УДК 538.956:538.935:539.1.04

ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ПЛЕНОК ОКСИДА ЦИНКА ЛЕГИРОВАННЫХ РЕДКОЗЕМЕЛЬНЫМИ ЭЛЕМЕНТАМИ

В.В. МАЛЮТИНА-БРОНСКАЯ, В.Б. ЗАЛЕССКИЙ, Т.Р. ЛЕОНОВА

Институт физики им. Б.И. Степанова Национальной академии наук Беларуси пр. Независимости, 68, Минск, 220072, Беларусь

Поступила в редакцию 29 июня 2011

Представлены результаты исследований вольт-амперных и вольт-фарадных характеристик структур Al-Ni/ZnO:Er(Eu)/Si. Пленки ZnO, легированные редкоземельными элементами Eu и Er, получены методом реактивного магнетронного распыления цинковой мишени на кремний. Данные пленки имеют структуру плотной упаковки нано- и микрокристаллитов с размерами порядка 100–300 нм. Установлено, что доминирующим механизмом переноса носителей заряда в структуре является ток, ограниченный пространственным зарядом. Концентрация локальных центров, полученная из анализа вольт-фарадных характеристик, составляет 10¹⁸ см⁻³ для структуре ZnO:Eu/p-Si и 10¹⁸–10¹⁹ см⁻³ для структур ZnO:Er /n-Si.

Ключевые слова: ZnO, магнетронное распыление, редкоземельные элементы, вольтфарадные характеристики, вольт-амперные характеристики.

Введение

Оксид цинка (ZnO) является полупроводниковым материалом, который наиболее интенсивно изучается в настоящее время. Будучи прозрачным в широкой области спектра, ZnO обладает высокой стойкостью к облучению и относительно дешев, что делает его привлекательным для применения в микроэлектронике [1, 2]. Одним из достоинств этого широкозонного полупроводника ($E_g = 3,4$ эВ при T = 300K) является энергия связи экситона равная 60 мэВ. Этот параметр более высокий, чем для твердотельных бинарных полупроводников, таких как GaN – 25мэВ и ZnSe – 20мэВ. Большая энергия связи экситонов ZnO и его сплавов является хорошим параметром для создания излучающих устройств и фотоприемников на основе ZnO.

Для получения оксида цинка используются различные методы: молекулярно-лучевая эпитаксия, осаждение из газовой фазы, импульсное лазерное напыление, электрохимическое осаждение [3–8]. Технология реактивного магнетронного распыления представляет собой относительно простой, дешевый и контролируемый метод для осаждения кристаллических пленочных покрытий ZnO высокого оптического качества [9].

Особый интерес вызывает также интеграция ZnO с кремниевой технологией, позволяющая совмещать уникальные функциональные возможности этих материалов при создании фотопреобразователей на кремниевых подложках [10] и, в частности, в тонкопленочных солнечных элементах [11].

На фотоэлектрические и люминесцентные свойства ZnO, как и других полупроводниковых материалов, оказывают влияние глубокие центры, связанные как с собственными дефектами, так и с примесями. Эти обстоятельства заставляют исследователей проводить поиск простых, но эффективных методов, позволяющих идентифицировать структуру и физикохимическую природу этих центров. Таким образом, получение и исследование электрофизических характеристик систем на основе ZnO является актуальной задачей при разработке ряда интегрируемых твердотельных оптоэлектронных устройств с прогнозируемыми оптическими и проводящими свойствами. В данной работе представлены результаты исследований статических вольт-амперных характеристик (ВАХ) и высокочастотных вольт-фарадных характеристик (ВФХ) структур металл-окисел-полупроводник (МОП), где в качестве окисла выступают пленки ZnO, легированные редкоземельными металлами (РЗМ) Ег и Еu, полученные методом реактивного магнетронного распыления мишени.

Экспериментальная часть

Пленки легированного ZnO формировались методом реактивного магнетронного распыления из цинковой мешени с добавками солей Er и Eu. Соотношение содержания цинка и P3M выбиралось таким образом, чтобы осаждаемая ZnO пленка содержала 0,7 ат.% – 1 ат.% Er. Распыление производилось в среде аргона с добавлением 20% кислорода. В качестве подложек использовались КЭФ-0,5 и КДБ-1. После синтеза проводились термические отжиги на воздухе в температурном диапазоне 300°С – 900°С.

Морфология анализировались с помощью сканирующей электронной микроскопии (установка JEOL 6400). Измерения ВФХ при частотах 500 кГц и 1 МГц, а также ВАХ производились на измерителе иммитанса Е7-20 при комнатной температуре при освещении лампой накаливания и без освещения. МОП-структуры формировались напылением Ni-Al контактов через биметаллические маски круглой формы, площадями 0,2 мм² и 1 мм².

Результаты и их обсуждение

Изображения сканирующей электронной микроскопии поперечного сечения пленок ZnO, легированных P3M, представлены на рис. 1. Как видно из рисунка, пленки ZnO, легированные Er, представляют собой плотно упакованные структуры с практически гладкой поверхностью и размерами зерен ~ 0,1 мкм – 0,15 мкм. В то же время для пленок ZnO, легированных Eu, характерны большие зерна с размерами в области ~ 0,1 мкм – 0,3 мкм, что сравнимо с толщиной пленки. Таким образом методом магнетронного напыления получены качественные полупроводниковые слои оксида цинка без пористости, с плотной упаковкой кристаллитов.

При исследовании электрических свойств системы ZnO/Si обычно рассматриваются как гетероструктуры, поскольку оксид цинка является прямозонным полупроводником *n*-типа. Однако пленки ZnO обладают шириной запрещенной зоны более 3 эВ, и в структурах с более узкозонным монокристаллическим кремнием могут вести себя как диэлектрики.

В нашем случае ВФХ структур ZnO/Si, легированные P3M, и измеренные при частотах f=500 кГц и f=1 МГц, представляют собой кривые, типичные для классических МОП-структур с базой *p*-Si (рис. 2,*a*) и *n*-Si (рис. 2,*b*).

Рис. 1. Изображения сканирующей электронной микроскопии поперечного сечения образцов ZnO:Eu (*a*) ZnO:Er (*б*) на кремниевой подложке

Измеренные ВФХ систем ZnO/Si имеют ряд особенностей: емкость обогащения зависит от частоты тестового сигнала и интенсивности освещения; на зависимостях в области обеднения наблюдается особенность в виде максимума. Величина этого максимума зависит от интенсивности освещения и от частоты тестового сигнала.

Для системы ZnO:Er/Si при освещении лампой накаливания величина максимума увеличивается, и вся ВФХ сдвигается влево. Для системы ZnO:Eu/Si данный эффект не выражен. Максимумы в районе модуляции емкости на ВФХ могут появиться в случае наличия глубоких дискретных поверхностных состояний [12]. Если частота достаточно высока, то глубокий дискретный уровень не успевает перезарядиться за период колебания и на ВФХ наблюдается ступенька – участок смещений с неизменной емкостью. Если же заполнение уровня успевает за период колебания существенно измениться, то емкость МОП-структуры изменяется и при большой концентрации глубоких центров может возрасти вплоть до емкости диэлектрика.

Рис. 2. Вольт-фарадные характеристики структур ZnO:Eu / *p*-Si (*a*), отожженных при T=400 °C, и ZnO:Er /n-Si (*б*), отожженных при T=900°C

Концентрацию ловушечных центров границы раздела в области обеднения можно рассчитать по линейной области зависимости $C^2(1/V)$, используя соотношение

$$Ni = \frac{2}{q \cdot \varepsilon \cdot \varepsilon_0} \cdot \frac{1}{d(C^{-2})/dV}$$

В области обеднения при U > 0 для структур ZnO:Er /*n*-Si и U < 0 для структур ZnO:Eu/ *p*-Si в координатах C²(1/V) ВФХ описывается несколькими прямыми линиями, что свидетельствует о неоднородном распределении заряженных локальных центров по толщине пленки ZnO. Из наклона зависимостей C²(1/V) (рис. 3) была вычислена концентрация локальных центров (N_i). Были получены следующие значения: $N_i = 10^{18}$ см⁻³ для структур ZnO:Eu/*p*-Si и N_i =10¹⁸-10¹⁹ см⁻³для структур ZnO:Er /*n*-Si.

Электрические свойства оксидов металлов в значительной степени определяются дефектностью кристаллической решетки. Оксид цинка, в отличие от классических полупроводников (кремний, германий), обладает трудноконтролируемым составом точечных дефектов кристаллической структуры и остаточных примесей, что приводит к появлению в их запрещенной зоне богатого спектра электронных состояний. Значительный вклад в проводимость оксидного материала вносят поверхностная и межзеренная электропроводности. Как следствие проводимость оксидов металлов становится структурно-чувствительным свойством. Исходя из вышесказанного, проявление максимума в области обеднения ВФХ можно связать со всей совокупностью глубоких центров, в том числе центрами излучательной рекомбинации (ионами Ег и Еu в матрице ZnO).

Рис. 3. Зависимость C⁻²(V) структур ZnO:Eu / *p*-Si, отожженных при T=400 °C (1) и ZnO:Er /*n*-Si, отожженных при T=900 °C (2)

Поскольку толщины пленок ZnO порядка 300 нм, то можно предположить, что основными физическими механизмами переноса носителей заряда в твердых телах являются токи,

ограниченные пространственным зарядом (ТОПЗ) и эмиссия Шотки. Однако, учитывая строение пленки и другие особенности материала, описанные выше, не исключались также механизм Пула-Френкеля, туннельное прохождение электронов через тонкие слои изоляторов и полупроводников, а также прыжковая проводимость по примесям. На рис. 4 представлены ВАХ исследуемых легированных пленок ZnO на кремниевых положках, снятые при прямом и обратном смещении. ВАХ структур ZnO:Er/Si при обратном напряжении обладают ступенчатым характером для напряжения обратного смещения, а также фотоэлектрическим эффектом, в отличие от ZnO:Eu/Si. Из представленных ВАХ видно, что соотношение темнового и фотоиндуцированного токов составляет 1,3 и 10 для пленок ZnO:Eu при U=-5 B, и ZnO:Er при U=-10 B, соответственно.

В процессе анализа экспериментальные ВАХ структур ZnO/Si были перестроены с учетом механизмов проводимости, описанных выше.

Для пленок ZnO:Eu/Si при прямом смещении (рис. 2,*a*) темновая и световая BAX структуры имеют линейные участки в двойных логарифмических координатах (рис. 5). Зависимость $I \sim U^n$ наблюдается для темновой BAX при напряжениях от 0 B до 18 B с n=1, и от 18 B до 30 B с n=2,2. В то же время для световой BAX были получены значения показателя степени n=1 при напряжениях от 1B до 15 B и n=1,7 при напряжениях от 18 B до 27 B. При обратном смещении как темновая, так и световая BAX линеаризуются в координатах Пула-Френкеля при U от 0 B до 1 B, затем наблюдается участок с зависимостью $I \sim U^n$ при напряжениях от 1 B до 3 B с n=3,3; от 3 B до 12 B имеет место омическая зависимость.

Рис. 4. Вольт-амперные характеристики структур ZnO:Eu /p-Si отожженных при T=400°C (a), и ZnO:Er /n-Si, отожженных при T=900°C (δ)

Рис. 5. Вольт-амперные характеристики в координатах ТОПЗ структур ZnO:Eu / *p*-Si, отожженных при T=400°C (1 – темновая при обратном смещении, 2 – при обратном смещении с освещением, 3 – темновая при прямом смещении) и ZnO:Er / *n*-Si, отожженных при T=900°C (1 – темновая при прямом смещении, 2 – при прямом смещении с освещением, 3 – темновая при обратном смещении)

ВАХ структуры ZnO:Er/Si при прямом смещении (рис. 5) также имеет линейные участки в двойных логарифмических координатах и наблюдается зависимость $I \sim U^n$ при напряжениях от 0,14 В до 10 В с n=2,2, а от 9В до 12 В наблюдается рост тока и n=3,7. При обратном смещении на темновой BAX структуры ZnO:Er/Si наблюдается три участка зависимости $I \sim U^n$: от 0,22 В до 8 В с n=2,1, от 8 В до 11 В с n=3,4, а от 11 В до 12,4 В наблюдается быстрый рост тока и n=5. Для освещенной части BAX при обратном смещении, в связи с ее ступенеобразным видом, имеют место зависимости *I*~*U*^{*n*}, где *n*=2,8 при *U* от 0 В до 4 В, *n*= 3,8 при *U* от 4 В до 5,2 В, *n*=1 при *U* от 5 В до 10 В, *n*=2,3 при *U* от 10,6 В до 14 В и *n*=4 при *U* от 14 В до 15 В.

Показатель степени *n*, близкий к 1, свидетельствует о наличии омического механизма проводимости. При значении *n*, близком к 2, имеет место переход к ТОПЗ. Почти вертикальный рост тока, при $n \ge 4$, указывает на заполнение отдельной группы моноэнергетических уровней прилипания, характерных для инжекционных токов в изоляторе. Полученные в ходе анализа ВАХ данные показывают, что основным механизмом проводимости является ТОПЗ при наличии моноэнергетических уровней прилипания, связанных со всей совокупностью глубоких центров, описанных выше.

Заключение

Методом реактивного магнетронного напыления получены диодные структуры Al-Ni/ZnO:Er(Eu)/Si. Данные пленки имеют структуру плотной упаковки нано- и микрокристаллитов с размерами порядка 100–300 нм. Из анализа ВФХ получены значения концентрации локальных центров. Для структур ZnO:Eu/p-Si данная концентрация составила ~ 10^{18} cm⁻³, а для структур ZnO:Er /n-Si лежит в пределах 10^{18} – 10^{19} cm⁻³. Выявлено, что основным механизмом проводимости является ток, ограниченный пространственным зарядом при наличии моноэнергетических уровней прилипания. Наблюдающиеся особенности электрических характеристик, таких как фотоэффект и максимум в области обеднения ВФХ, связаны со всей совокупностью глубоких центров, в частности со встроенными в матрицу ZnO ионами P3M. Наблюдаемый фотоэффект на структурах ZnO:Er/Si показал, что исследуемые системы могут быть эффективно использованы в различных фоточувствительных структурах, таких как фотодиоды и солнечные элементы.

ELECTRICAL PROPERTIES OF ZINK OXIDE FILMS DOPED WITH RARE-EARTH ELEMENTS

V.V. MALYUTINA-BRONSKAYA, V.B. ZALESSKI, T.R. LEONOVA

Abstract

Investigations of current-voltage, capacity-voltage characteristics of Al-Ni/ZnO:Er(Eu)/Si structures are presented. ZnO films doped with Eu and Er rare-earth elements were fabricated of reactive magnetron sputtering of zink targets on a silicon substrate. These films have got a structure of close-packed nano-and microcrystallites with sizes of 100 to 300 nm. It was found that the possible mechanism of charge transport taking place in the investigated structure is space-charge limited current. The concentration of local centers is about 10^{18} cm⁻³ for the ZnO:Eu/*p*-Si structures and in the range 10^{18} – 10^{19} cm⁻³ for ZnO:Er /*n*-Si structures.

Литература

- 5. Gyani A.K., Khan O.F.Z., Brien P.O. // Thin solid films. 1989. Vol. 182. P. L1-L4.
- 6. Ma J., Ji F., Ma H.-I., Li S.-Y. // J. Vac. Sci. Technol. A. 1995. Vol. 13, №1. P. 92–94

8. Minami T., Sonohara H., Takata S. // Jpn. J. Appl. Phys., Part 2: Lett. 1994. Vol. 33. P. L743–L746.

11. Afify H.H., EL-Hefnawi S.H., Eliwa A.Y. // Egypt. J. Solids. 2005. Vol. 28. №2. P. 243–254.

^{1.} Look D.C. // Mater. Sci. Eng. B. 2001. Vol. 80. P. 383-387.

^{2.} *Nickel N.H., Terukov E.* Zinc Oxide – A Material for Micro- and Optoelectronic Applications. Netherlands, 2005.

^{3.} Wu M.-S., Shin W.-C., Tsai W.-H.// J. Phys. D. 1998. Vol. 31. P. 943-945.

^{4.} Nakamura K., Shoji T., Hee-Bong K. // Jpn. J. Appl. Phys. Part 2: Lett. 2000. Vol. 39. P. L534–L536.

^{7.} Nassern S., Iqbal M., Hussani K. // Sol. Energy Matter. 1993. Vol. 31. P. 155–162.

^{9.} Залесский В.Б., Леонова Т.Р., Гончарова О.В. // Физика и химия твердого тела. 2005. Т.6, №1. С. 44-49.

^{10.} Chen L.-C., Pan C.-N. // The Open Crystallography Journal. 2008. Vol. 1. P. 10–13.

^{12.} Ржанова А.В. Свойства структур металл-диэлектрик-полупроводник. М., 1976.