Доклады БГУИР

2012

УДК 621.396.96

АЛГОРИТМ СИНТЕЗА ГЕОМЕТРИЧЕСКОЙ СТРУКТУРЫ АНТЕННОЙ РЕШЕТКИ МІМО РЛС

С.А. ГОРШКОВ, П.И. ОРГИШ

Военная академия Республики Беларусь Минск-57, 220057, Беларусь

Поступила в редакцию 15 июня 2012

В статье представлен алгоритм синтеза геометрической структуры антенной решетки MIMO (Multiple-input-multiple-output) РЛС, исходя из выполнения условия единственности главного лепестка диаграммы направленности. Исходными данными для алгоритма являются число передающих и приемных элементов, а также требуемое число формируемых каналов приема (виртуальных элементов).

Ключевые слова: МІМО (Multiple-input-multiple-output) радиолокационные системы, ортогональные сигналы, синтез геометрической структуры антенной решетки.

Введение

В последнее время в радиолокации активно развиваются MIMO (Multiple-input-multipleoutput) РЛС [1,2]. В таких РЛС *К* различных групп, передающих элементов антенны, излучают *К* ортогональных сигналов, а *L* групп приемных элементов обеспечивают одновременный прием этих сигналов.

Одним из важных свойств МІМО РЛС является увеличением числа приемных каналов при обработке сигналов [1].

Для примера рассмотрим узкополосную МІМО РЛС с антенной решеткой (AP), у которой K=2 передающих и L=3 приемных элемента. Расположим элементы решетки так, чтобы получить V=KL=6 виртуальных приемопередающих элементов (см. рис. 1), расположенных в середине между T_i (i=1, ..., K) передающим и R_j (j=1, ..., L) приемным элементами.

На рис. 1 переменная d_v обозначает расстояние между виртуальными элементами, θ_0 – направление на цель.

Передающие элементы синхронно излучают кодированные взаимно ортогональные сигналы на одинаковой несущей частоте ω_0 :

$$\begin{split} \dot{u}_1(t) &= \dot{U}_1(t)e^{j\omega_0 t};\\ \dot{u}_2(t) &= \dot{U}_2(t)e^{j\omega_0 t}, \end{split}$$

где $\dot{U}_1(t)$ и $\dot{U}_2(t)$ комплексные законы модуляции (3М), излучаемые первым (T_1) и вторым (T_2) передатчиком соответственно, при этом $\int_{-\infty}^{+\infty} \dot{u}_1(t) \dot{u}_2^*(t) dt \approx 0$.

Для упрощения будем рассматривать принятый сигнал, состоящий только из отраженного сигнала (OC). Тогда принятый сигнал на *j*-м ($j = \overline{1, L}$) приемном элементе можно записать в виде:

$$\dot{f}_{j}(t) = \sum_{i=1}^{K} M_{i}(t) \dot{U}_{i}(t - t_{r(i,j)}) e^{j\omega_{0}(t - t_{r(i,j)})}$$

93

№ 8(70)

где $M_i(t)$ – комплексная огибающая OC, $i = \overline{1, K}$; $t_{r(i,j)}$ – время запаздывания OC от *i*-ого передающего элемента до *j*-ого приемного элемента.

Рис. 1. МІМО РЛС с K=2 передающими и L=3 приемными элементами

После перемножения с сигналом гетеродина ($U_{\Gamma}(t) = \exp\{-j(\omega_0 - \omega_{np})t\}$) и обработки в согласованных фильтрах (СФ) получим:

$$F_{ij}(t) = v(t - t_{r(i,j)})e^{j\omega_{\rm m}t}e^{-j\omega_0 t_{r(i,j)}}, \quad i = \overline{1, K}, \quad j = \overline{1, L}.$$
(1)

Импульсные характеристики СФ₁ и СФ₂ согласованы с ЗМ $\dot{U}_1(t)$ и $\dot{U}_2(t)$ соответственно. В таблице приведены значения времени запаздывания от T_i (*i*=1,...,*K*) передающего до R_j (*j*=1,...,*L*) приемного элемента, а также время запаздывания для V_k (*k*=1,...,*V*) виртуального элемента, принимая за начало отсчета координату элемента T_2 , с учетом дальности до цели *D*.

Для реальных элементов		Для виртуальных элементов	
T_1R_1	$\frac{6d_v \sin\theta_0 + 2D + 5d_v \sin\theta_0}{10} = \frac{11d_v \sin\theta_0 + 2D}{10}$	V_1	$\frac{5.5d_v\sin\theta_0 + 2D + 5.5d_v\sin\theta_0}{10} = \frac{11d_v\sin\theta_0 + 2D}{10}$
	с с		ССС
T_1R_2	$\frac{6d_v\sin\theta_0 + 2D + 3d_v\sin\theta_0}{2D + 3d_v\sin\theta_0} = \frac{9d_v\sin\theta_0 + 2D}{2D}$	V_2	$\frac{4.5d_v\sin\theta_0 + 2D + 4.5d_v\sin\theta_0}{4.5d_v\sin\theta_0} = \frac{9d_v\sin\theta_0 + 2D}{4.5d_v\sin\theta_0}$
	c c		ССС
T_1R_3	$\frac{6d_v \sin \theta_0 + 2D + d_v \sin \theta_0}{1 - 2D + d_v \sin \theta_0} = \frac{7d_v \sin \theta_0 + 2D}{1 - 2D + 2D}$	V_3	$\frac{3.5d_v\sin\theta_0 + 2D + 3.5d_v\sin\theta_0}{2D} = \frac{7d_v\sin\theta_0 + 2D}{2D}$
	c c		с с
T_2R_1	$\frac{0+2D+5d_v\sin\theta_0}{2} - \frac{5d_v\sin\theta_0+2D}{2}$	V_4	$\frac{2.5d_v\sin\theta_0 + 2D + 2.5d_v\sin\theta_0}{2} - \frac{5d_v\sin\theta_0 + 2D}{2}$
	с _ с		с с
T_2R_2	$\frac{0+2D+3d_v\sin\theta_0}{2} = \frac{3d_v\sin\theta_0+2D}{2}$	V_5	$\frac{1.5d_v\sin\theta_0 + 2D + 1.5d_v\sin\theta_0}{2D + 1.5d_v\sin\theta_0} = \frac{3d_v\sin\theta_0 + 2D}{2D}$
	с с		с с
T_2R_3	$0+2D+d_v\sin\theta_0 d_v\sin\theta_0 + 2D$	V_6	$0.5d_v \sin\theta_0 + 2D + 0.5d_v \sin\theta_0 - d_v \sin\theta_0 + 2D$

Значения времени запаздывания ОС

Из таблицы видно, что время запаздывания ОС для каждой пары передающих и приемных элементов равно времени запаздывания образованного ими виртуального элемента. Антенная решетка из V виртуальных элементов эквивалентна обычной приемопередающей Vэлементной AP, что можно использовать для упрощения анализа МІМО AP и расчетов. В (1) $\exp\{-j\omega_0 t_{r(i,j)}\}$ указывает на начальную фазу сигнала. Тогда, используя значения таблицы, можно показать, что фазовые сдвиги между выходными сигналами СФ отличаются на:

$$\Delta \varphi = \frac{2\pi}{\lambda} 2d_v \sin \theta \,. \tag{2}$$

Из (2) следует, что разность фаз сигнала между двумя смежными приемными каналами всегда определяется удвоенным расстоянием между виртуальными элементами $d=2d_v$.

Сигналы с выходов СФ перемножаются с комплексными весовыми коэффициентами и суммируются, формируя $F_{\Sigma}(t)$. Исходя из таблицы, значения комплексных весовых коэффициентов можно определить как:

$$w_{m,n} = e^{j\frac{2\pi}{\lambda}(x_{T_m} + x_{R_n})\sin\theta}, \quad m = \overline{1,K}; n = \overline{1,L},$$

где x_{T_m} – координата передающего элемента; x_{R_n} – координата приемного элемента.

Ограничения, накладываемые на расстояние d, зависят от угла отклонения максимума диаграммы направленности (ДН) [3]. В общем случае, расстояние d чаще всего выбирают равным $\lambda/2$. Поэтому, чтобы обеспечить единственность главного лепестка в ДН на прием, необходимо расположить приемные и передающие элементы так, чтобы обеспечить расстояние между виртуальными элементами $d_v = 0,25\lambda$.

Цель настоящей статьи – предложить алгоритм определения координат передающих и приемных элементов МІМО АР для получения линейной виртуальной АР, зная число передающих, приемных и виртуальных элементов, при соблюдении условия единственности максимума главного лепестка ДН.

Синтез алгоритма расчета координат элементов АР

Рассмотрим вариант, когда имеется K=2 передающих и L=3 приемных элементов, расположенных в форме равнобедренной трапеции (см. рис. 2). Пусть приемные элементы находятся на расстоянии $d_v = 0.5\lambda$. Чтобы обеспечить единственность максимума ДН виртуальные элементы должны быть на расстоянии $d_v = 0.25\lambda$ (см. рис. 2, *a*). Необходимо определить расстояние между передающими элементами d_t .

Рис. 2. К пояснению определения расстояния между передающими элементами: *a* – МІМО РЛС с *K*=2 передающими и *L*=3 приемными элементами; *б* – трапеция *ABCD*

Расстояние между первым и третьим приемными элементами – нижнее основание трапеции (отрезок *DC*) $S_L = \lambda$. Расстояние между первым и шестым виртуальными элементами – средняя линия трапеции $S_V = 5\lambda/2$. Верхнее основание трапеции (отрезок *AB*) – искомое расстояние между передающими элементами $d_t = S_K$. Учитывая свойство трапеции $S_V = (S_K + S_L)/2$, определим S_K : $S_K = 2S_V - S_L = 5\lambda - \lambda = 4\lambda \; .$

Рассмотрим общий случай. Пусть имеется К передающих элементов и L приемных. Желаемое число виртуальных элементов (каналов приема) – V.

Тогда (см. рис. 3) каждый *k*-ый передающий элемент и *L* приемных элементов образуют *L* виртуальных элементов с межэлементным интервалом d_v . Тогда длина всей виртуальной решетки $S_v = \langle -1] / 2$. Если расстояние между приемными элементами *d*, то длина приемной решетки $S_L = \langle -1] / 3$. Необходимо найти длину передающей решетки S_K . Как видно из рис. 3, передающие, приемные и виртуальные элементы образуют равнобедренную трапецию, у которой (см. рис. 2, δ) верхнее и нижнее основания равны длинам передающей и приемной решеток соответственно, а длина виртуальной решетки является средней линией этой трапеции.

Рис. 3. К пояснению определения расстояния между передающими элементами

Учитывая свойство трапеции, определим длину передающей решетки:

$$S_{K} = 2S_{V} - S_{L} = 2 \cdot (V - 1)d/2 - (L - 1)d = \langle \!\! \langle \!\! \langle -L \rangle \!\! \rangle_{2}.$$
(3)

Тогда расстояние между передающими элементами равно:

$$d_t = \frac{V - L}{K - 1} d \,. \tag{4}$$

Расположим систему координат ХОУ как показано на рисунке.

Рис. 4. МІМО антенная решетка в прямоугольной системе координат

Тогда координаты приемных и передающих элементов с учетом (3) и (4) будут рассчитываться по формулам:

$$y_i = 0;$$

 $x_i = -\frac{L-1}{2}d + i \cdot d, i = 0, 1, ..., L-1,$ - координаты приемных элементов; (5)

$$y_j = h;$$

 $x_j = -\frac{V-L}{2}d + j\frac{V-L}{K-1}d, j = 0, 1, ..., K-1,$ - координаты передающих элементов. (6)

В выражении (6) h – значение высоты трапеции. Как известно, высота трапеции не влияет на длину основания и средней линии, поэтому координату у для передающих элементов можно выбирать произвольно. Например, если задать h=0, то все элементы, приемные, передающие и виртуальные, будут располагаться на одной линии.

Геометрическую структуру решетки с расстоянием между виртуальными элементами $d_v = 0,25\lambda$ можно получить, проводя расчет относительно передающих, а не приемных элементов (т.е. задав расстояние между передающими элементами $d_v = 0,5\lambda$). Тогда уравнения (5) и (6) примут вид:

$$y_{j} = 0;$$

 $x_{j} = -\frac{K-1}{2}d + j \cdot d, \ j = 0, 1, ..., K - 1,$ - координаты передающих элементов; (7)
 $y_{i} = h;$
 $x_{i} = -\frac{V-K}{2}d + i\frac{V-K}{L-1}d, \ i = 0, 1, ..., L - 1,$ - координаты приемных элементов; (8)

Если необходимо управлять ДН на передачу [4], или использовать принцип подрешеток [5], или число передающих элементов больше приемных (для минимизации результирующего размера антенной решетки), то расчет необходимо проводить относительно передающих элементов (т.е. задать расстояние между передающими элементами $d_v = 0,5\lambda$). В остальных случаях, нужно проводить расчет относительно приемных элементов по формулам (5) и (6).

Таким образом, для расчета геометрической структуры МІМО антенной решетки можно использовать алгоритм, блок-схема которого изображена на рисунке.

Рис. 5. Блок-схема алгоритма синтеза геометрической структуры МІМОантенной решетки

Описание работы алгоритма. Сперва необходимо задать требуемое число передающих, приемных и виртуальных элементов (блок 1). Затем необходимо проверить, корректно ли задано число виртуальных элементов (блок 2). Максимально возможное число виртуальных элементов равно KL, минимально возможное – (K+L-1) (для случая, когда передающие и при-

емные элементы совмещены). Если заданные исходные данные попадают в интервал, то проверяется условие о необходимости управления диаграммой направленности антенны (ДНА) на передачу (блок 3). Если необходимо управлять ДНА на передачу, то расчет координат элементов производится по формулам (7) и (8) (блок 6). Если управлять ДНА на передачу не надо, то осуществляется сравнение числа передающих и приемных элементов, с целью минимизации результирующего размера антенной решетки (блок 4). Если число передающих элементов больше, чем приемных, то расчет проводится по формулам (7) и (8) (блок 6). Иначе – по формулам (5) и (6) (блок 7).

Результаты расчетов

Рассмотрим пример использования синтезированного алгоритма. Пусть длина волны λ =30 см, расстояние между элементами, относительно которых производится расчет $d = 0,15\lambda = 15$ см, высота АР h = d, число передающих элементов K = 2, число приемных L = 4, требуемое число виртуальных элементов V = 8, требуется управлять ДН только на прием.

Согласно алгоритму (рис. 5), расчет необходимо проводить по формулам (5) и (6).

Рис.6. Результат расчета по формулам (5) и (6)

Значения координаты *x* (в метрах) для передающих элементов: -0,3, 0,3; приемных элементов: -0,225, -0,075, 0,075, 0,225; виртуальных элементов: -0,262, -0,188, -0,113, -0,038, 0,038, 0,113, 0,188, 0,262.

Рис. 7. Результат моделирования ДН на прием:

Из рассчитанных значений координат элементов антенны видно, что расстояние между приемными элементами составляет 15 см = $0,5\lambda$, расстояние между виртуальными элементами составляет 7,4 см = $0,25\lambda$, результирующий размер антенной решетки определяется расстоянием между крайними передающими элементами и составляет 60 см = 2λ .

На рис. 7 представлены результаты моделирования ДН для синтезированной геометрической структуры.

Как видно из рис. 7, ширина ДН решетки с L = 4 элементами шире чем ДН рассчитанной AP с K = 2 и L = 4. При этом ширина ДН рассчитанной AP равна ширине ДН AP состоящей из V = 8 элементов.

Заключение

Имея *К* передающих элементов и *L* приемных, возможны два предельных случая, если приемные и передающие элементы совмещены (*K*=*L*), то число виртуальных элементов будет минимальным V = K + L - 1: если передающие (приемные) элементы находятся на расстоянии друг от друга *Ld* (*Kd*), то число виртуальных элементов будет максимальным V = KL. Таким образом, при заданных параметрах *K*, *L*, *V*, *h*, с использованием выражений (5) и (6) или (7) и (8) с помощью алгоритма, показанного на рис. 6, можно определить координаты передающих и приемных элементов антенной решетки для формирования ДН на передачу и прием в одной плоскости.

Также следует отметить, что одним из применений синтезированного алгоритма является возможность повышения живучести РЛС, когда передающие элементы, с менее дорогостоящими антеннами, выносятся за пределы приемной позиции. Как видно из (5)–(8), параметры виртуальной решетки не зависят от расстояния между передающей и приемной решетками как по оси X так и по Y.

SYNTHESIS ALGORITHM OF GEOMETRICAL STRUCTURE OF MIMO RADAR ANTENNA ARRAY

S.A. GORSHKOV, P.I. ORGISH

Abstract

In the given work the algorithm of calculation of co-ordinates of elements of MIMO radar antenna is presented. Initial data for algorithm are the number of transmitting, receiving elements, and also demanded number of channels of receiving.

Список литературы

1. Черняк В.С. // Прикладная радиоэлектроника. 2009. №4.

2. Jiane Li, Petre Stoica MIMO radar signal processing. New Jersey: A J. Wiley &sons inc., 2009.

3. Устройства СВЧ и антенны. Проектирование фазированных антенных решеток / под ред. Д.И. Воскресенского. М., 2003.

4. Горшков С.А., Оргиш П.И. // Докл. БГУИР. 2011. №6(60). С. 26–33.

5. Hongbin Li, Braham Himed // IEEE journal of selected topics in signal processing. 2010. Vol. 4, №1.