2011

УДК 621.396.96

СПОСОБ И АЛГОРИТМ РАДИОЛОКАЦИОННОГО СВЕРХРАЗРЕШЕНИЯ КОЛЕСА АВТОМОБИЛЯ В КАРТИННОЙ ПЛОСКОСТИ ПРИ ОБРАЩЕННОМ СИНТЕЗЕ АПЕРТУРЫ АНТЕННЫ

А.С. ГЕЙСТЕР

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 29 апреля 2011

Впервые рассматривается способ радиолокационного сверхразрешения (раздельного наблюдения элементов) колеса, совершающего поступательно-вращательное движение, в картинной плоскости, проходящей вертикально по линии движения автотранспортного средства. Способ основан на обращенном синтезе апертуры антенны специального вида и обеспечивает получение информации о структуре и параметрах колесно-гусеничного тракта движущегося автотранспортного средства. Представляются результаты разработки алгоритма обработки принятого сигнала, обеспечивающего сверхразрешение, а также результаты исследования возможностей сверхразрешения колеса, полученные путем математического моделирования.

Ключевые слова: синтез апертуры антенны, сверхразрешение, колесо, автомобиль.

Введение

Сверхразрешение колеса автомобиля может быть достигнуто путем обращенного синтеза апертуры антенны с использованием разработанной ранее [1, 2] математической модели радиолокационного сигнала, отраженного от колеса движущегося автомобиля. Радиолокационное изображение колеса, полученное в результате сверхразрешения, может быть использовано для оценки его параметров (радиус колеса R_{kol} , радиус обода R_{ob} и др.), которые, в свою очередь, могут быть применены для последующего определения класса автомобиля.

В простейшем случае раздельное наблюдение элементов колеса может быть достигнуто за счет использования физической антенны больших размеров, обеспечивающих малую ширину диаграммы направленности антенны (ДНА) по азимуту и углу места [3]. В качестве примера рассмотрим линейное разрешение в азимутальной плоскости, которое определяется выражением $\Delta_{l\beta} = 2r_t \sin(\Delta\beta/2)$, где r_t – радиальная дальность до объекта, $\Delta\beta \cong \lambda/L_a$,[рад] – ширина ДНА по азимуту, λ – длина волны, L_a – эффективный размер апертуры антенны. В соответствии с этим выражением для обеспечения линейного разрешения $\Delta_{l\beta} = 0,1$ м на дальности $r_t = 100$ м при длине волны $\lambda = 0,03$ м требуется антенна с размером $L_a \cong 30$ м. Очевидно, что использование антенн с такими размерами является крайне неудобным.

С другой стороны, требуемое разрешение может быть достигнуто при использовании обращенного синтеза апертуры антенны [4], при котором ширина диаграммы направленности [5] $\Delta\beta \cong \lambda/2L_{a_syn}$,[рад], где L_{a_syn} – размер синтезированной апертуры, определяемый в простейшем случае как произведение скорости движения V_t автомобиля и времени синтеза апертуры антенны T_{syn} , то есть $L_{a_syn} \cong V_t T_{syn}$. С учетом этого при скорости $V_t = 60 \text{ км} / \text{ч}$ и длине

волны $\lambda = 0,03$ м разрешение $\Delta_{l\beta} = 0,1$ м на дальности $r_l = 100$ м достигается при времени обращенного синтеза апертуры $T_{syn} \cong r_l \lambda / 2\Delta_{l\beta} V = 0,9$ с.

Таким образом, сверхразрешение движущегося автомобиля и элементов его колесного тракта наиболее просто может быть достигнуто при использовании обращенного синтеза апертуры антенны, что также предполагает и более дешевую практическую реализацию.

Способ и алгоритм сверхразрешения колеса при обращенном синтезе апертуры антенны

Способ сверхразрешения основан на обращенном синтезе апертуры антенны, главной особенностью которого является многоканальная фокусировка синтезированной антенны в анализируемые точки на поверхности колеса, которые совершают поступательное и вращательное движения при перемещении автотранспортного средства. В основе предложенного способа сверхразрешения лежит закон изменения фазы произвольной точки на поверхности колеса. Рассмотрим произвольную точку с номером m, лежащую на n-ой окружности с радиусом R_n , что поясняется рис. 1, где R_{kol} – радиус колеса. Такую точку в общем случае можно обозначить как (n,m)-ую точку.

Рис. 1. Размещение произвольной (*n*,*m*) -ой точки на поверхности колеса

Закон изменения фазы сигнала от точки *m*, лежащей на *n*-ой окружности, определяет-ся выражением:

$$\varphi_{nm}(t) = 2kr_{nm}(t), \qquad (1)$$

где $r_{nm}(t)$ – закон изменения радиальной дальности от фазового центра антенны радиолокатора до точки n_m колеса; $k = 2\pi / \lambda$ – волновое число.

Закон изменения радиальной дальности до (*n*,*m*) -ой точки описывается выражением:

$$r_{nm}(t) = \sqrt{x_{nm}^2(t) + y_{nm}^2(t) + z_{nm}^2(t)},$$
(2)

где $x_{nm}(t)$, $y_{nm}(t)$, $z_{nm}(t)$ – законы изменения координат (n,m)-ой точки в системе координат, введенной в [1] при описании движения колеса относительно радиолокационного датчика. Эти законы описываются выражениями:

$$x_{nm}(t) = x_0 \pm V_t t + R_n \sin(\omega_{vr} t + \gamma_{nm}), y_{nm}(t) = y_0, z_{nm}(t) = (R_{kol} - R_n) + R_n [1 - \cos(\omega_{vr} t + \gamma_{nm})], (3)$$

где x_0 , y_0 – начальные координаты центра колеса; $\omega_{vr} = V_t / R_{kol}$ – угловая скорость вращения колеса; V_t – скорость автомобиля; γ_{nm} – угловое рассогласование между первой точкой n_1 окружности и точкой n_m (рис. 1).

Далее рассмотрим алгоритм сверхразрешения, реализующий предложенный способ. В качестве ограничений разработки алгоритма отметим:

- постоянство скорости автомобиля V_t, предварительно измеряемой на этапе обнаружения. Это ограничение, как правило, выполняется на ограниченном интервале наблюдения;

- радиус колеса автомобиля *R*_{kol} полагается известным.

Так как предварительно размеры и структура колеса не известны, то априорная неопределенность устраняется использованием многоканальной обработки отраженного сигнала в диапазонах возможных изменений размеров расположения отражающих элементов колеса. Кроме того, необходимость многоканальной обработки продиктована также природой отраженного сигнала, представляющего собой совокупность сигналов известной формы от каждого отражателя колеса с индивидуальными законами изменения фазы и амплитуды.

Для описания алгоритма многоканальной обработки поверхность колеса (см. рис. 2) разбивается на N_R окружностей, отстоящих друг от друга на расстояние ΔR . На каждой *n*-ой окружности располагается M_n точек фокусировки, которые показаны на рис. 2 черными точками, причем расстояния между соседними точками фокусировки на окружности равны ΔL . В общем случае переменные ΔR и ΔL могут иметь произвольные значения, а их оптимизация основана на критерии «эффективность – сложность (стоимость)» и зависит от разрешающей способности в картинной плоскости. В рассматриваемом случае такая разрешающая способность определяется временем синтеза апертуры и параметрами перемещения автомобиля относительно датчика. Подходы к выбору оптимальных значений ΔR и ΔL в данной работе не рассматриваются.

Рис. 2. Размещение точек фокусировки многоканального устройства сверхразрешения

Как отмечалось выше, устройство сверхразрешения является многоканальным, причем номера каналов целесообразно связать с номерами точек фокусировки на поверхности колеса. С учетом этого (n,m)-ый канал обработки сигнала, отраженного от (n,m)-ой точки, представляет собой устройство междупериодной обработки, выполняющее когерентное накопление сигнала, отраженного от (n,m)-ой точки на поверхности колеса, совершающей поступательновращательное движение в процессе перемещения автомобиля. Такое когерентное накопление основано на компенсации междупериодного набега фазы для соответствующего положения (n,m)-ой точки в каждом периоде зондирования.

В результате такого накопления на выходе (n,m)-го канала обработки формируется комплексная амплитуда $\xi_{n,m}$. Совокупность комплексных амплитуд $\xi_{n,m}$, $n = \overline{1, N_R}$, $m = \overline{1, M_n}$ представляет собой радиолокационный портрет колеса автомобиля в картинной плоскости.

Количество окружностей многоканальной модели определяется из соотношения $N_R = R_{kol} / \Delta R$, а количество точек фокусировки на окружности радиуса R_n равняется $M_n = 2\pi R_n / \Delta L$.

С учетом этого алгоритм сверхразрешения, реализующий многоканальную обработку принятого сигнала, может быть представлен в следующем виде:

$$\xi_{n,m} = \xi(n,m) = \sum_{j=1}^{J} M_c(jT_d) \cdot K_{n,m}(jT_d), n = \overline{1, N_R}, m = \overline{1, M_n},$$
(4)

где $M_c(jT_d) - j$ -ый отсчет комплексной огибающей принятого сигнала; $K_{n,m}(jT_d) = \exp\left(-i\frac{2\pi}{\lambda}r_{n,m}(jT_d)\right) - j$ -ый отсчет опорной функции (n,m)-го канала обработки; $r_{n,m}(jT_d) - j$ -ый отсчет радиальной дальности от фазового центра физической антенны радиолокационного датчика до (n,m)-ой точки фокусировки на поверхности колеса автомобиля; T_d – период дискретизации принятого сигнала (при использовании периодического зондирующего сигнала – период повторения); J – количество обрабатываемых временных отсчетов; $n = \overline{1, N_R}$ – номер окружности на поверхности колеса; $m = \overline{1, M_n}$ – номер анализируемой точки на соответствующей n-ой окружности.

Результаты исследования возможностей сверхразрешения колеса движущегося автомобиля на основе математического моделирования

Для оценки работоспособности разработанного алгоритма и оценки возможностей по сверхразрешению колеса было проведено математическое моделирование. Исходные данные для моделирования: начальные координаты центра колеса $x_0 = 50$ м, $y_0 = 25$ м; скорость автомобиля $V_t = 20$ м/с; внешний $R_{kol} = 0,3$ м и внутренний $R_{ob} = 0,1$ м радиусы колеса, на которых располагаются неоднородности, вызывающие отражения; длина волны зондирующего сигнала $\lambda = 0,03$ м; характеристики многоканального устройства, реализующего алгоритм сверхразрешения – $T_d = 0,5$ мс, $T_{syn} = 0,75$ с, $\Delta R = 0,1$ м (число окружностей $N_R = 3$, а их радиусы $R_1 = 0,3$ м, $R_2 = 0,2$ м, $R_3 = 0,1$ м), $\Delta L = 0,02$ м (число точек фокусировки $M_1 = 94$, $M_2 = 63$, $M_3 = 31$ на соответствующих окружностях).

В ходе моделирования рассмотрены три варианта расположения отражателей на колесе: - семь отражателей расположены на окружности радиуса R_{kal} ;

- пять отражателей расположены на окружности радиуса R_{ob} ;

- восемь отражателей расположены на окружности радиуса R_{kol} , три – на окружности радиуса R_{ob} .

Для удобства рассмотрения результатов обработки «развернем» окружности, на которых располагаются точки фокусировки каналов обработки, в эквивалентные прямые линии (оси) таким образом, как это показано на рис. 3.

ис. 3. Гочки фокусировки, расположенные на окружности (слева) и на эквивалентной прямой линии (справа)

Результаты моделирования, представленные на рис. 4–6, для каждого варианта расположения отражателей на колесе характеризуются тремя графиками, на каждом из которых ото-

бражено распределение нормированных мощностей $|\xi_{n,m}|^2 / |\xi|_{\max}^2$ выходных сигналов каналов фокусировки в точки с номерами $m = \overline{1, M_n}$ на соответствующей *n*-ой окружности ($n = \overline{1, 3}$) радиусом R_n .

Анализ результатов моделирования показывает следующее. Во-первых, на рисунках хорошо различимы радиолокационные изображения точечных отражателей, расположенных в соответствии с описанными выше вариантами моделирования. Количество пиков на графиках соответствует количеству заданных при моделировании отражателей. Во-вторых, расположение отражателей соответствует расположению точек фокусировки, для которых в соответствующих каналах обработки многоканального устройства получены наибольшие выходные сигналы. В-третьих, разработанный алгоритм сверхразрешения обеспечивает высокое качество фокусировки, на что указывают сравнительно малые (не выше значения 0,1) относительные уровни выходных сигналов каналов обработки, в точках фокусировки которых нет отражателей. В-четвертых, разработанный способ сверхразрешения позволяет получить детальное изображение объекта, выполняющего поступательно-вращательное движение, не только по гори-

зонтали, но и по вертикали, что является существенным отличием предлагаемого способа от традиционного способа обращенного синтеза апертуры антенны, исследованного ранее для сверхразрешения автомобилей [4].

Заключение

Предложенный новый способ сверхразрешения объектов, выполняющих поступательно-вращательное движение, обеспечивает высококачественное разрешение, как по горизонтали, так и по вертикали, что позволяет получить радиолокационное изображение таких объектов в картинной плоскости. На основе математической модели сигнала, отраженного от колеса движущегося автотранспортного средства, разработан алгоритм сверхразрешения колеса, реализующий обращенный синтез апертуры антенны с фокусировкой в анализируемую точку на поверхности движущегося колеса. Данный алгоритм позволяет разработать устройство, обеспечивающее многоканальную фокусировку в точки на поверхности колеса, выполняющего поступательно-вращательное движение. На выходах каналов обработки этого устройства формируется радиолокационное изображение колеса в масштабе, однозначно соответствующем параметрам расстановки каналов обработки в картинной плоскости. Получаемое радиолокационное изображение колеса позволяет установить его размер, количество и расположение неоднородностей на его поверхности, а также отражательные способности этих неоднородностей.

CAR WHEEL RADAR SUPERRESOLUTION PROCESS AND ALGORITHM IN VERTICAL PLANE ON APPLICATION OF INVERSE SYNTHETIC APERTURE RADAR

A.S. HEISTER

Abstract

For the first time process of radar superresolution in a vertical plane of wheel making combined reciprocating and rotating motion is considered. The process is based on a special type of inverse synthetic aperture radar technique and provides information about structure and parameters of moving vehicle wheel or crawler. Results of a car wheel radar superresolution algorithm development are considered. Results of the algorithm facility research based on mathematical simulation are presented.

Литература

1. *Гейстер А.С. //* Докл. БГУИР. 2011. №1 (55). С. 38–42. 2. Гейстер А.С. // Актуальные проблемы современности. 2010. №12 (62). С. 94–99.

3. Марков Л.Н. Антенные системы радиоэлектронной техники. М., 1993.

4. Гейстер С.Р., Виноградов А.Е., Жарылгапов Е.К. // Наука и военная безопасность. 2009. №4 (24). С. 11-16.

5. Антипов В.Н., Горяинов В.Т. Радиолокационные станции с цифровым синтезированием апертуры антенны. М., 1988.