№ 8 (62)

2011

УДК 621.315.593:539.216.2

УСЛОВИЯ ОБРАЗОВАНИЯ НАНОКЛАСТЕРОВ ПРИ ФОРМИРОВАНИИ НАНОСТРУКТУРИРОВАННЫХ ПЛЕНОК ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ, ЛЕГИРОВАННОГО ГЕРМАНИЕМ

Н.С. СТРОГОВА, А.С. СТРОГОВА, А.А. КОВАЛЕВСКИЙ, В.М. БОРИСЕВИЧ, Д.В. ПЛЯКИН

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 9 июня 2011

Проведены исследования топографии поверхности, кристаллической структуры пленок, поликристаллического кремния, легированного германием, полученных разложением смеси моносилан – моногерман – водород. Изменение структуры Ge и SiGe-кластеров анализировалось на основании данных спектроскопии комбинационного рассеяния света. Также проанализированы зависимости роста пленок от полного давления в реакторе и парциального давления моносилана.

Ключевые слова: нанокластеры, формирование наноструктурированных пленок кремния, самоорганизация нанокластеров.

Введение

Наноструктурированные пленки поликристаллического кремния, легированного германием, вызывают интерес с точки зрения возможности создания нанокластеров германия и твердого раствора кремний-германий, которые важны для приборных применений [1].

Методика эксперимента

Исследуемые образцы были получены методом пиролиза моногидридов Si и Ge в установке «Изотрон 4-150» при общем давлении газовой смеси 35–40 Па и объемном соотношении моногермана к моносилану 0,001–0,003. Температура осаждения при этом не превышала 680°С.

В качестве подложек использовались кремниевые пластины КЭФ 4,5, ориентированные в плоскости (100). На поверхность пластин наносился тонкий оксид кремния в процессе окисления в сухом кислороде, а оксиды диспрозия и иттрия формировались в процессе их нанесения и последующего окисления. Температура образцов в процессе осаждения контролировалась с помощью платино – платино – родиневой термопары.

Исследования топографии поверхности полученных структур проводились с помощью атомно-силового микроскопа Ntegra Prima. В качестве зондов применялись кремниевые кантилеверы с радиусом закругления вершин зондирующих пирамид 15–20 нм (SCNC12,NT-MDT), а также вискеры, отличительной особенностью которых является завершение зондирующей пирамиды вытянутым узким и более острым конусом из материала на основе углерода (NCC05, NT-MDT). Применение вискеров заметно улучшало контраст изображений островков Ge и SiGe. Кроме того, с помощью атомного силового микроскопа определялись плотность, размеры и форма кластеров.

Изменение структуры Ge и SiGe-кластеров анализировалось на основании данных спектроскопии комбинационного рассеяния света (КРС). Спектры КРС на оптических фононах

получали при облучении структур Ar лазером с длиной волны λ = 514,5 нм и регистрировали с помощью спектрометра ДФС-52. Спектры регистрировались при комнатной температуре.

Результаты и их обсуждение

Проведены исследования топографии поверхности, кристаллической структуры пленок поликристаллического кремния, легированного германием (ППК [Ge]), полученных разложением смеси моносилан – моногерман – водород. Этот процесс в сочетании с пост окислением рассматривался в качестве альтернативной, более «чистой» технологии, позволяющей сформировать нанокластеры германия или сплава кремний-германий различной структуры и размеров. Исследовано влияние температуры на скорость осаждения пленки кремния, легированного германием и давления остаточных газов в ростовой камере установки «Изотрон 4–150» на морфологию поверхности тонких (40-400 нм) пленок кремния, осажденных при низких (540-670°С) температурах подложки с различной структурой. Установлено, что размер нано- и микрокристаллитов кремния, германия и твердого раствора кремний-германий существенно снижается с понижением температуры подложки в процессе осаждения и достигает ~ 10 нм при Тп = 540°С. При изменении общего (полного) давления в реакторе от 40 Па до 140 Па скорость осаждения пленок изменяется от 4,5 до 13,1 нм/мин, а размер нанокластеров уменьшается с 10 нм до 2,5 нм (рис. 1), причем по линейному закону. Разброс по размеру нанокластеров на пластинах по всей изотермической зоне реактора и по площади самих пластин, при зазоре между пластинами (*h*) 5 мм, не превышал $\pm 15\%$.

Рис. 1. Зависимость скорости G роста пленки поликристаллического кремния в LPCVD-процессе от полного давления в реакторе P_{lot}

Исследование зависимости размера нанокластеров от величины общего давления в камере при скорости потока моносилана 7,0 \pm 0,5 дм³/час, при температуре 620 °C (893 K) показало, что размер нанокластеров германия и сплава кремний-германий при осаждении их в режиме выращивания ППК [Ge] сильно зависит от величины давления в реакторе.

Распределение нанокластеров по размеру сформированных в режиме осаждения ППК [Ge], при парциальном давлении SiH₄ 35 Па и 45 Па для скорости потока 7,0 дм³/ч и 10,5 м³/ч вдоль диаметра подложки (рис. 2) показывает, что радиальная неоднородность по размеру снижается при уменьшении давления. Если разброс по размеру нанокластеров, сформированных при давлении 45 Па, составляет ± (12,5 – 13,0)%, то аналогичная величина для нанокластеров, сформированных при давлении 35 Па, снижается до ± (7,5 – 10)% (см. рис. 2).

При осаждении пленок ПКК при общем давлении в реакторе 20 - 50 Па скорость осаждения (V_p) крайне мало зависит от давления в реакторе (120 - 100 Å/мин). В это же время V_p сильно зависит от температуры осаждения (T_{Π}) и величины скорости потока и парциального давления SiH₄. Это объясняется тем, что лимитирующей стадией процесса является скорость разложения моногидрида (МГ) на поверхности подложки. Уход в сторону более низких величин давлений в реакторе, чем 50 Па ощутимо влияет на структуру и морфологию пленок. С уменьшением общего давления при осаждении слоев интенсивность поверхностной диффузии адсорбированных атомов повышается.

С уменьшением давления поверхность растущей пленки становится более «чистой» и более зеркальной, что обусловлено снижением количества адсорбированных на ней неконтролируемых примесей и побочных продуктов реакции, а основной процесс идет по гетерогенному механизму.

Перевод процесса осаждения слоев поликристаллического кремния в область, как можно более низких давлений МГ, представляет значительный практический интерес, поскольку способствует повышению стабильности процесса осаждения за счет перевода его в область, где V_p практически нечувствительна или малочувствительна к величине давления в объеме изотермической зоны. Более того, в таких условиях имеется возможность по управлению как скоростью процесса, так и структурно-морфологическими свойствами осажденных слоев.

Повышение однородности слоев по толщине, а, следовательно, должно быть и по электрофизическим параметрам, при уменьшении общего давления в изотермической зоне реактора при одной и той же величине скорости потока газов, обусловлено в первую очередь тем, что вероятность протекания реакций в газовой фазе, т.е. гомогенных, становится достаточно малой и, кроме того, практически исключаются полимеризация МГ и их производных с образованием кластеров кремния в газовой фазе, поскольку концентрация таких производных как SiH₄ и GeH₄ пропорциональна квадрату парциального давления соответственно SiH₄ и GeH₄.

Учитывая близость свойств SiH₄ с GeH₄, интерес представляет именно комбинация этих компонентов. Причем, если GeH₄ использовать как всего лишь легирующий компонент, его объемы по отношению к SiH₄ должны быть в пределах 0,001–0,003 об. частей.

Скорость роста пленок поликристаллического кремния, легированного германием, сильно зависит от величины парциального давления и скорости потока МГ в зоне реакции. И действительно выяснено, что изменение парциального давления SiH₄ в реакторе от 10 Па до 40 Па приводит к увеличению V_p от 50 до 110 Å/мин при прочих равных условиях, а это, в свою очередь, определяет скорость формирования нанокластеров.

При скорости потока $M\Gamma$ и, в частности, SiH₄, 7 и 10 дм³/час адсорбция MГ диссоциативная, т.е. при адсорбции SiH₄ на поверхности подложки происходит диссоциация молекулы SiH₄ на SiH₂(ад) и H₂, GeH₄ на GeH₂(ад) и H₂, каждая из которых занимает свой адсорбционный центр:

$\operatorname{SiH}_{4(\operatorname{ras})} \to \operatorname{SiH}_{2(\operatorname{ag})} + \operatorname{H}_{2(\operatorname{ras})},$	(1)
$\operatorname{SiH}_{2(a, a, b)} \to \operatorname{Si}_{(TB)} + \operatorname{H}_{2(ra3)},$	(2)
$\text{GeH}_{4(ra3)} \rightarrow \text{GeH}_{2(aa)} + \text{H}_{2(ra3)},$	(3)
$\mathrm{GeH}_{2(\mathrm{a}\mathrm{l})} \to \mathrm{Ge}_{(\mathrm{TB})} + \mathrm{H}_{2(\mathrm{ra}\mathrm{s})}.$	(4)

Если на растущей поверхности имеются радикалы SiH₂ и GeH₂ или их аналоги типа SiH₃, GeH₃, SiH, GeH, они вступают во взаимодействие между собой, например:

$$SiH + GeH \xrightarrow{SiH} SiH + GeH + H.$$
(5)

В итоге адсорбированными частицами является кремний и германий

Si, Ge
$$\rightarrow$$
 Si, Ge_a, Si, Ge_a \rightarrow Si, Ge (_{тв}),

т.е. характер адсорбции не меняется при изменении скорости потока МГ, что подтверждает возможность сделанных предположений о возможном влиянии величины t на величину начальной вероятности «прилипания» молекул МГ, в частности SiH₄, поскольку объем GeH₄ ничтожно мал по отношению к объему SiH₄, хотя в целом коэффициент адсорбции равен

 $\boldsymbol{\theta} = \boldsymbol{\theta}_{Si} + \boldsymbol{\theta}_{Ge} + \boldsymbol{\theta}_{H} + \boldsymbol{\theta}_{SiH_2} + \boldsymbol{\theta}_{GeH_2} + \boldsymbol{\theta}_{\text{nob.cbs3em}} = 1.$

В области низких давлений, когда V_p зависит от скорости потока МГ, модель предсказывает большую зависимость скорости осаждения $V_p = \beta PS/S_0$ от W_{SiH_4} , что как показывают ре-

зультаты работы [2], подтверждается на практике. Перевод процесса осаждения слоев ПКК(Ge) в область как можно более низких давлений МГ представляет значительный практический интерес. Это обусловлено тем, что низкие давления газовой смеси способствуют повышению стабильности процесса осаждения за счет перевода его в область, где V_p практически нечувствительна или малочувствительна к величине давления в объеме изотермической зоны. Более того, в таких условиях имеется возможность по управлению как скоростью процесса, так и структурно-морфологическими свойствами осажденных слоев и, в частности, плотностью нанокластеров.

Повышение однородности слоев по толщине, и, следовательно, и по электрофизическим параметрам, при уменьшении общего давления в изотермической зоне реактора при одной и той же величине скорости потока газов обусловлено в первую очередь тем, что вероятность протекания реакций в газовой фазе, т.е. гомогенных, таких как (формулы 1-6) становится достаточно малой и, кроме того, практически исключаются полимеризация МГ и их производных с образованием кластеров кремния в газовой фазе, поскольку концентрация таких производных, как SiH₂ и GeH₂, пропорциональна квадрату парциального давления соответственно SiH₄ и GeH₄.

Как мы уже отмечали выше, добавки GeH₄ приводят к довольно заметному повышению скорости осаждения. Добавление GeH₄ к SiH₄ в количестве 0,002 об. частей по отношению к объему SiH₄ при прочих равных условиях приводит к увеличению скорости практически в два раза в центре изотермической зоны.

Эта зависимость позволила определить эффективный порядок реакции по GeH₄ ($n = \Delta \lg V_p / \Delta \Delta \lg_{GeH_4}$), величина которого $n = 1,25\pm0,02$ для температуры 893 К не изменяется по всей зоне роста слоев.

Дробный порядок характерен для сложных химических реакций, а его положительное значение указывает на увеличение скорости реакции. В нашем случае это усиление гетерогенного маршрута процесса разложения SiH₄. Таким образом, при температуре 893К преобладает гетерогенный маршрут реакций. При этом гетерогенный маршрут является более эффективным поставщиком радикалов, SiH₂ для которых GeH₄ является инициатором их образования. В итоге при постоянной температуре подложки, постоянных парциальных давлениях МГ и постоянных скоростях потока газов V_p слоев можно рассчитать по формуле

$$V_{P} = r \frac{N_{S}}{N_{0}} (\theta_{\rm Si} + \theta_{\rm Ge}) , \qquad (7)$$

а содержание германия в пленке по формуле:

$$C_{\rm Ge} = \frac{\theta_{\rm Ge}}{\theta_{\rm Ge} + \theta_{\rm Si}},\tag{8}$$

где r – частота встраивания атомов в кристаллическую решетку, которая зависит от концентрации атомов кремния и германия, N_s – концентрация SiH₄ на поверхности подложки, N_0 – концентрация SiH₄ в газовой фазе, θ_{Ge} – коэффициент адсорбции германия, θ_{Si} – коэффициент адсорбции кремния.

Диапазон температур процесса осаждения слоев сверху ограничивается процессом преобразования структуры слоев в результате их рекристаллизации, а снизу очень малой скоростью осаждения.

Фундаментальные исследования процесса разложения SiH₄, показали, что реакции его термического разложения являются многомаршрутными и многостадийными, зависящими от условий разложения. Как уже отмечалось выше, процесс разложения SiH₄ и в том числе GeH₄ как аналога SiH₄, может протекать по двум маршрутам – гетерогенному и гомогенному, имеющим разные кинетические временные характеристики. Эти различия позволяют разделить составляющие процесса. Величины энергии активации гетерогенного ($E^*_{a(ret)}$) и гомогенного ($E^*_{a(rot)}$) процессов различны и зависят от условий разложения гидридов, и в первую очередь от температуры подложки. Зависимость скорости осаждения от температуры используется для определения энергии активации:

$$\mathbf{E}_{a\kappa}^{*} = -8,3 \times 10^{-3} \cdot \frac{2,3 \lg \frac{V_{2}}{V_{1}}}{\left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)}, \ \kappa$$
Дж/моль

где $E_{a\kappa}^*$ – энергия активации процесса, кДж/моль; V_2 – скорость реакции осаждения при температуре подложки T_2 ; V_1 – скорость реакции осаждения при температуре подложки T_1 .

По сути, энергия активации – это то избыточное количество энергии (по сравнению со средней величиной), которой должна обладать молекула в момент столкновения, чтобы быть способной к данному химическому взаимодействию. В большинстве своем увеличение T_{Π} способствует усилению такого взаимодействия. При повышении T_{Π} скорость химических реакций увеличивается весьма значительно.

Скорость реакции сильнее изменяется с температурой в тех реакциях (процессах), в которых энергия активации больше. И наоборот, если в данной реакции энергия активации незначительна, то скорость этой реакции (этого процесса) слабо изменяется с температурой. Многочисленные данные, посвященные процессу разложения SiH₄ в реакторах атмосферного давления при температуре 550–900 °C свидетельствуют, что $E^*_{a(ret)} \approx 200$ кДж/моль, а $E^*_{a(rom)} \approx 230 \div 235$ кДж/моль [3–16]. При пониженных давлениях для $E^*_{a(ret)}$ характерны величины 150–170 кДж/моль, для $E^*_{a(rom)} \sim 200$ кДж/моль [16–18]. По сути, результаты с использованием наших экспериментальных данных полностью согласуются с приведенными выше данными для процессов, происходящих при пониженных давлениях.

Эффективная энергия активации, рассчитанная нами по уравнению (9) с использованием экспериментальных данных (рис. 3) для случая, когда величина полного давления в реакторе 40 Па, парциального давления SiH₄ 35Па и скорость потока газов 7 дм³/ч, при отсутствии GeH₄, составляет величину 175 кДж/моль, а при наличии GeH₄ – 135кДж/моль в кинетической области и 33,5 и 28 кДж/моль, соответственно в диффузионной зоне.

Рис. 3. Зависимость скорости осаждения пленок поликристаллического кремния, легированного германием, от температуры подложки: 1–2 – полное давление в реакторе 40 Па, парциальное давление моносилана 35 Па, скорость потока газов 7,0 дм³/ч; 3–4 – полное давление в реакторе 50 Па, парциальное давление моносилана 40 Па, GeH₄/SiH₄=0,002 (1–4).

(9)

Снижение скорости потока газов в реакторе до 3,5 дм³/ч при прочих равных условиях приводит к увеличению энергии активации до 207 кДж/моль, а повышение ее до 10,5 дм³/час к снижению энергии активации до 188 кДж/моль. Таким образом, малые скорости потока газов способствуют усилению температурной зависимости V_p слоев, и напротив повышение скорости потока газов снижает степень этой зависимости.

Увеличение парциального давления до 40 Па при общем давлении в реакторе 50 Па при прочих равных условиях при отсутствии GeH₄ приводит к уменьшению энергии активации до 104 кДж/моль, а при наличии GeH₄ до 133 кДж/моль в кинетической области и до 11,6 и 56 кДж/моль, соответственно, в диффузионной области. Анализируя эти результаты можно констатировать, что при больших, чем 35 Па, давлениях SiH₄ и общем давлении в реакторе больше 40 Па усиливается влияние наличия GeH₄ на процесс осаждения с повышением температуры в изотермической зоне реактора.

Оценка эффективной энергии активации процесса разложения SiH₄ для условий наших экспериментов показала, что в отсутствие GeH₄ в зоне реакции ее величина составляет 104 – 207 кДж/моль. В этом случае сильный вклад на ее величину вносят парциальное давление SiH₄ и скорость потока газов в изотермической зоне реактора. Они являются важнейшими технологическими параметрами процесса осаждения ПКК, которые позволяют управлять как скоростью процесса осаждения, так и структурно-морфологическими свойствами осаждения пленок. При наличии GeH₄ в зоне реакции в объеме 0,002 по отношению к объему SiH₄ при условиях: скорость газового потока 7,0 дм³/ч, парциальное давление SiH₄ 35 Па и общее давление газовой смеси в реакторе 40 Па – энергия активации снижается с 175 до 137кДж/моль. А это говорит о том, что в этом случае V_p слоев в меньшей степени зависит от температуры в изотермической зоне реактора. Однако увиличение парциального давления SiH₄ до 40 Па и выше, а общего давления до 50 Па и выше в реакторе, напротив, в присутствии GeH₄ способствует увеличению эффективной энергии активации с 104 до 135 кДж/моль, т.е. приводит к большей степени зависимости процесса осаждения слоев от температуры.

К аналогичным результатам, но только в диффузионной области приводит увеличение скорости потока газов до 10,5 дм³ /ч. Повышение давления в реакторе выше 40 Па при температуре ≥ 640 °C (913 K) приводит к тому, что появляется матовость поверхности слоев и его для этих условий следует считать критическим. Этот факт указывает на увеличение вклада гомогенного маршрута разложения гидридов. Во всех остальных случаях имел место гетерогенный маршрут разложения МГ. Это согласуется с выводами других исследователей о разложении SiH₄ [17–21], что при сравнительно низких температуры скорости гомогенных реакций увеличиваются больше, чем скорости гетерогенных реакций. При этом гетерогенный маршрут является более эффективным поставщиком радикалов SiH₂ и GeH₂; SiH₃ и GeH₃; SiH и GeH, для которых GeH₄ является инициатором их образования.

Таким образом, величина скорости потока газов, величина общего давления в реакторе, величина парциального давления SiH₄ в реакторе и величина объемного соотношения GeH₄/SiH₄ как и T_{Π} в изотермической зоне реактора (камеры), являются важнейшими технологическими параметрами процесса осаждения ультратонких пленок ПКК, которые позволяют управлять V_p .

Заключение

Общее давление компонентов газовой смеси в камере, парциальное давление SiH₄, объемное соотношение GeH₄/SiH₄, скорость потока газов и T_{Π} являются основополагающими факторами технологического процесса осаждения ультратонких наноструктурированных слоев ПКК и больше всего влияют на скорость осаждения. Дополнительное присутствие GeH₄ в малых количествах (0,001–0,003 об. частей) в зоне разложения SiH₄ способствует увеличению V_p в 1,5–2 раза.

Энергия активации процесса разложения SiH₄ без и в присутствии GeH₄ в области температур 560–630°С, в зависимости от условий разложения МГ в кинетической области изменяется от 104 до 207, а в диффузионной области – от 11,6 до 72 кДж/моль. Повышение общего давления в реакторе парциального давления SiH₄ и T_{Π} в процессе разложения SiH₄ с поверхности подложки приводит к переходу в газовую фазу, т.е. гетерогенно-радикально-цепной маршрут, преобладающий при температуре 620±5°C, приобретает гетерогенно-гомогенный цепной характер при температуре 630 °C.

CONDITIONS FOR THE FORMATION OF NANOCLUSTERS DURING THE PREPARATION OF NANOSTUCTURED FILMS OF POLYCRYSTALLINE SILICON DOPED WITH GERMANIUM

N.S. STROGOVA, A.S. STROGOVA, A.A. KOVALEVSKII, V.M. BORISEVICH, D.V. PLYAKIN

Abstract

Investigations of surface topography, crystal structure of polycrystalline silicon films doped with germanium, obtained by decomposition of monosilane – monogermane – hydrogen mixture are presented. Changes in the structure of Ge and SiGe – clusters were analyzed by Raman spectroscopy. The dependencies of film growth on the total pressure in the reactor and the partial pressure of silane were also analyzed.

Литература

1. Ковалевский А.А., Борисевич В.М, Долбик А.В. // Материалы. Технологии. Инструменты. 2007. Т. 12, №4. С. 65–72.

2. Afanas'er V.V. // Microelectronic Engineering. 2001. Vol. 59. P. 335-339.

3. Ahmed W.D., Meakin B., Stoemenous J. // Proc. 10th Inc. Conf. Chem. Vapor Deposit. Pennington. 1987. P. 449–459.

4. *Potapov A.V., Orlov L.K.* // Proceedings of 6th Inc. Symp. Nanoctructures: Physics and Technology. St. Peterburg, Russia. 1998. P. 487–490.

5. Ковалевский А.А. // Материалы Междунар. науч.-техн. конф. Новые технологии изготовления много-кристальных модулей. Минск. 2002. С. 110–114.

6. Ковалевский А.А., Крищенко В.П. // Материалы Междунар. науч.-техн. конф. Новые технологии изготовления многокристальных модулей. Минск. 2002. С. 44–48.

7. Сухой М.С. // Неорганические материалы. 1982. Т. 18, №7. С. 1077-1083.

8. Kovalevsky A.A., Borisenko V.E., Borisevich V.M. et al. // J. Inorganic Materials. 2005. Vol. 41, №12. P. 1260–1265.

9. Ковалевский А.А. // Материалы. Технологии. Инструменты. 2006. Т. 11, №1. С. 51–55.

10. Ковалевский А. А., Долбик А.В. // Материалы. Технологии. Инструменты. 2006. Т. 11, №2. С. 60-65.

11. Kovalevsky A.A., Dolbik A.V., Votech S.N. // Russian Microelectronics. 2007. Vol. 36, №3. P. 179–185.

12. Ковалевский А.А., Долбик А.В., Борисевич В.М. и др. // Материалы междунар. науч. конф. Нанострук-

турные материалы. Минск. 2008. С. 138.

13. Ковалевский А.А., Долбик А.В., Борисевич В.М. и др. // Материалы 1-ой междунар. науч. конф Наноструктурные материалы. Минск. 2008. С. 139.

14. Huang Xinming et. al. // Jap. J. Appl. Phys. Pt.2. Letters. 2000. Vol. 39, №11B. P. L1115– L 1117.

15. Paul D.J. et al. // Advanced Materials. 1999. Vol. 11, №3. P. 191–204.

16. Oliver Kermarrec et al. // Solid State Technology. 2002. Vol. 45, №3. P. 55.

17. Ковалевский А.А., Строгова А.С., Плякин Д.В. // Материалы. Технологии. Инструменты. 2009. Т. 14, №3. С. 90–95.

18. Eversteyn E.C. // Philips Res. Rep. 1974. Vol. 29. P. 45.

19. Liehr M. et al. // Appl. Phys. Lett. 1990. Vol. 56. P. 629.

20. Meakin D. // J. Appl. Physics. 1987. Vol. 67, №11. P. 5031.

21. Yu H.Y. et al. // Appl. Phys. Lett. 2002. Vol. 81. P. 376-378.