены в табл. 2.

Таблица 2. Расчетные значения параметров импульсного тока

Количество УДА, г/л	Т, с	$T_{_{\Pi}}$,c	<i>f</i> , Гц	q	$\delta_{\rm n}$, дм 2
0	0,139	0,248	2,583	2,776	6,233·10 ⁻⁵
1	0,285	0,589	1,144	3,067	8,678·10 ⁻⁵
5	0,464	0,735	0,834	2,586	8,960·10 ⁻⁵
7	1,213	1,490	0,370	2,230	1,219·10 ⁻⁴
10	0,818	1,228	0,489	2,501	9,799·10 ⁻⁵
15	0,162	0,315	2,096	2,953	3,841·10 ⁻⁵

Рекомендуемые длительности импульса и частота для получения КЭП олово-УДА с улучшенными свойствами из сульфатного электролита оловянирования при различных концентрациях дисперсной фазы, в частности, 1, 5, 7, 10 и 15 г/л, должны быть не больше $T_{\rm u}$ и f соответственно, а длительность паузы - не меньше $T_{\rm u}$. Предпочтительно осаждение на низких частотах и скважностях менее 3.

Результаты теоретических расчетов оптимальных условий электролиза хорошо согласуются с экспериментальными данными [9]. Погрешность расчетов определяется точностью измерения кинетических характеристик.

Выводы

- 1. Проведена оптимизация параметров импульсных токов, а также необходимого количества дисперсной фазы в электролите-суспензии для формирования качественного гальванического осадка.
- 2. Полученные результаты расчетов позволяют предположить, что оптимальная концентрация УДА в электролите лужения составляет 3-6 г/л. Для формирования мелкозернистых осадков с улучшенными свойствами необходимо проводить электроосаждение на низких частотах при скважностях менее 3.
 - 3. Результаты теоретических расчетов согласуются с экспериментальными данными.

OPTIMIZATION OF THE TIN-COATING MODIFIED ULTRADISPERSED DIAMOND ELECTRODEPOSITION CONDITIONS

I.I. KUZMAR, V.A. VAKULCHIK, L.K. KUSHNER, A.A. KHMYL

Abstract

Amount dispersive phases on electrolyte and electrolysis modes for electrodeposition tin coating modified nanodaimond particles were optimized by method of mathematical modeling.

Литература

- 1. Бородин И.Н. Упрочнение деталей композиционными покрытиями. М., 1982.
- 2. Феттер К. Электрохимическая кинетика. М., 1967.
- 3. *Антропов Л.И., Лебединский Ю.Н.* Композиционные электрохимические покрытия и материалы. К., 1986
- 4. Гурьянов Г.В. Электроосаждение износостойких композиций. Кишинев, 1985.
- 5. Костин Н.А., Кублановский В.С., Заблудовский А.В. Импульсный электролиз. Киев, 1989.
- 6. Антропов Л.И. Теоретическая электрохимия. М., 1984.
- 7. Вакульчик В.А., Хмыль А.А., Кушнер Л.К. // Докл. БГУИР. 2007. №4 (20). С. 108–112.
- 8. Вакульчик В.А., Хмыль А.А., Кушнер Л.К. // Докл. НАН Беларуси. 2008. Т. 52, № 4. С. 52–55.
- 9. *Кушнер Л.К., Хмыль А.А., Вакульчик В.А.* // Современная радиоэлектроника: научные исследования и подготовка кадров. 2007. 170-174.