МОДЕЛИРОВАНИЕ ГИРО-ЛБВ НА ЗАМЕДЛЕННОЙ Е01-МОДЕ

Кураев А.А., Матвеенко В.В., Синицын А.К.

Кафедра вычислительных методов и программирования, Белорусский государственный университет

информатики и радиоэлектороники

Минск, Республика Беларусь

E-mail: vladzimir66@bsuir.by

Выполнено моделирование гиро-ЛБВ на замедленной Е01 моде гофрированного волновода. Показана возможность достижения КПД 30% при коэффициенте усиления 15Дб.

Введение

В классических гиротронах (генераторах и усилителях) используется взаимодействие винтового электронного пучка с быстрой Н волной слабо нерегулярного волновода. В [1] впервые показана возможность реализации гиротрона генератора на замедленной Е волне гофрированного волновода, причем при таком механизме оказывается возможным примерно вдвое снизить величину направляющего магнитного поля по сравнению с традиционной конструкцией генератора на Н волне. В настоящем докладе обсуждаются результаты моделирования гиро ЛБВ на замедленной симметричной Е волне гофрированного волновода. Рассматривается математическая модель, полученная на основе метода преобразования координат, при котором трехмерная краевая задача возбуждения нерегулярного волновода сводится к краевой задаче для системы обыкновенных дифференциальных уравнений. Представлены основные характеристики найденного варианта гиро-ЛБВ на гофрированном волноводе.

I. Устройство гиро-ЛБВ

На рис. 1 изображен вариант конструкции гиро-ЛБВ на замедленной Е-волне

Сформированный электронной пушкой – 1,2 винтовой электронный поток – 3 и электромагнитная Ео1 волна, возбуждаемая сигналом, подводимым через устройство - 4 подаются на вход области взаимодействия в виде отрезка полого цилиндрического гофрированного волновода – 5. В области взаимодействия - 5 реализуется условие гирорезонанса с основной замедленной пространственной гармоникой возбуждаемого электромагнитного поля. Вывод СВЧ- мощности производится через выходной рупор 6. Отработавший электронный поток осаждается на стенку волноводаb - 8 сразу за областью взаимодействия. Электромагнит - 7 обеспечивает требуемое магнитное поле.

II. Постановка задачи и методы Решения

Рассматриваемая самосогласованная задача о возбуждении нерегулярного волновода электронным пучком в общем виде описывается уравнениями Максвелла. Наиболее эффективной процедурой при расчете возбуждаемого на заданной частоте СВЧ поля в отрезке нерегулярного волновода, как с вычислительной стороны, так и в отношении физической интерпретации представляется метод, основанный на отображении произвольно-нерегулярной внутренней поверхности волновода на регулярный цилиндр с круговым сечением. В преобразованной системе координат решение представляется в виде разложения по собственным волнам регулярного волновода. При этом амплитуды разложения определяются системой обыкновенных дифференциальных уравнений с переменными коэффициентами, вид которых определяется профилем неоднородного волновода. Полученные уравнения представляют самосогласованную систему, описывающую процессы генерации и усиления электромагнитных волн электронными потоками. Граничные условия к этой системе ставятся в начальном и конечном сечениях отрезка нерегулярного волновода (двухточечная задача). Данная модель детально описана в книге [2]. Решение этой задачи традиционными методами не встречает затруднений, если рассматриваются только распространяющиеся волны. Как было показано в ряде исследований, для точного расчета процессов возбуждения в нерегуляром волноводе необходим учет наряду с распространяющимися и закритических волн. Однако для закритических волн численное решение граничной (двухточечной) задачи с использованием традиционных методов (пошаговых методов типа Рунге-Кутта или Хемминга) невозможно из-за быстрой расходимости (из-за малых ошибок появляются резко возрастающие решения).

Для решения задачи предлагается устойчивый метод блочной матричной прогонки. Решение самосогласованной задачи возбуждения электромагнитного поля электронным потоком в установившемся режиме производится итерационно, путем поочередного решения электродинамической задачи и уравнений движения электронов-«крупных» частиц, моделирующих электронный пучок.

III. РЕЗУЛЬТАТЫ РАСЧЕТОВ

В расчетах приняты следующие безразмерные параметры $\beta_0 = \frac{v_0}{c}, v_0$ – начальная скорость, с – скорость света в вакууме, $\beta_z = \frac{v_z}{c}, \beta_t = \frac{v_t}{c}, v_z, v_t$ –продольная и поперечная составляющая скорости, $q = \frac{\beta_t}{\beta_z}$ – питч фактор, $F = \frac{B_0 e}{m_0 \omega}, B_0$ – магнитостатическое фокусирующее поле, е и m_0 – заряд и масса покоя электрона.

$$\eta^{e}(z) = \frac{1}{N} \sum_{l=1}^{N} \frac{\gamma_{0} - \gamma_{l}(z)}{\gamma_{0} - 1}$$

где $\eta^e(z)$ – электронный кпд,

$$\gamma = \frac{1}{1 - \beta_z^2 - \beta_t^2}$$

где γ – релятивистский масс-фактор.

 $L_v = \frac{2\pi}{\lambda}L'_v, L'_v$ -размерная длина гофра, $d_v = \frac{2\pi}{\lambda}d'_v, d'_v$ -размерная длина канавки, $b(z) = \frac{2\pi}{\lambda}b(z', b(z)'$ -размерная длина канавки, $b(z) = b_0 + h_v sin^2[\pi(z-z_1)/d_v]; z_1 \le z \le z_2, h_v = \frac{2\pi}{\lambda}h'_v, h'_v$ -размерная высота канавки.

Для выяснения условий, при которых рассматриваемое взаимодействие наиболее эффективно, были выполнены расчеты и найдены нижеописанные варианты.

В расчетах использовано 16 электронных орбит, расставленных на периоде, и 8 электронных частиц на каждой орбите.

Варьируя высоту h_v и период d_v гофра, выбиралась требуемая величина $\beta_\rho \approx 0.67$ -0.8. Оптимизировались: начальная скорость β_0 , ток I_0 , F и амплитуда сигнала e_0 при заданном значении питч-фактора q = 1-1.5. Внутренний радиус волновода $b_0 = 5.03$ был выбран вблизи границы полосы прозрачности волны E_{02} , $(b = \nu_{02} = 5.52)$, поэтому внутри канавок гофра открывается волна E_{02} . Для рассматриваемой системы (рис.1) были найдены следующие условия, при которых реализуется эффективное усиление сигнала на основной гармонике: $\beta_0 = 0.531(U_0 = 92)$, $I_0 =$ 201.35A, $q_0 = 1.3$, F = 0.65, $b_0 = 5.03$, $L_k =$ 2.73, $h_v = 1.6$, $d_v = 26.4/25$, $\beta_\rho = 0.66$, $\eta =$ 0.30, $K_y = 15$, $P_{out} = 5.6$.

Изменение характеристик полученного варианта для различных значений питч-фактора приведены в таблице 1. Наибольший КПД наблюдается при q = 1.3. На рис.2 приведено типичное для прибора измене-ние основных характеристик взаимодействия вдоль области взаимодействия:

Таблица 1 – Оптимальные параметры по КПД для различных питч-факторов

q	I_0	K_y	F	η	β_0
1.5	200	14.4	0.674	0.237	0.61
1.4	202	14.8	0.664	0.294	0.612
1.3	201	15.1	0.649	0.304	0.592
1.2	208	15	0.613	0.274	0.595
1.1	250	14.5	0.588	0.23	0.576
1	272	14.4	0.548	0.167	0.582

а) КПД η и граничные значения пучка r_{min} , r_{max} ;

б) изменение β_z и β_t

в) электронные траектории.

IV. Устройство гиро-ЛБВ

На рис. 1 изображен вариант конструкции гиро-ЛБВ на замедленной Е-волне

Рис. 2 - Характеристики взаимодействия

При отборе мощности уменьшается как поперечная, так и продольная составляющие скорости электронов пучка. Существенно, что в этих вариантах рабочее магнитное поле практически вдвое меньше, чем в обычном гиротроне на H_{01} моде на основном циклотронном резонансе.

V. Заключение

Разработанная математическая модель и пакет программ позволяют эффективно производить поиск перспективных конструкций гиро ЛБВ. Найденный вариант параметров прибора демонстрирует эффективность гиро ЛБВ на замедленной Е волне.

- Батура, М. П., Кураев, А. А., Синицын, А. К. Основы теории, расчета и оптимизации современных электронных приборов СВЧ. Мн., БГУИР. 2007.