Министерство образования Республики Беларусь Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра систем телекоммуникаций

ТЕЛЕВИДЕНИЕ, ТЕЛЕВИЗИОННЫЕ СИСТЕМЫ

Методические указания и контрольные задания для студентов специальностей «Радиотехника» и «Многоканальные системы телекоммуникаций» заочной формы обучения

УДК 621.397.13 (075.8) ББК 32.94 я 73 Т 31

Т 31 Телевидение, телевизионные системы: методические указания и контрольные задания для студентов специальностей «Радиотехника» и «Многоканальные системы телекоммуникаций» заочной формы обучения / сост. П.А.Капуро, А.П.Ткаченко, А.Л.Хоминич. – Минск: БГУИР, 2008. – 44 с.: ил.

ISBN 985 - 444 - 458 - 9

Приводится программа изучения дисциплин «Телевидение» и «Телевизионные системы» с контрольными вопросами по разделам и контрольное задание с рекомендациями по его выполнению.

УДК 621.397.13 (075.8) ББК 32.94 я 73 Т 31

ISBN 985 - 444 - 458 - 9

- © Капуро П.А., Ткаченко А.П., Хоминич А.Л., 2007
- © УО «Белорусский государственный университет информатики и радиоэлектроники, 2007

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
ПРОГРАММА ДИСЦИПЛИН «ТЕЛЕВИДЕНИЕ» И «ТЕЛЕВИЗИОННЫЕ	
СИСТЕМЫ» И ВОПРОСЫ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ	
КУРСА	6
Раздел 1. Теоретические основы телевизионных систем	6
Раздел 2. Телевизионные преобразователи "свет-сигнал" и "сигнал-свет"	9
Раздел 3. Цветное телевидение	10
Раздел 4. Передача сигналов телевидения и звукового сопровождения	
по радиоканалам и направляющим средам	14
Раздел 5. Телевидение повышенного качества. Передача дополнительной	
информации в составе телевизионного сигнала	16
Раздел 6. Цифровое телевидение	18
Раздел 7. Телевидение высокой четкости	21
Раздел 8. Методы записи ТВ сигналов на различные носители	22
Раздел 9. Стереоскопическое телевидение	23
КОНТРОЛЬНОЕ ЗАДАНИЕ	25
Задача № 1	
Задача № 2	29
Задача № 3	29
Задача № 4	36
Задача № 5	
	42

ВВЕДЕНИЕ

В дисциплинах «Телевидение» и «Телевизионные системы» изучаются методы преобразования оптического изображения в телевизионный (ТВ) сигнал в процессе анализа и обратно — в процессе синтеза изображения; различные способы передачи аналоговых и цифровых сигналов изображения и звукового сопровождения в телевидении стандартной четкости (ТСЧ), повышенного качества (ТПК) и высокой четкости (ТВЧ). При изучении дисциплин рассматриваются устройства и системы передачи ТВ изображений (черно-белых, цветных, стерео), основные физические процессы, происходящие при этом, особенности приема аналоговых и цифровых ТВ сигналов, а также методы и устройства отображения визуальной информации на различных экранах.

Дисциплины «Телевидение» и «Телевизионные системы» являются обязательными при подготовке инженеров по специальностям «Радиотехника» и «Многоканальные системы телекоммуникаций» соответственно.

В результате изучения данных дисциплин студенты должны знать основные закономерности формирования, передачи и приема сигналов черно-белого, цветного и стереотелевидения; принципы построения и основные параметры аналоговых композитных и цифровых компонентных систем телевидения (ТСЧ, ТПК и ТВЧ) и методы согласования их со свойствами зрения, устройства отображения визуальной информации; уметь характеризовать физические процессы, происходящие при формировании, обработке, передаче приеме и хранении (консервации) сигналов в различных системах вещательного телевидения, а также уметь применять полученные знания на практике при проектировании телевизионных систем различного назначения. Кроме этого, студенты, изучающие дисциплину «Телевизионные системы», должны знать системы распределения ТВ программ по радиоканалам и направляющим средам, организацию аналогового и цифрового ТВ вещания.

Дисциплины базируются на материале, изученном в курсах «Высшая математика», «Физика», «Электротехника», «Теория электросвязи» («Радиотехнические цепи и сигналы» - для студентов спец. «Радиотехника»), «Электродинамика и распространение радиоволн», «Электронные приборы и устройства», «Метрология и измерения», «Антенны и устройства СВЧ», «Методы и устройства формирования и обработки сигналов» («Аналоговые электронные устрой-

ства»), «Цифровые и микропроцессорные устройства», «Радиопередающие устройства», «Радиоприемные устройства».

Дисциплина «Телевидение» изучается в течении одного семестра, ее объем для очной формы обучения составляет 80 ч. (48 ч лекций, 32 ч лабораторных занятий). Для заочной формы обучения предусматривается 18 ч (6 ч лекций и 12 ч лабораторных занятий). На самостоятельную работу запланировано 68 ч, из которых примерно 15 ч – на выполнение контрольной работы, состоящей как минимум из трех задач, номера которых определяются преподавателем.

Дисциплина «Телевизионные системы» изучается в течении двух семестров, ее объем составляет 128 ч (96 ч лекций, 32 ч лабораторных занятий). Для заочной формы обучения предусматривается 30 ч (14 ч лекций и 16 ч лабораторных занятий). На самостоятельную работу запланировано 100 ч, из которых примерно 25 ч − на выполнение контрольных работ №1 (в первом семестре, включает в себя задачи №1 - №3) и №2 (во втором семестре, задачи №4 и №5).

Методические указания содержат три раздела: программу дисциплин «Телевидение» и «Телевизионные системы» с контрольными вопросами по разделам для самостоятельного изучения курса, задания для контрольной работы с рекомендациями по их выполнению и список рекомендуемой литературы.

ПРОГРАММА ДИСЦИПЛИН «ТЕЛЕВИДЕНИЕ» И «ТЕЛЕВИЗИОННЫЕ СИСТЕМЫ» И ВОПРОСЫ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ КУРСА

Раздел 1. Теоретические основы телевизионных систем

1.1. Введение, цели и задачи дисциплины. Значение вещательного телевидения как широкополосной системы предоставления массовому потребителю разнообразных электронных услуг [1, с. 6-18; 3, с. 7-12;].

Классификация систем вещательного телевидения: стандартной четкости (ТСЧ), повышенного качества (ТПК) и высокой четкости (ТВЧ); композитные (NTSC, PAL и SECAM) и компонентные (МАС, HDMAC, MUSE и системы ТВЧ); аналоговые и цифровые; кабельные (коаксиальные, волоконнооптические, гибридные) и по открытому пространству (наземного вещания; MMDS, MVDS, LMDS, MИТРИС и т.п.; спутниковые и радиорелейные) [5, с. 220-221].

Прикладное телевидение и его особенности [2, с. 627-632].

1.2. Общая структурная схема системы передачи изображений. Построение оптического изображения. Математические модели изображения. Принцип последовательной передачи элементов изображения. Преобразование пространственно-временной информации — многомерного оптического изображения во временную последовательность в процессе развертки изображения при его анализе и обратно при синтезе на приемной стороне [1, с. 18-30; 3, с. 13-18].

Образование сигнала изображения на выходе преобразователя "светсигнал". Уплотнение сигналов изображения, синхронизации и гашения для передачи по одному каналу связи. Механическая и электронная развертки изображения. Построение растра [1, с. 47-54; 3, с. 18-24].

- 1.3. Структурная схема аппаратно-студийного комплекса, основные этапы формирования полного ТВ сигнала. Полярность сигнала. Особенность косвенной передачи информации о средней яркости изображения постоянной составляющей ТВ сигнала. Синхронизация несинхронных источников ТВ сигналов [1, с. 346-403; 2, с. 306-371; 3, с. 24-29, 294-310].
- 1.4. Восприятие оптического изображения (ОИ). Характеристики ОИ освещенность, четкость, аберрации, глубина резкости, геометрические искажения [1, с. 30-33; 2, с. 26-28].

Зрительная система как многоканальный приемник оптической информации и пространственно-временной ФНЧ. Строение глаза, эквивалентная схема зрительной системы [3, с. 39-41].

Основные характеристики зрительной системы: динамический диапазон, адаптация и аккомодация, контрастная чувствительность, закон Вебера-Фехнера, количество воспринимаемых градаций яркости, разрешающая способность по пространству (острота зрения), пространственная частотно-контрастная характеристика. Временная разрешающая способность (инерционность зрения): слитность движения, критическая частота мельканий как функция яркости, размеров деталей изображения, цвета и т.д. Относительная чувствительность зрения (кривая видности) и разрешающая способность к цветным деталям [1, с. 34-36; 3, с. 41-47; 5, с. 232-235].

1.5. Параметры ТВ систем и согласование их с характеристиками зрения. Выбор и обоснование числа строк разложения, частоты кадров, разрешающей способности, формата передаваемого изображения, спектрального состава излучения в цветном телевидении и отношения сигнал/шум для ТСЧ, ТПК и ТВЧ [3, с. 48-52; 5, с. 236-239].

Основные параметры ТВ изображения: световые – яркость, число воспроизводимых градаций яркости, четкость (яркостная и цветовая) в горизонтальном и вертикальном направлениях и ее составляющие (резкость, детальность и воспроизведение чередующихся структур), правильность цветопередачи; растровые – геометрическое подобие изображения оригиналу (геометрические и нелинейные искажения), размер и формат воспроизводимого изображения, стабильность положения изображения (устойчивость синхронизации) [6, с. 8-18].

Параметры полного ТВ сигнала. Нумерация строк и их расположение на экране телевизора [5, с. 253-256].

1.6. Влияние шумов и помех на ТВ изображение. Виды шумов и помех, источники их происхождения. Аддитивные и мультипликативные помехи. Особенности восприятия периодических и случайных помех. Заметность шумов в зависимости от уровня яркости [1, с. 74-77; 3, с. 52-57; 6, с. 44-48].

Визуальная оценка качества изображения по критерию «зашумленности» и его количественная характеристика — отношение сигнал/шум — ОСШ (в видеотракте) и несущая/шум (в тракте модулированного сигнала). Измерение отношения сигнал/шум. Невзвешенное — ОСШ_Н и взвешенное — ОСШ_В отноше-

ние сигнал/шум. Взвешивающий фильтр (ВФ) как электрическая модель зрительной системы. Расчет ослабления, вносимого ВФ в мощность шумов [3, с. 56-57; 6, с. 47-84].

1.7. Пространственный, временной и трехмерный пространственновременной спектр частот. Частотный спектр ТВ сигнала. Расчет высшей и низшей частоты спектра [1, с. 54-59; 3, с. 57-63; 5, с. 245-248, 250-252].

Чересстрочная развертка, условия ее обеспечения. Уменьшение искажений, связанных с чересстрочным разложением изображения в ТСЧ и ТПК. Применение построчной развертки с различной частотой кадров в ТВЧ. Сравнение построчной (прогрессивной) и чересстрочной разверток [1, с.59-62; 3, с. 63-68; 5, с. 248-250].

Контрольные вопросы

- 1. По каким параметрам можно классифицировать системы телевидения?
- 2. В чем особенности прикладных систем телевидения по сравнению с вещательными?
- 3. Приведите обобщенную структурную схему системы передачи изображений, поясните назначение основных элементов этой схемы.
- 4. Как можно математически описать изображение?
- 5. Что такое элемент, строка, поле, кадр изображения?
- 6. Поясните сущность электронно-оптического анализа и синтеза изображения.
- 7. Сравните построчную и чересстрочную развертку по основным параметрам.
- 8. Назовите необходимые и достаточные условия обеспечения чересстрочности растра.
- 9. Приведите структурную схему аппаратно-студийного комплекса, поясните назначение основных элементов этой схемы в процессе формирования полного ТВ сигнала.
- 10. Поясните состав полного телевизионного сигнала и назначение его составляющих.
- 11. Поясните принцип нумерации строк в кадре.
- 12. Перечислите и поясните основные характеристики зрительной системы человека.

- 13. Поясните, какие параметры ТВ систем и каким образом согласуются со свойствами зрения.
- 14. Какими качественными показателями можно охарактеризовать воспроизводимое изображение?
- 15. Поясните структуру универсальной испытательной таблицы. Каково назначение отдельных ее составляющих?
- 16. Как проявляют себя периодические помехи на ТВ изображении? От чего зависит степень их заметности?
- 17. Как зависит восприятие флюктуационных шумов от распределения энергии в их спектре и от яркости изображения?
- 18. Объясните назначение взвешивающего фильтра.
- 19. Поясните основные особенности спектра ТВ сигнала на примере чернобелой системы. Чем отличаются спектры сигналов крупного и мелкого планов?

Раздел 2. Телевизионные преобразователи "свет-сигнал" и "сигнал-свет"

2.1. Передающие ТВ трубки (датчики ТВ сигнала) и камеры. Физические принципы, на которых основана работа передающих ТВ трубок (вакуумных и твердотельных), их основные характеристики — чувствительность, разрешающая способность, световая и спектральная характеристики, инерционность [1, с. 115-117; 2, с. 105-116; 3, с. 255-263; 5, с. 314-326; 17, с. 113-122].

Вакуумные передающие трубки (видикон, плюмбикон и т.п.) – устройство, принцип действия, характеристики [1, с. 117-126; 2, с. 116-126; 17, с. 122-132].

Твердотельные (полупроводниковые) преобразователи изображения. Принцип работы ПЗС и КМОП матриц. ПЗС матрицы с кадровым, строчным и строчно-кадровым переносом заряда [1, с. 126-135; 17, с. 132-182].

Камеры цветного телевидения (трехтрубочные, двух- и однотрубочные) [5, с. 323-326; 17, с. 171-182].

2.2. Преобразование ТВ сигнала в оптическое изображение. Устройство и принцип работы черно-белого и цветного кинескопов, их основные параметры [1, 135-147; 2, с. 142-148; 3, с. 274-279; 4, с. 109-117; 5, с. 327-338; 17, с. 294-309].

Построение отклоняющих систем, коррекция геометрических искажений растра [1, с. 152-159, 173-178].

2.3. Безвакуумные воспроизводящие устройства. Устройство и принцип работы ЖК-панели и плазменной (PDP) панели. Адресация ячеек ЖК и PDP панелей. Особенности воспроизведения градаций яркости в плазменных панелях [1, с. 147-150; 17, с. 310-322].

Проекционные системы. Сравнение безвакуумных устройств воспроизведения с ЭЛТ [1, с. 150-152; 2, с. 148-155].

Контрольные вопросы

- 1. Какие физические явления положены в основу построения преобразователей "свет-сигнал"?
- 2. Поясните принцип действия и конструкцию ТВ передающих трубок типа плюмбикон, видикон и др., ПЗС и КМОП матричных преобразователей.
- 3. Поясните устройство и принцип работы кинескопа цветного изображения.
- 4. Поясните устройство и принцип работы ЖК панели.
- 5. Каким образом достигается разная яркость свечения ячеек плазменной панели при воспроизведении изображения?

Раздел 3. Цветное телевидение

- 3.1. Субъективные и объективные параметры светового излучения. Трех-компонентная теория цветового зрения. Методы образования цветов (аддитивный и субтрактивный), их использование в ЦТВ, кино и цветной печати. Измерение цвета. Координаты цвета и цветности, удельные координаты в системах RGB и XYZ. Диаграмма цветности МКО цветовой график. Расчет координат цвета сложного излучения по известному спектральному составу (кривые смешения). Законы аддитивного сложения цветов [1, с. 204-226; 2, с. 206-230; 4, с. 59-83; 5, с.269-283].
- 3.2. Кодирующее устройство совместимой системы ЦТВ (варианты RGB и WRB). Спектральные характеристики чувствительности передающих трубок. Цветокорректирующая матрица, гамма-корректор, кодирующая матрица и модулятор цветовой поднесущей. Сигналы: основных цветов, яркости (СЯ), цве-

- торазностные (ЦРС), цветности (СЦ), цветовой синхронизации (СЦС) и полный цветовой (или цветного телевидения). Согласование по времени сигналов яркости и цветности [1, с. 225-245; 2, с. 228-248; 4, с. 83-106, 118-125; 5, с. 283-291].
- 3.3. Декодирующее устройство совместимой системы ЦТВ. Способы разделения сигналов яркости и цветности. АЧХ гребенчатого фильтра. Эффект самокомпенсации цветовой поднесущей и сигнала цветности (необходимое и достаточное условие). Два способа подачи сигналов на кинескоп [4, с. 106-109; 5, с. 289-291, 294-296, 18, с. 243-265].
- 3.4. Кодирующее и декодирующее устройства системы NTSC. Спектр сигнала цветности при амплитудно-фазовой модуляции. Преимущества применения балансной модуляции (БМ) и фазового сдвига 90° между поднесущими "красного" и "синего" каналов. Выбор частоты цветовой поднесущей. Сигнал цветовой синхронизации (СЦС). Искажения типа дифференциальная фаза (ДФ) и дифференциальное усиление (ДУ). Возникновение перекрестных искажений между цветоразностными сигналами при появлении дополнительных фазовых сдвигов между сигналами цветности и цветовой синхронизации. Особенности формирования сигнала цветности в системе NTSC-3,58 [1, с. 246-261; 2, с. 249-265; 4, с. 126-150; 18, с. 13-24].
- 3.5. Кодирующее и декодирующее устройства системы PAL. Использование коммутации фазы цветовой поднесущей на ±180° от строки к строке для снижения чувствительности к ДФ. Спектр сигнала цветности с коммутируемой фазой цветовой поднесущей "красного" канала. Выбор и обоснование численного значения поднесущей. Перемежение спектров СЯ и СЦ. Назначение и формирование СЦС [1, с. 291-299; 2, с. 294-302; 4, с. 151-162; 5, с. 297-302].
- 3.6. Два варианта построения декодирующего устройства с разделением сигнала цветности на две в квадратуре промодулированные поднесущие до синхронного детектора с помощью гребенчатых фильтров и с компенсацией фазовых искажений после детектирования. Схема ФАПЧ генератора поднесущей декодера PAL [1, с. 299-302; 2, с. 302-305; 4, с. 163-181; 18, с. 165-202; 28, с. 31-35].
- 3.7. Кодирующее устройство системы SECAM. Структурная схема. Обоснование последовательной передачи цветоразностных сигналов. Параметры сигнала цветности. НЧ и ВЧ предыскажения, коммутация фазы поднесущей и спектр сигнала цветности. Зависимость степени перемежения спектров СЯ и СЦ от закона коммутации фазы цветовой поднесущей. Помехозащищенность и

чувствительность СЦ системы SECAM к искажениям типа ДФ и ДУ. Сигнал цветовой синхронизации СЦС $_c$ и СЦС $_k$ [1, c. 262-284; 2, c. 266-287; 4, c. 182-223; 5, c. 302-311].

3.8. Декодирующее устройство системы SECAM. Структурная схема. Каналы сигналов яркости, цветности и цветовой синхронизации. Сравнение вариантов построения декодера с восстановлением недостающего ЦРС по радио- (до детектирования) и видео- (после детектирования) частоте [1, с. 284-289; 2, с. 287-291; 5, с. 311-313, 18, с. 54-164].

Контрольные вопросы

- 1. Какими объективными и субъективными параметрами можно охарактеризовать световое излучение?
- 2. В чем сущность аддитивного метода образования цветов? Какими законами характеризуется этот метод?
- 3. Что такое цветовой треугольник и каким образом с его помощью можно изобразить цветность светового потока?
- 4. Что такое физическое, колориметрическое и психологическое соответствие цветного изображения оригиналу? Какое соответствие должно быть реализовано в вещательной системе цветного телевидения?
- 5. Поясните, что понимают под совместимостью систем черно-белого и цветного телевидения.
- 6. Приведите структурную схему RGB камерного канала, поясните назначение основных блоков. Какие достоинства и недостатки присущи RGB камерному каналу?
- 7. Чему должны соответствовать спектральные характеристики оптических каналов камеры черно-белого и цветного телевидения?
- 8. Как скажется на воспроизводимом цветном изображении отсутствие гамма-корректора на передающей стороне системы ЦТВ?
- 9. Что такое сигнал основного цвета, цветоразностный сигнал, сигнал цветности?
- 10. Почему в качестве сигналов, несущих информацию о цветности, выбираются цветоразностные сигналы U_{R-Y} и U_{B-Y} ?
- 11. Почему сигнал цветности располагают в области высокочастотных компонент сигнала яркости?

- 12. Приведите структурную схему декодирующего устройства совместимой системы цветного телевидения, поясните назначение основных блоков.
- 13. Сформулируйте принцип формирования сигнала цветности системы NTSC. Как он реализуется на уровне структурной схемы?
- 14. В чем заключаются преимущества применения балансной модуляции по сравнению с обычной амплитудной при формировании сигнала цветности?
- 15. Поясните механизм самокомпенсации помехи от сигнала цветности на экранах черно-белых телевизионных приемников при выборе цветовой поднесущей, кратной нечетной гармонике полустрочной частоты.
- 16. Сформулируйте принцип формирования сигнала цветности системы РАL.
- 17. В каких параметрах сигнала цветности системы PAL заключается информация о цветовом тоне и насыщенности передаваемого изображения?
- 18. С какой целью в системе PAL применена коммутация фазы поднесущей цветности в канале красного цветоразностного сигнала от строки к строке на 180°?
- 19. Почему значение частоты поднесущей цветности в системе PAL имеет четвертьстрочный сдвиг по отношению к гармонике строчной частоты?
- 20. Что представляет собой сигнал цветовой синхронизации в системе PAL? Как он формируется в кодирующем устройстве?
- 21. Приведите функциональную схему декодирующего устройства сигнала цветности PAL.
- 22. Какой принцип положен в основу формирования сигнала цветности системы СЕКАМ?
- 23. В чем заключаются достоинства и недостатки передачи цветоразностных сигналов последовательно через строку?
- 24. В чем заключаются достоинства и недостатки использования частотной модуляции при формировании сигнала цветности системы СЕКАМ?
- 25. Поясните механизм повышения помехозащищенности цветоразностных сигналов за счет низкочастотных предыскажений.
- 26. Как сказывается на изображении двустороннее амплитудное ограничение цветоразностных сигналов в кодирующем устройстве системы СЕКАМ?
- 27. Поясните, из каких соображений параметры частотной модуляции при передаче "красных" и "синих" строк выбраны различными?
- 28. С какой целью на задних площадках строчных гасящих импульсов оставлены сигналы поднесущих цветности?

- 29. С какой целью осуществляется коммутация фазы поднесущей в сигнале цветности системы СЕКАМ?
- 30. Поясните, с какой целью в системе СЕКАМ применяются высокочастотные предыскажения сигнала цветности?
- 31. За счет каких обработок сигналов в кодирующем устройстве системы СЕКАМ улучшается совместимость системы с черно-белым телевидением?
- 32. За счет каких обработок сигналов в кодирующем устройстве системы СЕКАМ повышается помехозащищенность?
- 33. Что представляет собой сигнал цветовой синхронизации в системе СЕКАМ? Как он формируется в кодирующем устройстве?

Раздел 4. Передача сигналов телевидения и звукового сопровождения по радиоканалам и направляющим средам

- 4.1. Классификация радиосистем передачи ТВ сигналов (наземного вещания, радиорелейные, спутниковые, эфирно-кабельные) и основные требования к ним. Выбор вида модуляции, полоса занимаемых частот, методы уплотнения сигналов (разделения каналов) и помехозащищенность. Взаимосвязь между частотными и временными характеристиками [1, с. 413-417; 2, с. 387-390; 3, с. 169-172, 186-190; 5, с. 258-269; 29].
- 4.2. Особенность передачи и приема радиосигнала вещательного телевидения (радиосигнала изображения РСИ и радиосигнала звукового сопровождения РСЗС) методом АМ с частично подавленной одной боковой полосой (АМ-ЧПОБП). Линейные и нелинейные искажения демодулированного сигнала. Необходимые условия для неискаженного приема РСИ с АМ-ЧПОБП. Измерение АЧХ, ФЧХ (ГВЗ), переходной и импульсной характеристик [3, с. 174-178; 5, с. 382-402; 7].
- 4.3. Структура приемной сети ТВ вещания. Индивидуальный и коллективный прием. Приемные распределительные сети с использованием коаксиального и волоконно-оптического кабеля. Системы типа MMDS. Основные параметры. Особенности построения сетей эфирно-кабельного вещания [5, с. 220-232, 527-562; 15; 35].
- 4.4. Структурная схема цветного телевизора. Назначение основных узлов селектора каналов, тракта ПЧ, блока разделения сигналов яркости и цветно-

сти, декодера сигналов цветности, блока матрицирования и регулировок (видеопроцессора), схемы синхронизации, системы дистанционного управления, модулей разверток (строчной и кадровой) и питания [1, с. 415-445; 2, с. 390-420; 5, с. 359-365; 28, с. 11-14].

- 4.5. Радиоканал телевизора, особенности построения селекторов каналов. Варианты построения тракта промежуточной частоты (ПЧ) изображения и звукового сопровождения совместный, квазипараллельный, параллельный сравнение их характеристик. Демодуляция радиосигналов изображения и звукового сопровождения. Построение синхронных демодуляторов с пассивной и активной регенерацией опорного (гетеродинного) сигнала [5, с. 368-402; 7; 28, с. 15-26, 40-46].
- 4.6. Обработка видеосигнала в цветном телевизоре. Методы разделения сигналов яркости и цветности с использованием ФНЧ, ПФ и РФ, а также гребенчатых фильтров. Построение многосистемных декодеров сигнала цветности. Способы регулировок параметров изображения (яркости, контрастности, насыщенности). Структурная схема и основные функции видеопроцессора. Схема синхронизации, строчная и кадровая развертки. Импульсный источник питания принцип работы, групповая стабилизация выходных напряжений. Устройства управления телевизором [1, с. 428-453; 5, с. 405-415, 421-468, 505-525; 18, с. 208-267].
- 4.7. Стереофоническое звуковое сопровождение в ТВ вещании. Измерение основных характеристик ТВ приемника [6; 7].

Контрольные вопросы

- 1. Как можно классифицировать радиосистемы передачи ТВ сигналов? Сформулируйте основные требования к ним.
- 2. В чем заключается особенность передачи и приема радиосигнала вещательного телевидения?
- 3. Чем обусловлено применение АМ-ЧПОБП при формировании радиосигнала изображения в наземных системах вещательного телевидения? Приведите основные параметры радиосигнала изображения.
- 4. Чем обусловлено применение ЧМ при формировании радиосигнала звукового сопровождения в наземных системах вещательного телевидения? Приведите основные параметры радиосигнала звукового сопровождения.

- 5. Приведите структурную схему системы кабельного телевидения. В чем преимущества коллективного приема по сравнению с индивидуальным?
- 6. Приведите структурную схему телевизионного приемника цветного изображения, поясните последовательность обработки принимаемого сигнала.
- 7. Почему всеволновые селекторы каналов строятся по трехканальной (диапазонной) схеме?
- 8. Какие требования предъявляются к тракту ПЧ телевизионного приемника цветного изображения?
- 9. Приведите функциональную схему совместного (квазипараллельного, параллельного) тракта ПЧ. В чем достоинства и в чем недостатки этой схемы по сравнению с другими вариантами построения?
- 10. Как может быть реализован блок разделения сигналов яркости и цветности телевизионного приемника?
- 11. В чем особенности современной реализации декодирующих устройств сигналов цветности по сравнению с "классическим" построением?
- 12. Поясните назначение и построение блока матрицирования и регулировок изображения (видеопроцессора) телевизионного приемника.
- 13. Приведите функциональную схему канала синхронизации и разверток телевизионного приемника. Почему блок строчной синхронизации строится по инерционной схеме (с ФАПЧ)?
- 14. В чем особенности построения блока питания современного телевизионного приемника?

Раздел 5. Телевидение повышенного качества. Передача дополнительной информации в составе телевизионного сигнала

- 5.1. Системы телевидения повышенного качества (ТПК). Системы МАС, РАL-плюс и др. Особенности формирования сигналов в системе МАС, структурная схема и обоснование параметров (ширины спектра видео- и ЧМ- сигналов). Особенности обработки яркостного и цветоразностных сигналов в кодере и декодере РАL-плюс [1, с. 329-336; 5, с. 564-582; 8].
- 5.2. Повышение качества изображения в телевизорах. Уменьшение заметности яркостных мельканий и строчной структуры изображения при помощи преобразования закона развертки. Коррекция яркостных и цветовых переходов,

апертурная коррекция. Применение гребенчатых фильтров и схем шумоподавления на базе блоков памяти на строку, поле (кадр) [1, с. 389-413, 450-453; 5, с. 592-598; 18, с. 257-265, 321-354].

5.3. Передача дополнительной информации в составе ТВ сигнала. Принцип передачи буквенно-цифровой и графической информации. Варианты систем телетекста. Расчет параметров системы [5, с. 599-607].

Измерительные сигналы: назначение, способы введения, измерения и контроля параметров и характеристик тракта непосредственно во время передачи. Контроль качества изображения в аналоговых и цифровых телевизионных системах [1, с. 579-600; 6].

Контрольные вопросы

- 1. Дайте определение системам ТПК. В чем их отличие от систем ТСЧ и ТВЧ.
- 2. Назовите основные методы повышения качества изображения на передающей и приемной сторонах.
- 3. Поясните принцип передачи СЯ и ЦРС с временным уплотнением, назовите его достоинства и недостатки, приведите реализующую его структурную схему.
- 4. Поясните метод улучшения цветовой четкости в системе PAL-плюс.
- 5. Каким образом преобразование закона развертки позволяет снизить заметность яркостных мельканий и строчной структуры изображения?
- 6. Предложите структурную схему блоков преобразования закона развертки, реализующих алгоритмы AA'BB' (удвоение частоты полей) и ABA'B' (удвоение частоты кадров), назовите достоинства и недостатки каждого из них.
- 7. Поясните, каким образом выполняется коррекция яркостных и цветовых переходов, а также апертурная коррекция.
- 8. Нарисуйте структурную схему гребенчатого фильтра на базе блока памяти на строку (кадр) и предложите метод его использования в качестве шумоподавителя.
- 9. Каким образом в составе ПЦТС передается дополнительная информация (телетекст и измерительные сигналы)?
- 10. Поясните методику контроля параметров сквозного ТВ тракта при помощи измерительных сигналов, передаваемых в интервале КГИ.

11. Каким образом осуществляется передача буквенно-цифровой и графической информации в системе "телетекст"? Какие варианты систем телетекста Вам известны?

Раздел 6. Цифровое телевидение

- 6.1. Цифровое представление ТВ сигнала необходимая мера для: повышения помехозащищенности ТВ систем, их надежности; существенного расширения функциональных возможностей ТВ аппаратуры, использования современных методов цифровой обработки ТВ сигналов и сжатия видеоинформации. Цифровое телевидение путь к интеграции систем телекоммуникаций. Цифровой тракт совокупность кодеров источника, канала и модулятора [1, с. 82-84; 31, с. 278-283].
- 6.2. Статистические характеристики ТВ изображения и сигнала. Избыточность изображения структурная, статистическая, физиологическая. Зависимость контрастной чувствительности зрения от структуры изображения [1, с. 95-96; 11; 31, с. 21-38].
- 6.3. Аналого-цифровое преобразование ТВ сигнала совокупность процессов дискретизации, квантования и кодирования. Обоснование выбора частоты дискретизации. Теорема отсчетов Котельникова-Найквиста. Дискретизация как аналого-импульсная модуляция, аналоговая коммутация или операция по перемножению двух сигналов: входного и импульсов дискретизации. Спектральное представление дискретизированного сигнала. Временное представление восстановленного по дискретным отсчетам сигнала в виде бесконечной суммы произведения отсчетных значений на функции отсчетов (т.е. функции Котельникова) [1, с. 84-92; 9, с. 152-204; 11; 31, с. 38-75].
- 6.4. Дискретизация компонентных и композитных сигналов. Выбор частоты дискретизации при аналого-цифровом преобразовании полных цветовых телевизионных сигналов. Обоснование возможности использования в ТВ условия $f_{\mathcal{I}} < 2F_B$. Выбор формата (соотношения частот дискретизаций яркостного и цветоразностных сигналов) представления компонентных сигналов [31, с. 284-288, 293-323].
- 6.5. Квантование, т.е. дискретизация сигнала по уровням. Равномерная и неравномерная шкала квантования. Шаг квантования. Обоснование необходимого числа уровней М квантования с точки зрения отсутствия ложных конту-

ров (узоров). Мощность шумов квантования. Расчет отношения сигнал/шум квантования (ОСШ_{КВ}) при выбранном М. Требования к ОСШ ТВ камеры и ОСШ_{КВ} АЦП [11; 31, с. 75-109].

- 6.6. Двоичное кодирование ТВ сигнала. Варианты построения АЦП и ЦАП ТВ сигнала. Точностные характеристики. Требования к АЦП компонентных сигналов и полного цветового ТВ сигнала. Форматы представления компонентных сигналов. Расчет скорости цифрового сигнала. Необходимость канального кодирования [11; 31, с. 109-138].
- 6.7. Обоснование необходимости сокращения избыточности (сжатия или компрессии) изображений для снижения скорости передачи данных в цифровых ТВ системах. Классификация методов сжатия ТВ изображений [10, с. 61-65; 31, с. 337-343].
- 6.8. Внутрикадровое кодирование ТВ изображений. Обоснование необходимости перехода от отсчетов сигнала к спектральным коэффициентам. Математические основы и использование ортогональных преобразований (Хаара, Уолша-Адамара, ДКП и др.) при кодировании изображений [1, с. 95-101; 31, с. 161-223].

Межкадровое кодирование. Предсказание с компенсацией движения - основа эффективного сокращения избыточности динамических изображений. Кодирование с компенсацией движения. Ускоренные методы анализа движения [1, с. 101-109].

- 6.9. Реализация цифровых методов кодирования видеоинформации. Стандарты M-JPEG, MPEG-1, MPEG-2 сжатия цветных изображений. Кадры типа I, P и B. Структура группы видеокадров GOP. Масштабируемость, т.е. возможность иерархической структуры битового потока в стандарте MPEG-2. Профили простой, главный, масштабируемый по отношению сигнал/шум, пространственно-масштабируемый и высокий 4:2:2 или 4:2:0; уровни низкий, главный, высокий-1440 и высокий. Структура элементарного и транспортного потоков. Структурные схемы кодера и декодера стандарта MPEG-2 [9, с. 186-196; 10, с. 77-85, 95-116].
- 6.10. Стандарт MPEG-4 и его применение в телевидении и мультимедиатехнологиях. Принципы объектно-ориентированного кодирования. Методы описания сцен в MPEG-4. Кодирование визуальных и звуковых объектов. Профили и уровни стандарта в MPEG. Стандарты описания медиаданных MPEG-7 и MPEG-A [10, с. 117-141].

6.11. Передача цифровых телевизионных сигналов по каналам связи. Формирование потока цифрового ТВ сигнала. Канальное кодирование, общие принципы защиты от ошибок и их коррекции. Кодирование с исправлением ошибок. Типы кодов, используемых для канального кодирования цифровых ТВ сигналов [1, с. 303-305; 9, с. 87-128; 34, с. 340-490].

Классификация цифровых видов модуляции для передачи ТВ сигналов в спутниковом, наземном и кабельном телевидении. Структурные схемы модуляторов и демодуляторов (QPSK, QAM, COFDM и др.) [1, с. 307-320; 9, с. 58-85].

6.12. Организация цифрового ТВ вещания. Стандарты DVB, ATSC и ISDB. Выбор вида модуляции и формирование радиосигнала ATSC. Версии стандарта DVB для спутникового (DVB-S), наземного (DVB-T) и кабельного (DVB-C) ТВ вещания и особенности формирования радиосигнала в каждой из них. Структурные схемы кодеров и декодеров стандарта DVB. Спектры радиосигналов при различных видах модуляции несущей цифровым ТВ сигналом. Прием сигналов цифрового ТВ вещания. Интеграция DVB с сетью Интернет (IPTV-вещание) и системами мобильной связи (DVB-H) [1, с. 320-328; 9, с. 305-320, 337-457; 10, с. 144-196].

Контрольные вопросы

- 1. Дайте определение термина "цифровое ТВ". В чем преимущества цифрового ТВ по сравнению с аналоговым?
- 2. Обоснуйте необходимость использования компрессии сигналов изображения и звукового сопровождения в системах цифрового ТВ.
- 3. Приведите обобщенную структурную схему цифрового ТВ тракта, поясните необходимость использования кодирования источника, канального кодирования, модуляции.
- 4. Поясните, в чем заключается структурная, статистическая и физиологическая избыточность изображения, предложите методы их уменьшения.
- 5. Расскажите об основных этапах аналого-цифрового преобразования ТВ сигнала дискретизации, квантовании, кодировании.
- 6. Из каких соображений выбирается частота дискретизации и количество уровней квантования (разрядность) ТВ сигнала?
- 7. Как рассчитывается скорость потока данных цифровых композитных и компонентных сигналов?

- 8. В чем разница между АЦП композитных и компонентных ТВ сигналов?
- 9. Дайте классификацию современных методов компрессии ТВ сигналов.
- 10. За счет чего устраняется внутрикадровая избыточность изображения, с какой целью при этом используются ортогональные преобразования?
- 11. В чем заключается физический смысл использования ортогональных преобразований (ДКП, ДПФ, Уолша-Адамара и т.п.) при компрессии изображений?
- 12. Поясните особенности межкадрового кодирования, в чем смысл предсказания с компенсацией движения.
- 13. Назовите общие принципы и различия стандартов JPEG, MPEG-1, MPEG-2, MPEG-4.
- 14. Какие преобразования изображения выполняются в стандарте MPEG-2?
- 15. Приведите структурные схемы кодера и декодера стандарта MPEG-2, поясните назначение блоков.
- 16. Сравните стандарты группы MPEG (1, 2, 4) по эффективности сжатия. За счет чего достигается наибольшая степень компрессии в стандарте MPEG-4?
- 17. Поясните общие принципы помехоустойчивого кодирования в цифровых ТВ системах. Какие типы кодов в них используются?
- 18. Поясните, почему используется двухступенчатое (Рида-Соломона + сверточное) кодирование?
- 19. Какие системы цифрового ТВ вещания Вам известны? Назовите общие особенности и различия систем ATSC, DVB, ISDB.
- 20. Почему для систем спутникового, наземного и кабельного цифрового ТВ вещания используются разные виды модуляции и канального кодирования?
- 21. Поясните особенности ортогональной многочастотной модуляции с кодированием (COFDM), используемой в системе DVB-T.
- 22. Приведите структурные схемы передающего и приемного трактов системы DVB-T, поясните назначение блоков.

Раздел 7. Телевидение высокой четкости (ТВЧ)

Требования к системам ТВЧ. Основные параметры систем ТВЧ (аналоговых компонентных и цифровых). Варианты систем ТВЧ с различными числом строк, частотой полей, типом развертки. Временные и амплитудные соотноше-

ния в сигналах (строка, поле, кадр, синхронизация, уровни). Методы передачи сигналов ТВЧ по каналам связи и распределения. Цифровые способы передачи сигналов ТВЧ. Сигналы и их уровни. Стыки (интерфейсы) ТВЧ. Передача сигналов ТВЧ в стандартах АТЅС и DVВ [5, с. 608-615; 9, с. 157-170, 196-198].

Контрольные вопросы

- 1. Дайте определение и назовите основные параметры систем ТВЧ.
- 2. Каким образом осуществляется передача сигналов ТВЧ по каналу связи?
- 3. Каким образом осуществляется передача сигналов ТВЧ в системах цифрового ТВ?
- 4. Назовите основные виды систем ТВЧ с различным числом строк, частотой полей, типом развертки. Обоснуйте возможность их применения в ТВ вещании и электронном кинематографе.

Раздел 8. Методы записи ТВ сигналов на различные носители

- 8.1. Классификация методов записи ТВ сигналов: аналоговых и цифровых, композитных и компонентных, без сжатия и со сжатием. Общие принципы магнитной видеозаписи, связь между скоростью движения ленты и высшей частотой записываемого сигнала. Форматы аналоговой и цифровой видеозаписи [1, с. 454-475; 5, с. 650-660; 17, с. 333-343, 346-355].
- 8.2. Аналоговая магнитная видеозапись. Запись композитных и компонентных ТВ сигналов. Канал записи/воспроизведения видеомагнитофона [1, с. 473-492; 17, с. 350-355].
- 8.3. Цифровая магнитная видеозапись. Особенности записи цифровых сигналов. Запись ТВ сигналов на оптические (CD, DVD) и твердотельные носители [1, с. 495-505; 5, с. 669-675; 17, с. 355-361].

Контрольные вопросы

1. Приведите классификацию методов записи ТВ сигналов, перечислите существующие форматы видеозаписи.

- 2. В чем заключаются общие принципы магнитной видеозаписи, почему необходимо использовать вращающиеся видеоголовки?
- 3. Почему в настоящее время используется только наклонно-строчная видеозапись, какие у нее преимущества по сравнению с продольной и поперечнострочной?
- 4. В чем отличие между записью композитных и компонентных ТВ сигналов?
- 5. Сформулируйте общие принципы бытовых и полупрофессиональных форматов видеозаписи (VHS, S-VHS, Video 8, Hi8 и т.п.).
- 6. Сформулируйте общие принципы профессиональных форматов видеозаписи Веtacam.
- 7. Каковы общие черты и различия форматов цифровой видеозаписи DV, DVCAM, DVCPRO, D9?
- 8. Приведите обобщенную структурную схему канала записи/воспроизведения аналогового видеомагнитофона.
- 9. Приведите обобщенную структурную схему канала записи/воспроизведения цифрового видеомагнитофона.
- 10. Сравните основные форматы аналоговой и цифровой видеозаписи (VHS, S-VHS, Betacam, DV, DVCAM, D1, Digital Betacam).

Раздел 9. Стереоскопическое телевидение

- 9.1. Общие принципы формирования, передачи и приема сигналов стереоцветного телевидения (СЦТВ). Классификация систем СЦТВ по признакам, характеризующим формирование, способы передачи и отображения [1, с. 562-579; 5, с. 484-494].
- 9.2. Способы и устройства отображения (воспроизведения) объемных изображений очковые и безочковые. Варианты устройств воспроизведения, включая проекционные, с различного типа очками у зрителя. Безочковые способы и устройства [5, с. 494-504; 27].

Контрольные вопросы

1. Сформулируйте общие принципы формирования, передачи и приема сигналов СЦТВ.

- 2. Приведите классификацию систем СЦТВ, сравните их по основным параметрам.
- 3. Поясните основные принципы и приведите структурную схему системы СЦТВ с анаглифическим разделением стереопар.
- 4. Поясните основные принципы и приведите структурную схему системы СЦТВ с поляризационным разделением стереопар.
- 5. Поясните основные принципы и приведите структурную схему системы СЦТВ со светоклапанным разделением стереопар.
- 6. В каких из перечисленных выше систем СЦТВ в качестве устройства отображения можно использовать обычный телевизор или монитор?
- 7. Поясните принцип работы автостереоскопических устройств отображения.

КОНТРОЛЬНОЕ ЗАДАНИЕ

Контрольные работы выполняется в ученической тетради в клетку или на листах формата А4. Текст следует писать (печатать) на одной стороне листа. Все исправления и дополнения, выполненные по требованию рецензента (преподавателя), помещают на оборотную (чистую) сторону листа, на котором были обнаружены ошибки или поставлены вопросы. В контрольной работе приводятся также ссылки на использованную при ее выполнении литературу. Список литературы помещается в конце работы. Не аккуратно выполненные работы, а также работы с грамматическими ошибками к защите не допускаются.

Контрольное задание состоит из пяти задач, каждая из которых составлена в 60 вариантах. Номер варианта (либо указания по его выбору) для каждого студента определяется преподавателем на установочной сессии. Исходные данные к задачам по вариантам даны в таблицах 1-6.

Задачам предшествует краткое пояснение. Формулы и необходимые справочные данные для решения задач содержатся в рекомендованной литературе.

Все вычисления при решении задач должны сопровождаться необходимыми объяснениями. Рисунки следует выполнять с использованием чертежных принадлежностей (либо электронным способом) с соблюдением требований ГОСТ и ЕСКД.

Задача №1

Для телевизионной системы заданы некоторые из параметров телевизионного сигнала (таблица N2 1):

 Z_K - число строк в кадре;

 Z_{A} – число активных строк в кадре;

 $f_{\Pi O I}$ – частота полей;

 f_K – частота кадров;

 f_{CTP} — частота строк;

 T_{CIV} – длительность строчного гасящего импульса;

 T_{KTM} — длительность кадрового гасящего импульса;

 α — относительная длительность строчного гасящего импульса;

 β – относительная длительность кадрового гасящего импульса;

р – коэффициент Келла;

b/h – формат изображения;

k –кратность развертки;

 F_{H} – нижняя граничная частота спектра телевизионного сигнала;

 F_{B} – верхняя граничная частота спектра телевизионного сигнала .

Требуется определить недостающие в таблице параметры ТВ сигнала.

Указания и рекомендации к решению задачи

При расчете следует учитывать, что частота строк жестко связана с количеством строк разложения и частотой кадров:

$$f_{CTP} = Z \cdot f_K$$
.

Частота полей может быть выражена через частоту кадров и кратность развертки:

$$f_{\Pi\Omega\Pi} = f_K \cdot k$$
.

Потери на обратные ходы (ОХ) по строке α и кадру β определяют отношение длительности интервалов гашения (СГИ и КГИ) к периоду строки (кадра):

$$a = T_{C\Gamma M} / T_{CTP};$$

 $b = T_{K\Gamma M} / T_{\Pi} = kT_{K\Gamma M} / T_{K}.$

Нижняя граничная частота спектра ТВ сигнала определяется временем передачи наибольшего участка изображения (кадра) и равна частоте кадров:

$$F_H = \frac{1}{T_K} = f_K.$$

Верхняя граничная частота определяется временем передачи минимального элемента изображения и с учетом потерь на обратные ходы по строке и полю, а также с учетом коэффициента Келла, находится по формуле

$$F_B = Z^2 \cdot f_K \cdot \frac{b}{h} \cdot p \cdot \frac{1-b}{2(1-a)}.$$

Таблица 1 – Параметры ТВ сигнала (к задаче № 1)

Вариант	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Z_K	625		525		625	525	525				405		1250	1375	1375
Z_A		575						575		575		1200			
$f_{\Pi O J}$, Гц	50		60						50		50	50	50	48	
f_K , Гц		25		50	25	50	60			25	25	50		24	48
f_{CTP} , Гц			15750	31250				31250	15625	15625					
$T_{C\Gamma U}$, мкс		12			12	6	11			12		3		5	
T_{KTU} , мс		1,6	1,4				1,2		1,6					1,5	
α	0,18		0,15	0,2				0,18	0,18		0,15		0,18		0,2
β	0,08			0,05	0,08	0,04		0,04		0,08	0,1	0,05	0,08		0,05
p	0,82	0,75	0,7	0,85	0,75	0,8	0,65	0,75	0,9	0,8	0,75	0,7	0,82	0,75	0,6
b/h	4:3	4:3	4:3	16:9	16:9	4:3	4:3	14:9	4:3	4:3	4:3	16:9	4:3	16:9	11:5
k	2:1	2:1		1:1	2:1	1:1	2:1		2:1				2:1		1:1
F_H , Гц															
F_B , М Γ ц															
_															
Вариант	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Z_K		17 1125	18	19 1250	20 1125	21 1125		23		25 756		27 1075	800		
$egin{array}{c} Z_K \ Z_A \ \end{array}$	16 1150	1125	18				1200		1150		1024	1075	800 720	480	720
$egin{array}{c} Z_K \ Z_A \ f_{\Pi O J}, \Gamma \mathbf{u} \end{array}$	1150			1250	1125	1125		50		756		1075 85	800		720
Z_K Z_A $f_{\Pi O \Pi}$, Γ ц f_K , Γ ц		1125	50				1200 50	50	1150 50		1024	1075	800 720	480	720
$egin{array}{c} Z_K \ Z_A \ f_{\Pi O J}, \Gamma \mathbf{u} \end{array}$	1150	1125		1250	50	60	1200		1150	756	1024	85 85	800 720	480	720 60 48000
Z_K Z_A $f_{\Pi O \Pi}$, Γ ц f_K , Γ ц f_{CTP} , Γ ц $T_{CT U}$, мкс	1150 25 6	60	50	1250	1125	60	1200 50	50 31250	1150 50	756	1024	1075 85	800 720	480	720
Z_K Z_A $f_{\Pi O \Pi}$, Γ ц f_K , Γ ц f_{CTP} , Γ ц	1150 25	1125 60 33750	50 62500	1250 25	50	60	1200 50 62500	50 31250 1,6	1150 50 31250	756	1024 75	85 85	800 720 60	480 60 15750	720 60 48000
Z_K Z_A $f_{\Pi O I}$, $\Gamma \mathfrak{U}$ f_K , $\Gamma \mathfrak{U}$ f_{CTP} , $\Gamma \mathfrak{U}$ T_{CTU} , MKC T_{KTU} , MC	1150 25 6	60	50 62500	25 6	50	60	1200 50 62500 0,18	50 31250	1150 50 31250	756 60 0,11	1024 75 0,1	85 85 2	800 720	480 60 15750	720 60 48000 3,5
Z_{K} Z_{A} $f_{\Pi O I}$, $\Gamma \mu$ f_{K} , $\Gamma \mu$ f_{CTP} , $\Gamma \mu$ T_{CTH} , MKC T_{KTH} , MC	1150 25 6 1,6	1125 60 33750 1,4 0,15	50 62500 0,2 0,05	1250 25 6 0,08	50 4 0,04	60 5 1,2	1200 50 62500 0,18 0,04	50 31250 1,6 0,18	1150 50 31250 6	756 60 0,11 0,05	1024 75 0,1 0,04	1075 85 85 2 0,05	800 720 60 0,15	480 60 15750 11	720 60 48000 3,5
Z_K Z_A $f_{\Pi O I}$, $\Gamma \mu$ f_K , $\Gamma \mu$ f_{CTP} , $\Gamma \mu$ T_{CTU} , MKC T_{KTU} , MC α β	1150 25 6 1,6	1125 60 33750 1,4 0,15	50 62500 0,2 0,05 0,65	1250 25 6 0,08 0,75	50 4 0,04 0,8	60 5 1,2	1200 50 62500 0,18 0,04 0,75	50 31250 1,6 0,18	1150 50 31250 6	756 60 0,11 0,05 0,75	1024 75 0,1 0,04 0,8	85 85 2 0,05 0,65	800 720 60 0,15	480 60 15750 11	720 60 48000 3,5 0,06 0,8
Z_K Z_A $f_{\Pi O \Pi}$, $\Gamma \mu$ f_K , $\Gamma \mu$ f_{CTP} , $\Gamma \mu$ T_{CTH} , MKC T_{KTH} , MC α β p b/h	1150 25 6 1,6 0,75 4:3	1125 60 33750 1,4 0,15	50 62500 0,2 0,05 0,65 16:9	25 6 0,08 0,75 16:9	50 4 0,04 0,8 4:3	60 5 1,2 0,65 4:3	1200 50 62500 0,18 0,04	50 31250 1,6 0,18 0,6 4:3	1150 50 31250 6	756 60 0,11 0,05 0,75 16:9	1024 75 0,1 0,04 0,8 4:3	1075 85 85 2 0,05	800 720 60 0,15 0,75 14:9	480 60 15750 11 0,6 4:3	720 60 48000 3,5 0,06 0,8 4:3
Z_K Z_A $f_{\Pi O I}$, $\Gamma \mu$ f_K , $\Gamma \mu$ f_{CTP} , $\Gamma \mu$ T_{CTU} , MKC T_{KTU} , MC α β p b/h	1150 25 6 1,6	1125 60 33750 1,4 0,15	50 62500 0,2 0,05 0,65	1250 25 6 0,08 0,75	50 4 0,04 0,8	60 5 1,2	1200 50 62500 0,18 0,04 0,75	50 31250 1,6 0,18	1150 50 31250 6	756 60 0,11 0,05 0,75	1024 75 0,1 0,04 0,8	85 85 2 0,05 0,65	800 720 60 0,15	480 60 15750 11	720 60 48000 3,5 0,06 0,8
Z_K Z_A $f_{\Pi O I}$, $\Gamma \mu$ f_K , $\Gamma \mu$ f_{CTP} , $\Gamma \mu$ T_{CTU} , MKC T_{KTU} , MC α β p b/h	1150 25 6 1,6 0,75 4:3	1125 60 33750 1,4 0,15	50 62500 0,2 0,05 0,65 16:9	25 6 0,08 0,75 16:9	50 4 0,04 0,8 4:3	60 5 1,2 0,65 4:3	1200 50 62500 0,18 0,04 0,75	50 31250 1,6 0,18 0,6 4:3	1150 50 31250 6	756 60 0,11 0,05 0,75 16:9	1024 75 0,1 0,04 0,8 4:3	85 85 2 0,05 0,65	800 720 60 0,15 0,75 14:9	480 60 15750 11 0,6 4:3	720 60 48000 3,5 0,06 0,8 4:3

Продолжение таблицы 1

Вариант	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Z_K	1250		1250	1375	1375			625		525		625	525	525	600
Z_A		768		1250		1152			575						575
$f_{\Pi O J}$, Γ ц	50				48	50	60	50		60					
f_K , Гц		85	25						25		50	25	50	60	
f_{CTP} , Гц			31250	66000	33000		67500			15750	31250				31250
$T_{C\Gamma U}$, мкс	5,5		6		5	6			12			12	6	11	
T_{KTM} , MC			1,5			1,568			1,6	1,4				1,2	
α		0,15		0,2			0,2	0,18		0,15	0,2				0,18
β	0,085	0,05			0,06		0,04	0,08			0,05	0,08	0,04		
p	0,75	0,7	0,82	0,6	0,75	0,75	0,7	0,82	0,75	0,7	0,85	0,75	0,8	0,65	0,75
b/h	16:9	4:3	16:9	11:5	16:9	4:3	4:3	4:3	4:3	4:3	16:9	16:9	4:3	4:3	14:9
k	2:1	1:1		1:1		2:1	1:1	2:1	2:1		1:1	2:1	1:1	2:1	1:1
F_H , Γ ц															
F_B , М Γ ц															
Вариант	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Z_K			525		625	1125				756		1075			
Z_A		575					1200		1150		1024		720	1200	600
$f_{\Pi O J}$, Гц	50							=0				~ -			
	50		60				·	50			75	85		85	
f_K , Гц		25		50	25	60			25	60	75	85 85	30	85	100
	15625	15625	15750	50 31250			62500	31250	25 31250	60	75	85		85	
f_K , Гц	15625		15750		25	5	62500	31250		60	75		30	85	2
f_K , Гц f_{CTP} , Гц	15625	15625	15750	31250				31250	31250			85			
f_K , Γ ц f_{CTP} , Γ ц T_{CTU} , мкс T_{KTU} , мс α	15625	15625 12	15750	31250	12	5	0,18	31250	31250 6	0,11	0,15	2	8	0,15	2
f_K , Γ ц f_{CTP} , Γ ц T_{CTH} , мкс T_{KTH} , мс	15625 1,2 0,18	15625 12 0,08	15750 1,4 0,15	31250 0,2 0,05	0,08	5 1,2	0,18 0,04	31250 1,6 0,18	31250 6 0,08	0,11 0,05	0,15 0,04	85 2 0,05	8 0,1	0,15 0,05	2 0,5
f_K , Γ ц f_{CTP} , Γ ц T_{CTH} , мкс T_{KTH} , мс α β	15625 1,2 0,18 0,9	15625 12 0,08 0,8	15750 1,4 0,15 0,7	0,2 0,05 0,85	0,08 0,75	5 1,2 0,65	0,18 0,04 0,75	31250 1,6 0,18 0,6	31250 6 0,08 0,8	0,11 0,05 0,75	0,15 0,04 0,8	85 2 0,05 0,65	8 0,1 0,75	0,15 0,05 1,0	2 0,5
f_K , Γ ц f_{CTP} , Γ ц T_{CTU} , мкс T_{KTU} , мс α β p b/h	15625 1,2 0,18 0,9 4:3	15625 12 0,08	15750 1,4 0,15	0,2 0,05 0,85 16:9	0,08 0,75 16:9	5 1,2 0,65 4:3	0,18 0,04 0,75 14:9	31250 1,6 0,18 0,6 4:3	31250 6 0,08 0,8 4:3	0,11 0,05 0,75 16:9	0,15 0,04 0,8 4:3	85 2 0,05	8 0,1 0,75 14:9	0,15 0,05 1,0 4:3	2 0,5 1,0 4:3
f_K , Γ ц f_{CTP} , Γ ц T_{CTU} , мкс α β p b/h	15625 1,2 0,18 0,9	15625 12 0,08 0,8	15750 1,4 0,15 0,7	0,2 0,05 0,85	0,08 0,75	5 1,2 0,65	0,18 0,04 0,75	31250 1,6 0,18 0,6	31250 6 0,08 0,8	0,11 0,05 0,75	0,15 0,04 0,8	85 2 0,05 0,65	8 0,1 0,75	0,15 0,05 1,0	2 0,5
f_K , Γ ц f_{CTP} , Γ ц T_{CTU} , мкс α β p b/h	15625 1,2 0,18 0,9 4:3	15625 12 0,08 0,8	15750 1,4 0,15 0,7	0,2 0,05 0,85 16:9	0,08 0,75 16:9	5 1,2 0,65 4:3	0,18 0,04 0,75 14:9	31250 1,6 0,18 0,6 4:3	31250 6 0,08 0,8 4:3	0,11 0,05 0,75 16:9	0,15 0,04 0,8 4:3	85 2 0,05 0,65	8 0,1 0,75 14:9	0,15 0,05 1,0 4:3	2 0,5 1,0 4:3

Задача №2

Для заданных временных параметров токов отклонения (таблица 3, где $\tau_{\Pi X \ \Gamma}$ – длительность прямого хода развертки по горизонтали; $\tau_{\Omega X \ \Gamma}$ – длительность обратного хода развертки по горизонтали; $\tau_{\Pi X \ B}$ – длительность прямого хода развертки по вертикали; $\tau_{OX \ B}$ – длительность обратного хода развертки по вертикали), формируемых системой разверток условного воспроизводящего устройства определить: вид формируемого растра (построчный, чересстрочный), кратность чересстрочности, число строк в кадре (поле). По результатам расчетов привести в масштабе временные диаграммы токов отклонения и построить формируемый растр.

Задача №3

Задан испытательный сигнал, формирующий изображение, приведенное на рисунке 1 и представляющее собой черно-белый ромб, вписанный в цветной квадрат, расположенный симметрично границам экрана. Слева и справа от квадрата находятся желтая и синяя полосы одинаковой ширины. Номенклатура испытательного сигнала в формате $U_{VE.MAX} / U_{VE.MIN} / U_{VE.MAX} / U_{VE.MIN}$ приведена в таблице 2. Здесь $U_{VE.MAX}$ и $U_{VE.MIN}$ — соответственно максимальная и минимальная амплитуды сигналов основных цветов U_R , U_G и U_B на неокрашенных полосах, $U_{VE.MAX}$ и $U_{VE.MIN}$ — на цветных.

Таблица 2 – Параметры испытательного сигнала и номера строк, для которых должен быть проведен расчет

Номер	Номенк	латура испы	тательного с	гигнала	Номера строк
варианта	$U_{\mathit{YE.MAX}}$	$U_{\mathit{YE.MIN}}$	$U_{{\it Ц}B.MAX}$	$U_{{\it ЦВ.MIN}}$	для расчета
130	$100 - N_B$	N_B	90 - N _B	$N_B + 10$	$N_B \cdot 8 + 30$
3160	$40 + N_B$	$N_B - 30$	$N_B + 30$	N_B - 20	$625 - N_B \cdot 4$

Таблица 3 – Временные параметры токов отклонения (к задаче № 2)

Вариант	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$ au_{\Pi X \; \Gamma, \; MKC}$	8	8	9	10	10	12	13	15	16	18	20	20	80	100	120
τ _{OX Γ} , MKC	1	2	1	1	2	3	2	1	2	2	1	4	20	20	30
$\tau_{\Pi X B}$, мкс	48	90	40	70	80	100	80	60	70	100	60	90	950	720	600
$\tau_{\rm OXB}$, MKC	9	20	5	7	8	35	10	8	11	20	10	18	150	120	150
Вариант	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
$ au_{\Pi X \; \Gamma, \; MKC}$	8	8	9	10	10	12	13	15	16	18	20	20	90	100	120
τ _{OX Γ} , MKC	1	2	1	1	2	3	2	1	2	2	1	4	10	10	30
$\tau_{\Pi X B}$, MKC	85	48	85	66	70	70	95	70	80	100	150	140	500	700	750
$\tau_{\rm OXB}$, MKC	14	7	25	22	14	5	40	10	16	30	18	28	125	180	50
Вариант	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
$ au_{\Pi X \; \Gamma, \; MKC}$	8	8	9	10	10	12	13	15	16	18	20	20	90	100	120
τ _{OX Γ} , MKC	1	2	1	1	2	3	2	1	2	2	1	4	10	10	30
$\tau_{\Pi X B}$, мкс	37	50	100	90	60	75	60	100	100	120	84	96	400	660	1000
$\tau_{\rm OXB}$, MKC	11	5	20	20	6	5	5	28	26	40	14	18	50	220	350
Вариант	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
$ au_{\Pi X \; \Gamma, \; MKC}$	8	8	9	10	10	12	13	15	16	18	20	20	80	100	54
$\tau_{{ m OX}\Gamma}$, MKC	1	2	1		2	3	2	1	2	2	1	4	20	20	10
τ _{ПХ В} , мкс	81	95	80	45	50	60	75	72	90	120	90	90	500	700	416
τ _{ОХ В} , мкс	9	15	25	10	16	15	30	16	12	30	15	12	175	140	64

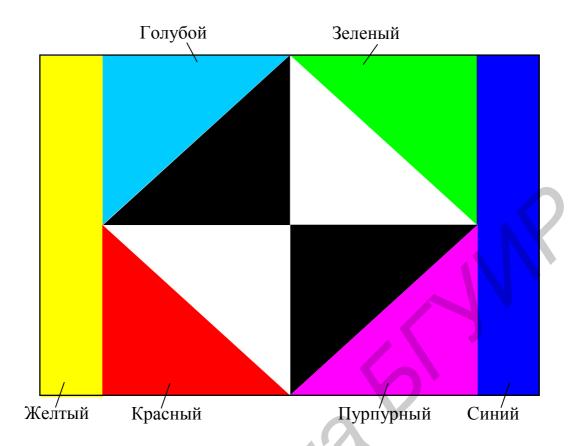


Рисунок 1 – Изображение, соответствующее испытательному сигналу

Требуется рассчитать в заданных в таблице 2 строках следующие параметры:

- уровень яркостного сигнала U_Y ;
- уровни цветоразностных сигналов U_{R-Y} , U_{G-Y} и U_{B-Y} ;
- значения сигналов U и V; ∂ ля системы PAL:
- амплитуду S_{CH} и фазу φ_{CH} сигнала цветности;
- уровни огибающей U_+ и U_- ПЦТС;

для системы SECAM:

- значения сигналов D_R и D_B ;
- девиацию частоты цветовой поднесущей в "красной" (Δf_R) и "синей" (Δf_B) строках;
- мгновенные значения частоты цветовой поднесущей в "красной" ($f_{M\Gamma H.R}$) и "синей" ($f_{M\Gamma H.B}$) строках;
- уровни огибающей U_+ и U_- ПЦТС (без учета выбросов на фронтах ЦРС, создаваемых контурами НЧ-предыскажений).

Результаты расчета свести в таблицу 4. Также в масштабе строки построить осциллограммы сигналов U_Y , U_{R-Y} , U_{G-Y} , U_{B-Y} , U, V и ПЦТС системы PAL. Осциллограммы сигналов D_R и D_B , а также ПЦТС системы SECAM построить для двух ("красной" и "синей") строк.

Таблица 4 – Результаты расчета параметров сигналов систем ЦТВ

	Си	гналь	і, обц	цие дл ЦТВ	я все	х сист	ем				алы систе			
Цвет полосы	U_{R} ,	U_G	U_B	U_Y	U_{R-Y}	$U_{G ext{-}Y}$	U_{B-Y}	U	V	S_{CU}	φ_{CU} $(\varphi_V=90^\circ)$	φ_{CU} $(\varphi_V=270^\circ)$	$U_{\Pi U T C^+}$	<i>U</i> пцтс_
Цвет 1												V		
Цвет 2														
Цвет 3														
Цвет 4														
Цвет 5									,					
Цвет 6														

Продолжение таблицы 4

					С	игналы си	стемы SEC	CAM		
Цвет полосы	D_R	D_B	Δf_R	Δf_B	$f_{RM\Gamma H}$	$f_{BM\Gamma H}$	$U_{\Pi extstyle extstyl$	$U_{\Pi extstyle extstyl$	$U_{\Pi extstyle extstyl$	$U_{\Pi extstyle extstyl$
Цвет 1										
Цвет 2										
Цвет 3										
Цвет 4					J					
Цвет 5										
Цвет 6		V								

Указания и рекомендации по решению задачи

Номенклатура сигнала и номер строки, для которой должен быть произведен расчет, выбирается в соответствие с собственным вариантом по данным таблицы 2. Для примера, варианту номер 60 ($N_B = 60$) будут соответствовать следующие размахи сигналов основных цветов (в процентах):

$$U_{VB.MAX} = 40 + N_B = 100 \%,$$

 $U_{VB.MIN} = N_B - 30 = 30 \%,$

$$U_{IIB.MAX} = N_B + 30 = 90 \%$$
,
 $U_{IIB.MIN} = N_B - 20 = 40 \%$,

таким образом номенклатура сигнала будет записана в виде 100/30/90/40. Номер строки определяется в данном случае по выражению

$$N_{CTP} = 625 - N_B \cdot 4 = 385.$$

Далее определяется расположение строки на изображении - смещение относительно верхней Δh_+ (либо нижней Δh_-) границы экрана (рисунок 2). Его можно найти по выражениям:

$$\Delta h_+ = (N_{CTP} - N_{BEPXH}) / N_{BEPXH}$$

 $\Delta h_- = (N_{HUXH} - N_{CTP.}) / N_{BEPXH}$,

где N_{BEPXH} и $N_{HUЖH}$ — номера самой верхней (первой активной) и самой нижней (последней активной) строк изображения соответствующего (1-го или 2-го) поля.

После этого определяется, какие цвета присутствуют в данной строке. Времена $t_{U,1}-t_{U,6}$, в течение которых передаются соответствующие цвета, понадобятся при построении осциллограмм.

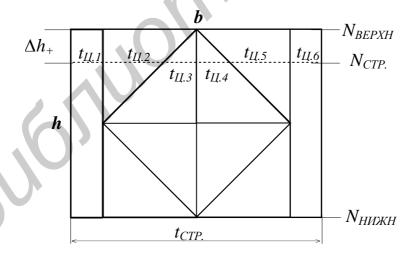


Рисунок 2 – К определению положения строки на экране и передаваемых в ней цветов

Далее, по номенклатуре сигнала в таблицу 4 записываются значения сигналов основных цветов U_R , U_G и U_B .

Яркостный и цветоразностные сигнала находятся по следующим выражениям:

$$\begin{split} &U_{Y} = 0.3U_{R} + 0.59U_{G} + 0.11U_{B}; \\ &U_{R-Y} = U_{R} - U_{Y} = 0.7U_{R} - 0.59U_{G} - 0.11U_{B}; \\ &U_{G-Y} = U_{G} - U_{Y} = -0.3U_{R} + 0.41U_{G} - 0.11U_{B}; \\ &U_{B-Y} = U_{B} - U_{Y} = -0.3U_{R} - 0.59U_{G} + 0.89U_{B}. \end{split}$$

Расчет параметров ПЦТС PAL производится следующим образом:

– вычисляются сигналы U и V:

$$V = 0.877 U_{R-Y};$$

 $U = 0.493 U_{R-Y}.$

– рассчитываются амплитуда S_{CU} и фаза j_{CU} сигнала цветности

$$S_{C\!U} = \sqrt{U^2 + V^2}$$
 ;
$$j_{C\!U} = \mathrm{arctg}(V/U\) - \mathrm{для} \ \mathrm{случая} \ \mathrm{фазы} \ \mathrm{поднесущей} \ \mathrm{цветности} \ \mathrm{в} \ \mathrm{каналe} \ V$$

$$j_V = 90^\circ;$$

$$j_{C\!U} = \mathrm{arctg}(-V/U\) - \mathrm{для} \ \mathrm{случая} \ \mathrm{фазы} \ \mathrm{поднесущей} \ \mathrm{цветности} \ \mathrm{в} \ \mathrm{каналe} \ V$$

$$j_V = 270^\circ;$$

– рассчитываются амплитудные значения огибающей ПЦТС

$$U_{\Pi IITC \pm} = U_Y \pm S_{CII}$$
.

Для расчета параметров ПЦТС SECAM определяем:

- амплитуду сигналов D_R и D_B :

$$D_R = -1.9 U_{R-Y},$$

 $D_B = 1.5 U_{B-Y};$

– девиацию частоты в "красных" и "синих" строках

$$\Delta f_R = \Delta f_{RHOM} \cdot D_R,$$

$$\Delta f_B = \Delta f_{BHOM} \cdot D_B,$$

где Δf_{RHOM} , Δf_{BHOM} — номинальная девиация в "красных" и "синих" строках, соответственно;

 мгновенные значения частот цветовых поднесущих в "красных" и "синих" строках

$$f_{RM\Gamma H} = f_{0R} + \Delta f_R ,$$

$$f_{BM\Gamma H} = f_{0B} + \Delta f_B ,$$

- где $f_{0\it{R}}$, $f_{0\it{B}}$ частота покоя модулятора в "красных" и "синих" строках соответственно;
- размахи сигналов цветности (установившееся значение, без учетов выбросов на фронтах сигнала, вызванных действием контура низкочастотных предыскажений) в "красных" и "синих" строках

$$U_{CUR} = U_{CU0} \cdot K_{BY}(f_{RMIH}) / K_{BY}(f_0),$$

$$U_{CUR} = U_{CU0} \cdot K_{RY}(f_{RMIH}) / K_{RY}(f_0),$$

где $U_{C\!H^0}$ – размах сигнала цветности на частоте f_0 = 4,286 МГц;

 $K_{{\scriptscriptstyle B}{\scriptscriptstyle Y}}(f)$ — коэффициент передачи контура высокочастотных предыскажений;

– амплитудные значения огибающей ПЦТС в «красной» и «синей» строках:

$$\begin{split} U_{\Pi L\!\!\!/ TC.R\pm} &= U_Y \pm U_{CL\!\!\!/.R}/2 \ ; \\ U_{\Pi L\!\!\!/ TC.B\pm} &= U_Y \pm U_{CL\!\!\!/.B}/2 \ . \end{split}$$

Для построения осциллограмм на оси времени последовательно откладываются времена $t_{U.1}-t_{U.6}$ передачи каждого из цветов, и им ставится в соответствие амплитуда сигнала, для которого строится осциллограмма. В качестве примера на рисунке 3 приведена осциллограмма яркостного сигнала, соответствующего варианту 60.

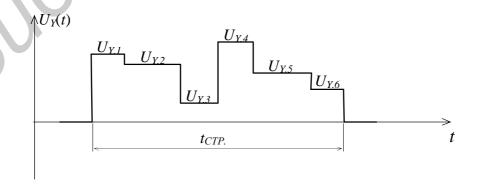


Рисунок 3 – Пример построения осциллограммы (сигнал яркости)

Задача № 4

Спроектировать домовую распределительную сеть (ДРС) сигналов телевидения для жилого дома. ДРС подключается к линейному тракту условно существующей системы кабельного телевидения и должна удовлетворять требованиям СТБ [36] в полосе рабочих частот от 48,5 до 862 МГц. Исходные данные для проектирования представлены в таблице 5, где: $N_{\Pi O J}$ – количество подъездов в доме; N_{3T} – количество этажей в доме; $N_{KB/3}$ – количество квартир абонентов на этаже; U_{50} (U_{855}) – уровень напряжения радиосигнала изображения 1 ТВ радиоканала на частоте 49,75 МГц (69 ТВ радиоканала на частоте 855,25 МГц) в точке домового ввода, дБ(мкВ); $N_{TB\ PC}$ – количество радиосигналов телевидения, распределяемых в системе КТВ. При расчетах расстояние между подъездами здания принять равным 30 м, межэтажное расстояние — 3 м.

При проектировании осуществить выбор активного и пассивного оборудования для ДРС, привести его электрические параметры, рассчитать уровни радиосигналов на выходах абонентских распределительных устройств для граничных частот рабочей полосы (50 и 862 МГц). Результаты расчетов представить в графической форме (пример чертежа ДРС приведен на рисунке 4).

Задача №5

Для цифровой системы передачи сигналов изображения и звукового сопровождения (рисунок 5) с параметрами, указанными в таблице 6:

- определить разрядность квантования $m_{\rm H3}$ для яркостного и цветоразностных сигналов, и $m_{\rm 3B}$ для сигнала звукового сопровождения;
- выбрать частоту дискретизации $f_{\text{Д.ЗВ.}}$ для сигнала звукового сопровождения;
- рассчитать скорость передачи данных для сигнала яркости $B_{\rm Y}$, цветоразностных сигналов $B_{\rm ЦРC}$, суммарную скорость передачи видеоданных $B_{\rm ИЗ.}$, суммарную скорость передачи звуковых данных $B_{\rm 3B.}$, общую суммарную скорость передачи данных (без учета компрессии) $B_{\rm S}$;
- рассчитать объем запоминающего устройства, необходимый для записи (хранения) одного кадра некомпрессированных видеоданных $V_{3y \ \text{M3}}$;
- определить необходимые коэффициенты компрессии сигналов изображения $k_{\rm H3}$. и звукового сопровождения $k_{\rm 3B}$, при которых возможна передача потока данных через цифровой канал связи с заданными в таблице 6 параметрами,

- вычислить соответствующие битовую $B_{\text{КОД.}}$ (на выходе помехоустойчивого кодера U5) и символьную $B_{\text{СИМВ.}}$ (на выходе модулятора UR1) скорости;
- определить максимальную длительность фрагмента программы t, которая может быть записана в ЗУ заданной емкости V_{3y} с учетом выбранных коэффициентов компрессии $k_{\rm H3.}$ и $k_{\rm 3B}$;
- рассчитать отношение сигнал/шум (ОСШ) на выходе сквозного тракта для сигналов яркости и звуковой частоты (возможными потерями в цифровом тракте пренебречь).

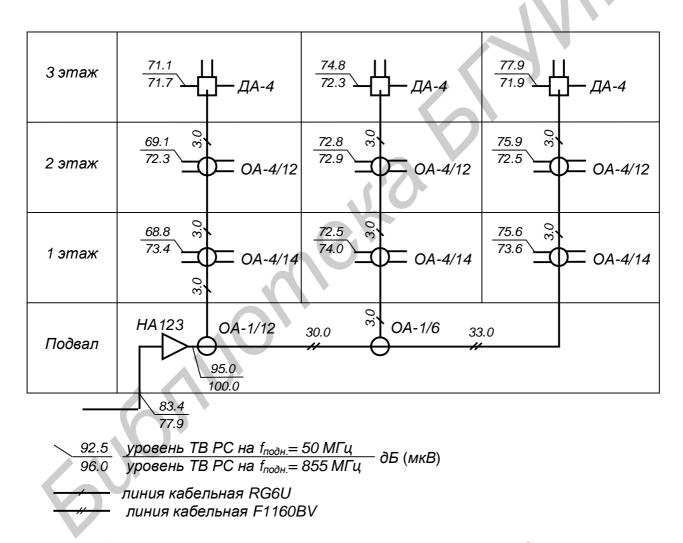


Рисунок 4 – Пример выполнения чертежа проектируемой ДРС жилого здания

Таблица 5 – Исходные данные к задаче № 4

Вариант	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
N _{ПОД}	6	5	4	2	3	4	5	6	5	4	3	2	1	2	3
Nэт	5	7	9	12	9	12	7	4	6	10	12	16	24	18	16
N _{KB/Э}	4	3	3	4	4	3	3	4	4	3	3	4	4	3	3
U_{50}	82,6	82,9	83,8	83,1	84,3	84,5	85,7	85,4	86,9	86,0	86,4	87,2	87,3	87,8	86,3
U_{855}	77,5	80,3	82,6	85,2	87,8	90,1	92,5	95,4	97,7	100,3	77,6	80,4	82,5	85,3	87,7
N_{TBPC}	12	14	16	18	20	22	24	26	28	30	30	28	26	24	22
Вариант	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
N _{ПОД}	5	4	3	2	3	4	5	6	5	4	3	1	2	3	4
$N_{ m T}$	6	6	10	14	12	10	12	6	6	7	14	24	16	8	9
$N_{KB/\Im}$	4	4	3	3	4	4	3	3	4	4	3	3	4	4	3
U_{50}	87,5	88,2	87,9	88,6	89,1	89,8	89,3	88,8	88,4	92,4	91,5	90,6	90,3	91,7	90,8
U_{855}	90,2	92,8	95,0	97,9	100,1	77,4	80,6	82,3	85,1	87,9	90,0	92,4	95,9	97,2	100,5
N_{TBPC}	20	18	16	14	12	12	14	16	18	20	22	24	26	28	30
Вариант	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
N _{ПОД}	3	2	3	4	5	6	5	4	3	2	1	2	3	5	4
N_{9T}	9	12	9	12	7	4	6	10	12	16	24	18	16	6	6
,	,	12	_												
N _{KB/Э}	3	4	4	3	3	4	4	3	3	4	4	3	3	4	4
	3 92,2				93,8	93,1	94,3	3 94,5		4 95,4	4 96,9	3 96,0	3 96,4	4 97,2	97,3
N _{KB/Э}	3	4	4	3	_		94,3 92,6		3			_	_		
N _{KB/Э} U ₅₀	3 92,2	4 91,9	4 92,6	3 92,9	93,8	93,1	94,3	94,5	3 95,7	95,4	96,9	96,0	96,4	97,2	97,3
N _{KB/Э} U ₅₀ U ₈₅₅	3 92,2 77,6	4 91,9 80,4	4 92,6 82,7	3 92,9 85,1	93,8 87,9	93,1 90,2	94,3 92,6	94,5 95,5	3 95,7 97,8	95,4 100,4	96,9 77,7	96,0 80,5	96,4 82,6	97,2 85,4	97,3 87,8
N _{KB/Э} U ₅₀ U ₈₅₅ N _{TB PC} Вариант	3 92,2 77,6 30	4 91,9 80,4 28	4 92,6 82,7 26	3 92,9 85,1 24	93,8 87,9 22	93,1 90,2 20	94,3 92,6 18	94,5 95,5 16	3 95,7 97,8 14	95,4 100,4 12	96,9 77,7 12	96,0 80,5 14	96,4 82,6 16	97,2 85,4 18	97,3 87,8 20
N _{KB/Э} U ₅₀ U ₈₅₅ N _{TB PC}	3 92,2 77,6 30 46	4 91,9 80,4 28 47	4 92,6 82,7 26 48	3 92,9 85,1 24 49	93,8 87,9 22 50	93,1 90,2 20 51	94,3 92,6 18 52	94,5 95,5 16 53	3 95,7 97,8 14 54	95,4 100,4 12	96,9 77,7 12 56	96,0 80,5 14 57	96,4 82,6 16 58	97,2 85,4 18 59	97,3 87,8 20 60
N _{KB/Э} U ₅₀ U ₈₅₅ N _{TB PC} Вариант N _{ПОД}	3 92,2 77,6 30 46 3	4 91,9 80,4 28 47 2	4 92,6 82,7 26 48	3 92,9 85,1 24 49	93,8 87,9 22 50 5	93,1 90,2 20 51 6	94,3 92,6 18 52 5	94,5 95,5 16 53 4	3 95,7 97,8 14 54 3	95,4 100,4 12 55 1	96,9 77,7 12 56 2	96,0 80,5 14 57 3	96,4 82,6 16 58	97,2 85,4 18 59	97,3 87,8 20 60 2
N _{KB/Э} U ₅₀ U ₈₅₅ N _{TB PC} Вариант N _{ПОД} N _{ЭТ}	3 92,2 77,6 30 46 3	4 91,9 80,4 28 47 2 14	4 92,6 82,7 26 48 3	3 92,9 85,1 24 49 4	93,8 87,9 22 50 5	93,1 90,2 20 51 6 6	94,3 92,6 18 52 5 6	94,5 95,5 16 53 4	3 95,7 97,8 14 54 3 14	95,4 100,4 12 55 1 24	96,9 77,7 12 56 2 16	96,0 80,5 14 57 3	96,4 82,6 16 58 2 20	97,2 85,4 18 59 4	97,3 87,8 20 60 2 15
$N_{KB/\Im}$ U_{50} U_{855} $N_{TB PC}$ Вариант $N_{\Pi O J}$ $N_{\Im T}$ $N_{KB/\Im}$	3 92,2 77,6 30 46 3 10	4 91,9 80,4 28 47 2 14 3	4 92,6 82,7 26 48 3 12 4	3 92,9 85,1 24 49 4 10 4	93,8 87,9 22 50 5 12	93,1 90,2 20 51 6 6 3	94,3 92,6 18 52 5 6 4	94,5 95,5 16 53 4 7	3 95,7 97,8 14 54 3 14 3	95,4 100,4 12 55 1 24 3	96,9 77,7 12 56 2 16 4	96,0 80,5 14 57 3 9	96,4 82,6 16 58 2 20 2	97,2 85,4 18 59 4 10	97,3 87,8 20 60 2 15 4

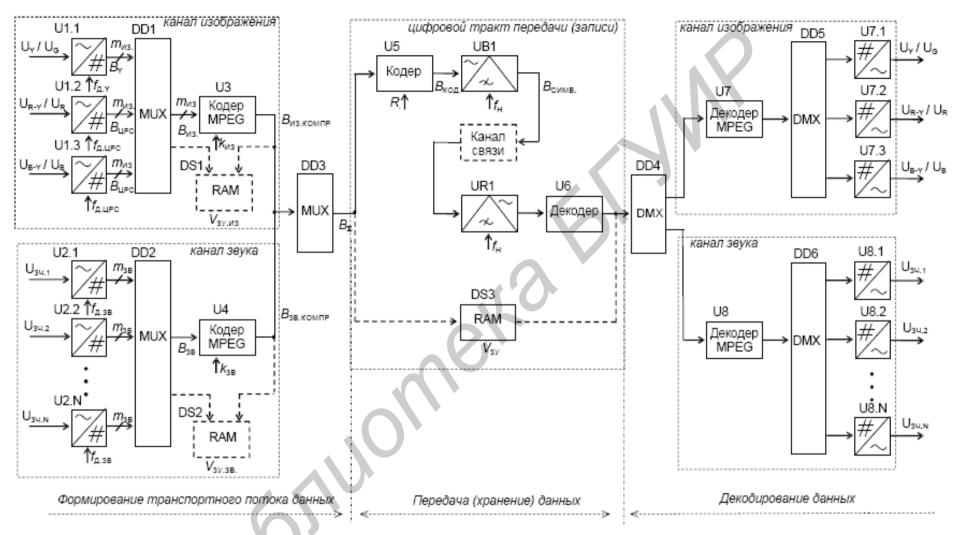


Рисунок 5 — Обобщенная структурная схема цифровой системы передачи сигналов изображения и звукового сопровождения

Таблица 6 – Параметры ТВ сигнала (к задаче № 5)

	Вариант	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Разрешение	720×	720×	720×	720×	1920×	1920×	1920×	1920×	1080×	1080×	1440×	1440×	640×	800×	1024×
130	$N_{\Gamma} \times N_{B}$, пикс.	576i	480i	576p	480p	1080i	1080p	1080i	1080p	720p	720p	1080p	1080i	480p	600p	768p
раметры и Оражения	<i>F_K, Гų</i>	25	30	50	60	25	50	25	60	30	25	25	50	100	85	75
етр же	K_{MAX}	200	200	250	250	300	250	200	400	300	250	150	350	220	240	280
Параметры изо- бражения	Кпор, %	2	3	2	3	3	2	2	3	4	3	2	3	2	3	4
∏ar (ОСШ _{ВХ} , дБ	50	51	54	55	50	54	50	51	48	52	45	55	50	55	48
	Формат	4:2:2	4:1:1	4:2:2	4:1:1	4:2:0	4:2:2	4:2:2	4:1:1	4:1:1	4:2:0	4:1:1	4:2:0	4:4:4	4:4:4	4:4:4
звука звука	F_H , Γ μ / F_B , к Γ μ	20/20	30/15	20/20	20/16	20/20	20/20	20/20	30/15	20/20	30/15	20/20	30/15	20/20	30/15	40/12
Sam 3By	ОСШ₃в, ∂Б	65	60	75	70	80	75	65	90	75	65	85	55	56	72	68
Парамет- ры звука	N_{KAH}	2	2	4	5	2	4	4	5	2	4	4	2	1	2	5
	ΔF_{PK} , $M\Gamma y$	7	6	7	6	8	7	27	36	6	8	27	36	5	20	20
Edra BR	Вид модуляции	QPSK	8-VSB	16-	8-VSB	64-	256-	QPSK	QPSK	8-VSB	64-	QPSK	QPSK	16-	8-VSB	64-
аме	Вио мооуляции			QAM		QAM	QAM	11/			QAM			QAM		QAM
Параметры канала связи	R	2/3	2/3	3/4	5/6	3/4	5/6	2/3	2/3	3/4	5/6	2/3	3/4	5/6	2/3	3/4
I K	$V_{3\mathcal{Y}}$, МБайт	700	630	4500	1000	500	10 ГБ	4700	630	4500	1000	630	4500	630	9400	4500
	Вариант	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	Вариант Разрешение	16 720×	1920×	18 1080×	1440×	720×	720×	640×	23 800×	24 1024×	25 720×	26 720×	1920×	1920×	1920×	352×
ИЗО-	P азрешение $N_{\Gamma} \times N_{B}$, пикс.	720× 576i	1920× 1080i	1080× 720p	1440× 1080p	720× 480i	720× 576i	640× 480p	800× 600p		720× 576p		1920× 1080p	1920× 1080i	1920× 1080p	352× 288p
.ы изо- ния	Разрешение	720×	1920×	1080×	1440×	720× 480i 30	720×	640×	800×	1024×	720×	720×	1920×	1920×	1920×	352×
етры изо-	P азрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} Γ μ K_{MAX}	720× 576i	1920× 1080i	1080× 720p	1440× 1080p	720× 480i	720× 576i	640× 480p	800× 600p	1024× 768p	720× 576p	720× 480p	1920× 1080p	1920× 1080i	1920× 1080p	352× 288p
раметры изо- бражения	P азрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} , Γ μ K_{MAX} $K_{\Pi OP}$, %	720× 576i 25 250 2	1920× 1080i 25 300	1080× 720p 30 150	1440× 1080p 25 150	720× 480i 30 200	720× 576i 25 300 3	640× 480p 85	800× 600p 75 300	1024× 768p 100 400	720× 576p 50 300 2	720× 480p 60 400	1920× 1080p 50 350	1920× 1080i 25 260 3	1920× 1080p 60 200	352× 288p 25 100 4
Параметры изо- бражения	P азрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} Γ μ K_{MAX}	720× 576i 25 250 2 45	1920× 1080i 25 300 3 48	1080× 720p 30 150 2 52	1440× 1080p 25 150 1 45	720× 480i 30 200 2 45	720× 576i 25 300 3 52	640× 480p 85 200 3 46	800× 600p 75 300 2 58	1024× 768p 100 400 1 55	720× 576p 50 300 2 48	720× 480p 60 400 1 52	1920× 1080p 50 350 3 55	1920× 1080i 25 260 3 55	1920× 1080p 60 200 2 55	352× 288p 25 100 4 50
Пар	P азрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} , Γ ψ K_{MAX} $K_{\Pi OP}$, % $OCIII_{BX}$, ∂E Φ ормат	720× 576i 25 250 2 45 4:2:2	1920× 1080i 25 300 3 48 4:2:0	1080× 720p 30 150 2 52 4;2:2	1440× 1080p 25 150 1 45 4:1:1	720× 480i 30 200 2 45 4:2:2	720× 576i 25 300 3 52 4:2:0	640× 480p 85 200 3 46 4:1:1	800× 600p 75 300 2 58 4:2:2	1024× 768p 100 400 1 55 4:2:0	720× 576p 50 300 2 48 4:1:1	720× 480p 60 400 1 52 4:2:0	1920× 1080p 50 350 3 55 4:4:4	1920× 1080i 25 260 3 55 4:1:1	1920× 1080p 60 200 2 55 4:2:0	352× 288p 25 100 4 50 4:1:0
	Разрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} Г μ K_{MAX} $K_{\Pi OP}$, % $OCIII_{BX}$, ∂E Формат F_{H} Г μ / F_{B} к $\Gamma \mu$	720× 576i 25 250 2 45 4:2:2 20/16	1920× 1080i 25 300 3 48 4:2:0 20/20	1080× 720p 30 150 2 52 4;2:2 20/20	1440× 1080p 25 150 1 45 4:1:1 20/20	720× 480i 30 200 2 45 4:2:2 20/16	720× 576i 25 300 3 52 4:2:0 30/15	640× 480p 85 200 3 46 4:1:1 20/20	800× 600p 75 300 2 58 4:2:2 20/16	1024× 768p 100 400 1 55 4:2:0 30/15	720× 576p 50 300 2 48 4:1:1 30/15	720× 480p 60 400 1 52 4:2:0 20/20	1920× 1080p 50 350 3 55 4:4:4 20/20	1920× 1080i 25 260 3 55 4:1:1 30/15	1920× 1080p 60 200 2 55 4:2:0 20/20	352× 288p 25 100 4 50 4:1:0 50/10
звука	P азрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} , Γ ψ K_{MAX} $K_{\Pi OP}$, % $OCIII_{BX}$, ∂E Φ ормат	720× 576i 25 250 2 45 4:2:2 20/16 70	1920× 1080i 25 300 3 48 4:2:0 20/20	1080× 720p 30 150 2 52 4;2:2 20/20 75	1440× 1080p 25 150 1 45 4:1:1 20/20 65	720× 480i 30 200 2 45 4:2:2 20/16 70	720× 576i 25 300 3 52 4:2:0 30/15 78	640× 480p 85 200 3 46 4:1:1 20/20 85	800× 600p 75 300 2 58 4:2:2 20/16 85	1024× 768p 100 400 1 55 4:2:0	720× 576p 50 300 2 48 4:1:1	720× 480p 60 400 1 52 4:2:0 20/20 85	1920× 1080p 50 350 3 55 4:4:4 20/20 60	1920× 1080i 25 260 3 55 4:1:1 30/15 85	1920× 1080p 60 200 2 55 4:2:0 20/20 60	352× 288p 25 100 4 50 4:1:0 50/10 55
	P азрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} Γ ψ K_{MAX} $K_{\Pi OP}$, % $OCIII_{BX}$ ∂E Φ opмат F_{H} Γ ψ / F_{B} κ Γ ψ $OCIII_{3B}$, ∂E N_{KAH}	720× 576i 25 250 2 45 4:2:2 20/16 70 5	1920× 1080i 25 300 3 48 4:2:0 20/20 80 2	1080× 720p 30 150 2 52 4;2;2 20/20 75 4	1440× 1080p 25 150 1 45 4:1:1 20/20 65 4	720× 480i 30 200 2 45 4:2:2 20/16 70 4	720× 576i 25 300 3 52 4:2:0 30/15 78 5	640× 480p 85 200 3 46 4:1:1 20/20 85 2	800× 600p 75 300 2 58 4:2:2 20/16 85 2	1024× 768p 100 400 1 55 4:2:0 30/15 80	720× 576p 50 300 2 48 4:1:1 30/15 78	720× 480p 60 400 1 52 4:2:0 20/20 85 5	1920× 1080p 50 350 3 55 4:4:4 20/20 60 6	1920× 1080i 25 260 3 55 4:1:1 30/15 85 4	1920× 1080p 60 200 2 55 4:2:0 20/20 60 2	352× 288p 25 100 4 50 4:1:0 50/10 55 2
Парамет- ры звука	P азрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} , Γ ψ K_{MAX} $K_{\Pi OP}$, % $OCIII_{BX}$, ∂E Φ ормат $F_{H}\Gamma \psi / F_{B}$ $\kappa \Gamma \psi$ $OCIII_{3B}$, ∂E	720× 576i 25 250 2 45 4:2:2 20/16 70 5	1920× 1080i 25 300 3 48 4:2:0 20/20 80 2	1080× 720p 30 150 2 52 4:2:2 20/20 75 4 36	1440× 1080p 25 150 1 45 4:1:1 20/20 65 4	720× 480i 30 200 2 45 4:2:2 20/16 70 4 36	720× 576i 25 300 3 52 4:2:0 30/15 78 5	640× 480p 85 200 3 46 4:1:1 20/20 85 2	800× 600p 75 300 2 58 4:2:2 20/16 85 2	1024× 768p 100 400 1 55 4:2:0 30/15 80 1 25	720× 576p 50 300 2 48 4:1:1 30/15 78 4	720× 480p 60 400 1 52 4:2:0 20/20 85 5	1920× 1080p 50 350 3 55 4:4:4 20/20 60 6	1920× 1080i 25 260 3 55 4:1:1 30/15 85 4	1920× 1080p 60 200 2 55 4:2:0 20/20 60 2	352× 288p 25 100 4 50 4:1:0 50/10 55 2
Парамет- ры звука	P азрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} Γ ψ K_{MAX} $K_{\Pi OP}$, % $OCIII_{BX}$, ∂E Φ ормат F_{H} Γ ψ / F_{B} κ Γ ψ $OCIII_{3B}$, ∂E N_{KAH}	720× 576i 25 250 2 45 4:2:2 20/16 70 5 8 64-	1920× 1080i 25 300 3 48 4:2:0 20/20 80 2	1080× 720p 30 150 2 52 4;2;2 20/20 75 4	1440× 1080p 25 150 1 45 4:1:1 20/20 65 4 5	720× 480i 30 200 2 45 4:2:2 20/16 70 4	720× 576i 25 300 3 52 4:2:0 30/15 78 5 8 256-	640× 480p 85 200 3 46 4:1:1 20/20 85 2 10 64-	800× 600p 75 300 2 58 4:2:2 20/16 85 2	1024× 768p 100 400 1 55 4:2:0 30/15 80	720× 576p 50 300 2 48 4:1:1 30/15 78	720× 480p 60 400 1 52 4:2:0 20/20 85 5	1920× 1080p 50 350 3 55 4:4:4 20/20 60 6 10 256-	1920× 1080i 25 260 3 55 4:1:1 30/15 85 4 5	1920× 1080p 60 200 2 55 4:2:0 20/20 60 2 25 64-	352× 288p 25 100 4 50 4:1:0 50/10 55 2
Парамет- ры звука	P азрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} , Γ ψ K_{MAX} $K_{\Pi OP}$, % $OCIH_{BX}$, ∂E Φ ормат $F_{H}\Gamma\psi/F_{B}$ $\kappa\Gamma\psi$ $OCIII_{3B}$, ∂E N_{KAH} ΔF_{PK} , $M\Gamma\psi$ B U	720× 576i 25 250 2 45 4:2:2 20/16 70 5 8 64- QAM	1920× 1080i 25 300 3 48 4:2:0 20/20 80 2 27 QPSK	1080× 720p 30 150 2 52 4;2:2 20/20 75 4 36 QPSK	1440× 1080p 25 150 1 45 4:1:1 20/20 65 4 5 16- QAM	720× 480i 30 200 2 45 4:2:2 20/16 70 4 36 QPSK	720× 576i 25 300 3 52 4:2:0 30/15 78 5 8 256- QAM	640× 480p 85 200 3 46 4:1:1 20/20 85 2 10 64- QAM	800× 600p 75 300 2 58 4:2:2 20/16 85 2 QPSK	1024× 768p 100 400 1 55 4:2:0 30/15 80 1 25 QPSK	720× 576p 50 300 2 48 4:1:1 30/15 78 4 6 QPSK	720× 480p 60 400 1 52 4:2:0 20/20 85 5 8 8-VSB	1920× 1080p 50 350 3 55 4:4:4 20/20 60 6 10 256- QAM	1920× 1080i 25 260 3 55 4:1:1 30/15 85 4 5 16- QAM	1920× 1080p 60 200 2 55 4:2:0 20/20 60 2 25 64- QAM	352× 288p 25 100 4 50 4:1:0 50/10 55 2 QPSK
звука	P азрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} Γ ψ K_{MAX} $K_{\Pi OP}$, % $OCIII_{BX}$, ∂E Φ ормат F_{H} Γ ψ / F_{B} κ Γ ψ $OCIII_{3B}$, ∂E N_{KAH}	720× 576i 25 250 2 45 4:2:2 20/16 70 5 8 64-	1920× 1080i 25 300 3 48 4:2:0 20/20 80 2	1080× 720p 30 150 2 52 4:2:2 20/20 75 4 36	1440× 1080p 25 150 1 45 4:1:1 20/20 65 4 5	720× 480i 30 200 2 45 4:2:2 20/16 70 4 36	720× 576i 25 300 3 52 4:2:0 30/15 78 5 8 256-	640× 480p 85 200 3 46 4:1:1 20/20 85 2 10 64-	800× 600p 75 300 2 58 4:2:2 20/16 85 2	1024× 768p 100 400 1 55 4:2:0 30/15 80 1 25	720× 576p 50 300 2 48 4:1:1 30/15 78 4	720× 480p 60 400 1 52 4:2:0 20/20 85 5	1920× 1080p 50 350 3 55 4:4:4 20/20 60 6 10 256-	1920× 1080i 25 260 3 55 4:1:1 30/15 85 4 5	1920× 1080p 60 200 2 55 4:2:0 20/20 60 2 25 64-	352× 288p 25 100 4 50 4:1:0 50/10 55 2

Продолжение таблицы 6

	Вариант	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
	Разрешение	352×	352×	720×	1920×	1080×	1440×	720×	720×	640×	800×	1024×	720×	720×	1920×	1920×
130	$N_{\Gamma} \times N_{B}$, пикс.	288i	288i	576i	1080i	720p	1080p	480i	576i	480p	600p	768p	576p	480p	1080p	1080i
раметры и Оражения	F_{K} , Γy	25	30	25	25	30	25	30	25	60	72	50	50	60	50	25
етр же	K_{MAX}	200	300	250	250	200	250	300	400	300	250	150	350	220	240	280
Параметры изо- бражения	Кпор, %	4	3	2	3	3	2	2	3	4	3	2	3	2	3	4
	ОСШ _{ВХ} , ∂Б	45	55	54	55	50	54	50	51	48	52	45	55	50	55	48
	Формат	4:1:1	4:2:2	4:2:2	4:1:1	4:2:0	4:2:2	4:2:2	4:1:1	4:1:1	4:2:0	4:1:1	4:2:0	4:4:4	4:4:4	4:4:4
звука звука	F_H , Γ μ / F_B , к Γ μ	40/15	40/15	20/20	30/15	20/20	30/15	20/16	20/20	20/20	20/20	20/16	30/15	20/16	20/20	20/20
Dai 3By	ОСШ₃в, ∂Б	65	75	75	65	85	55	70	80	75	65	70	85	80	78	85
Парамет- ры звука	N_{KAH}	2	2	2	4	4	2	5	2	4	4	4	2	1	4	5
	ΔF_{PK} , $M\Gamma y$	2	2	6	8	27	36	8	27	36	5	36	20	25	6	8
LGT?	Вид модуляции	QPSK	8-VSB	8-VSB	64-	QPSK	QPSK	8-VSB	8-VSB	16-	QPSK	QPSK	QPSK	QPSK	QPSK	8-VSB
Параметры канала связи	Вио мооуляции				QAM					QAM						
lap ana	R	5/6	3/4	5/6	3/4	3/4	3/4	5/6	2/3	5/6	2/3	2/3	3/4	5/6	2/3	2/3
I	V_{3y} , МБайт	1000	100	9400	40 ГБ	60 ГБ	20 ГБ	4700	20 ГБ	4700	20 ГБ	630	4500	1000	630	630
	Вариант	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
	Вариант Разрешение	46 1080×	47 1080×	1440×	1440×	640×	800×	52 1024×	53 720×	54 720×	55 720×	56 720×	1920×	1920×	1920×	1920×
ИЗО-	P азрешение $N_{\Gamma} \times N_{B}$, пикс.	1080× 720p	1080× 720p	1440× 1080p	1440× 1080i	640× 480p	800× 600p	1024× 768p	720× 576i	720× 480i	720× 576p		1920× 1080i	1920× 1080p	1920× 1080i	1920× 1080p
)Ы ИЗО- НИЯ	Разрешение	1080×	1080×	1440×	1440× 1080i 50	640× 480p 100	800×	1024×	720×	720×	720×	720×	1920×	1920×	1920×	1920×
етры изо- жения	P азрешение $N_{\Gamma} \times N_{B}$, пикс. $F_{K} \Gamma \mu$ K_{MAX}	1080× 720p	1080× 720p	1440× 1080p	1440× 1080i	640× 480p	800× 600p	1024× 768p	720× 576i	720× 480i	720× 576p	720× 480p	1920× 1080i	1920× 1080p	1920× 1080i	1920× 1080p
раметры изо- бражения	P азрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} , Γ ψ K_{MAX} $K_{\Pi OP}$, %	1080× 720p 30 300 2	1080× 720p 25 250 3	1440× 1080p 25 150	1440× 1080i 50 350	640× 480p 100 220	800× 600p 85 240	1024× 768p 75	720× 576i 25 200 4	720× 480i 30 200 5	720× 576p 50 250	720× 480p 60 250	1920× 1080i 25 300 2	1920× 1080p 50 250 4	1920× 1080i 25 200 5	1920× 1080p 60 400 2
Параметры изо- бражения	P азрешение $N_{\Gamma} \times N_{B}$, пикс. $F_{K} \Gamma \mu$ K_{MAX}	1080× 720p 30 300 2 45	1080× 720p 25 250 3 48	1440× 1080p 25 150 2 52	1440× 1080i 50 350	640× 480p 100 220 2 45	800× 600p 85 240 3 52	1024× 768p 75 280 3 46	720× 576i 25 200 4 58	720× 480i 30 200 5 55	720× 576p 50 250 3 48	720× 480p 60 250 2	1920× 1080i 25 300 2 55	1920× 1080p 50 250 4 55	1920× 1080i 25 200 5 55	1920× 1080p 60 400 2 50
Пар	P азрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} , Γ ψ K_{MAX} $K_{\Pi OP}$, %	1080× 720p 30 300 2 45 4:2:2	1080× 720p 25 250 3 48 4:2:0	1440× 1080p 25 150 2 52 4;2;2	1440× 1080i 50 350 1 45 4:1:1	640× 480p 100 220 2 45 4:2:2	800× 600p 85 240 3 52 4:2:0	1024× 768p 75 280 3 46 4:1:1	720× 576i 25 200 4 58 4:2:2	720× 480i 30 200 5 55 4:2:0	720× 576p 50 250 3 48 4:1:1	720× 480p 60 250 2 52 4:2:0	1920× 1080i 25 300 2 55 4:4:4	1920× 1080p 50 250 4 55 4:1:1	1920× 1080i 25 200 5	1920× 1080p 60 400 2
	Разрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} , Γ ψ K_{MAX} $K_{\Pi OP}$, % $OCIII_{BX}$, ∂E Φ opмат F_{H} Γ ψ / F_{B} κ Γ ψ	1080× 720p 30 300 2 45 4:2:2 20/16	1080× 720p 25 250 3 48 4:2:0 20/20	1440× 1080p 25 150 2 52 4:2:2 20/20	1440× 1080i 50 350 1 45	640× 480p 100 220 2 45 4:2:2 20/16	800× 600p 85 240 3 52	1024× 768p 75 280 3 46 4:1:1 20/20	720× 576i 25 200 4 58 4:2:2 20/16	720× 480i 30 200 5 55 4:2:0 30/15	720× 576p 50 250 3 48 4:1:1 30/15	720× 480p 60 250 2 52 4:2:0 20/20	1920× 1080i 25 300 2 55 4:4:4 20/20	1920× 1080p 50 250 4 55 4:1:1 30/15	1920× 1080i 25 200 5 55 4:2:0 20/20	1920× 1080p 60 400 2 50
звука	P азрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} , Γ ψ K_{MAX} $K_{\Pi OP}$, % $OCIII_{BX}$, ∂E Φ ормат	1080× 720p 30 300 2 45 4:2:2	1080× 720p 25 250 3 48 4:2:0 20/20	1440× 1080p 25 150 2 52 4:2:2 20/20 75	1440× 1080i 50 350 1 45 4:1:1 20/20 65	640× 480p 100 220 2 45 4:2:2 20/16 65	800× 600p 85 240 3 52 4:2:0	1024× 768p 75 280 3 46 4:1:1	720× 576i 25 200 4 58 4:2:2 20/16 78	720× 480i 30 200 5 55 4:2:0 30/15 85	720× 576p 50 250 3 48 4:1:1 30/15 85	720× 480p 60 250 2 52 4:2:0	1920× 1080i 25 300 2 55 4:4:4 20/20 65	1920× 1080p 50 250 4 55 4:1:1 30/15	1920× 1080i 25 200 5 55 4:2:0 20/20 75	1920× 1080p 60 400 2 50 4:1:0 50/10
	P азрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} Г ψ K_{MAX} $K_{\Pi OP}$, % $OCIII_{BX}$, ∂E Φ ормат F_{H} Г ψ / F_{B} к $\Gamma \psi$ $OCIII_{3B}$, ∂E N_{KAH}	1080× 720p 30 300 2 45 4:2:2 20/16 65 4	1080× 720p 25 250 3 48 4:2:0 20/20 75 5	1440× 1080p 25 150 2 52 4;2;2 20/20 75 5	1440× 1080i 50 350 1 45 4:1:1 20/20 65 2	640× 480p 100 220 2 45 4:2:2 20/16 65 2	800× 600p 85 240 3 52 4:2:0 30/15 65	1024× 768p 75 280 3 46 4:1:1 20/20 70 4	720× 576i 25 200 4 58 4:2:2 20/16 78 5	720× 480i 30 200 5 55 4:2:0 30/15 85 2	720× 576p 50 250 3 48 4:1:1 30/15 85 2	720× 480p 60 250 2 52 4:2:0 20/20 80	1920× 1080i 25 300 2 55 4:4:4 20/20 65 4	1920× 1080p 50 250 4 55 4:1:1 30/15 75 5	1920× 1080i 25 200 5 55 4:2:0 20/20 75 5	1920× 1080p 60 400 2 50 4:1:0 50/10 65 2
Парамет- ры звука	P азрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} , Γ ψ K_{MAX} $K_{\Pi OP}$, % $OCIII_{BX}$, ∂E Φ ормат $F_{H}\Gamma \psi / F_{B}$ $\kappa \Gamma \psi$ $OCIII_{3B}$, ∂E	1080× 720p 30 300 2 45 4:2:2 20/16 65 4	1080× 720p 25 250 3 48 4:2:0 20/20 75 5	1440× 1080p 25 150 2 52 4:2:2 20/20 75 5	1440× 1080i 50 350 1 45 4:1:1 20/20 65 2 6	640× 480p 100 220 2 45 4:2:2 20/16 65 2 8	800× 600p 85 240 3 52 4:2:0 30/15 65 4	1024× 768p 75 280 3 46 4:1:1 20/20 70 4 36	720× 576i 25 200 4 58 4:2:2 20/16 78 5	720× 480i 30 200 5 55 4:2:0 30/15 85 2	720× 576p 50 250 3 48 4:1:1 30/15 85 2	720× 480p 60 250 2 52 4:2:0 20/20 80 1 25	1920× 1080i 25 300 2 55 4:4:4 20/20 65 4	1920× 1080p 50 250 4 55 4:1:1 30/15 75 5	1920× 1080i 25 200 5 55 4:2:0 20/20 75 5	1920× 1080p 60 400 2 50 4:1:0 50/10 65 2 5
Парамет- ры звука	P азрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} Γ ψ K_{MAX} $K_{\Pi OP}$, % $OCIII_{BX}$, ∂E Φ ормат F_{H} Γ ψ / F_{B} κ Γ ψ $OCIII_{3B}$, ∂E N_{KAH}	1080× 720p 30 300 2 45 4:2:2 20/16 65 4	1080× 720p 25 250 3 48 4:2:0 20/20 75 5	1440× 1080p 25 150 2 52 4;2:2 20/20 75 5 7	1440× 1080i 50 350 1 45 4:1:1 20/20 65 2	640× 480p 100 220 2 45 4:2:2 20/16 65 2 8 64-	800× 600p 85 240 3 52 4:2:0 30/15 65 4 5 256-	1024× 768p 75 280 3 46 4:1:1 20/20 70 4 36 16-	720× 576i 25 200 4 58 4:2:2 20/16 78 5	720× 480i 30 200 5 55 4:2:0 30/15 85 2 10 64-	720× 576p 50 250 3 48 4:1:1 30/15 85 2 20 256-	720× 480p 60 250 2 52 4:2:0 20/20 80 1 25 16-	1920× 1080i 25 300 2 55 4:4:4 20/20 65 4	1920× 1080p 50 250 4 55 4:1:1 30/15 75 5	1920× 1080i 25 200 5 55 4:2:0 20/20 75 5 8 16-	1920× 1080p 60 400 2 50 4:1:0 50/10 65 2
Парамет- ры звука	P азрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} Г ψ K_{MAX} $K_{\Pi OP}$, % $OCIII_{BX}$, ∂E Φ ормат F_{H} Г ψ / F_{B} к $\Gamma \psi$ $OCIII_{3B}$, ∂E N_{KAH}	1080× 720p 30 300 2 45 4:2:2 20/16 65 4 7 QPSK	1080× 720p 25 250 3 48 4:2:0 20/20 75 5 6 8-VSB	1440× 1080p 25 150 2 52 4;2:2 20/20 75 5 7 16- QAM	1440× 1080i 50 350 1 45 4:1:1 20/20 65 2 6 8-VSB	640× 480p 100 220 2 45 4:2:2 20/16 65 2 8 64- QAM	800× 600p 85 240 3 52 4:2:0 30/15 65 4 5 256- QAM	1024× 768p 75 280 3 46 4:1:1 20/20 70 4 36 16- QAM	720× 576i 25 200 4 58 4:2:2 20/16 78 5 8 QPSK	720× 480i 30 200 5 55 4:2:0 30/15 85 2 10 64- QAM	720× 576p 50 250 3 48 4:1:1 30/15 85 2 20 256- QAM	720× 480p 60 250 2 52 4:2:0 20/20 80 1 25 16- QAM	1920× 1080i 25 300 2 55 4:4:4 20/20 65 4 7 QPSK	1920× 1080p 50 250 4 55 4:1:1 30/15 75 5 6 8-VSB	1920× 1080i 25 200 5 55 4:2:0 20/20 75 5 8 16- QAM	1920× 1080p 60 400 2 50 4:1:0 50/10 65 2 5 8-VSB
звука	P азрешение $N_{\Gamma} \times N_{B}$, пикс. F_{K} Γ ψ K_{MAX} $K_{\Pi OP}$, % $OCIII_{BX}$, ∂E Φ ормат F_{H} Γ ψ / F_{B} κ Γ ψ $OCIII_{3B}$, ∂E N_{KAH}	1080× 720p 30 300 2 45 4:2:2 20/16 65 4	1080× 720p 25 250 3 48 4:2:0 20/20 75 5	1440× 1080p 25 150 2 52 4;2:2 20/20 75 5 7	1440× 1080i 50 350 1 45 4:1:1 20/20 65 2 6	640× 480p 100 220 2 45 4:2:2 20/16 65 2 8 64-	800× 600p 85 240 3 52 4:2:0 30/15 65 4 5 256-	1024× 768p 75 280 3 46 4:1:1 20/20 70 4 36 16-	720× 576i 25 200 4 58 4:2:2 20/16 78 5	720× 480i 30 200 5 55 4:2:0 30/15 85 2 10 64-	720× 576p 50 250 3 48 4:1:1 30/15 85 2 20 256-	720× 480p 60 250 2 52 4:2:0 20/20 80 1 25 16-	1920× 1080i 25 300 2 55 4:4:4 20/20 65 4	1920× 1080p 50 250 4 55 4:1:1 30/15 75 5	1920× 1080i 25 200 5 55 4:2:0 20/20 75 5 8 16-	1920× 1080p 60 400 2 50 4:1:0 50/10 65 2 5

ЛИТЕРАТУРА

Основная

- 1. Телевидение: Учебник для вузов /Под ред. В.Е. Джаконии. М.: Радио и связь, 2004. 616 с.
- 2. Телевидение: Учебник для вузов /Под ред. В.Е. Джаконии. М.: Радио и связь, 2000.-640 с.
- 3. Кириллов В.И., Ткаченко А.П. Телевидение и передача изображений: Учеб. пособие для вузов. Мн.: Выш. школа. 1988. 312 с.
- 4. Ткаченко А.П. Цветное телевидение. Мн.: Беларусь, 1981. 254 с.
- 5. Бытовая радиоэлектронная техника: Энциклопедический справочник/ Под ред. А.П. Ткаченко. Мн.: БелЭн., 1995. 832 с.
- 6. Ткаченко А.П., Кириллов В.И. Техника телевизионных измерений: Учеб. пособие для вузов. Мн.: Выш. школа, 1976.- 224 с.
- 7. Ткаченко А.П., Хоминич А.Л. Повышение качества изображения и звукового сопровождения: Учеб. пособие для студентов специальностей «Телекоммуникационные системы», «Радиотехника» и «Радиотехнические системы». В 2-х ч. Ч.1: Тракты промежуточной частоты изображения и звукового сопровождения. Мн.: БГУИР, 2001. 55 с.
- 8. Ткаченко А.П., Хоминич А.Л. Повышение качества изображения и звукового сопровождения: Учеб. пособие для студентов специальностей «Многоканальные системы телекоммуникаций», «Системы радиосвязи, радиовещания и телевидения», «Радиотехника» и «Радиоэлектронные системы». В 2-х ч. Ч.2: Повышение качества изображения при формировании ТВ сигнала. Мн.: БГУИР, 2004. 70 с.
- 9. Зубарев Ю.Б., Кривошеев М.И., Красносельский И.Н. Цифровое телевизионное вещание: основы, методы, системы. М.: НИИР, 2001. 568 с.
- 10. Локшин Б.А. Цифровое вещание от студии к телезрителю. М.: Компания Сайрус Системс, 2001. 448 с.
- 11. Ткаченко А.П., Капуро П.А., Хоминич А.Л. Цифровое представление сигналов изображения и звукового сопровождения: Учебное пособие по телевизионным дисциплинам. Мн.: БГУИР, 2003. 56 с.

Дополнительная

12. Новаковский С.В. Сборник задач с решениями по основам техники телевидения: Учеб. пособие для вузов. – М.: Радио и связь, 1998. – 168 с.

- 13. Проектирование и техническая эксплуатация телевизионной аппаратуры: Учеб. пособие для вузов/ Под ред. С.В. Новаковского. М.: Радио и связь, 1994. 360 с.
- 14. Смирнов А.В. Основы цифрового телевидения: Учеб. пособие. М.: «Горячая линия Телеком», 2001. 224 с.
- 15. Капуро П.А., Ткаченко А.П. Системы кабельного телевидения: Методич. пособие по курсовому и дипломному проектированию. Мн.: БГУИР, 1997. 69 с.
- 16. Быков Р.Е. Теоретические основы телевидения: Учебник для вузов. СПб.: Изд-во «Лань», 1998. 288 с.
- 17. Быков Р.Е. Основы телевидения и видеотехники: Учебник для вузов. М.: Горячая линия Телеком, 2006. 399 с.
- 18. Хохлов Б.Н. Декодирующие устройства цветных телевизоров 3-е изд., перераб. и допол. М.: Радио и связь, 1998. 512 с.
- 19. Телевизионная техника: Справочник/ Под ред. Ю.Б. Зубарева и Г.Л. Глориозова. М.: Радио и связь, 1994. 312 с.
- 20. Певзнер Б.М. Качество цветных телевизионных изображений. 2-е изд. перераб. и доп. М.: Радио и связь, 1988. 224 с.
- 21. Новаковский С.В. Цвет в цветном телевидении. М.: Радио и связь, 1988. 288 с.
- 22. Кривошеев М.И., Федунин В.Г. Интерактивное телевидение. М.: Радио и связь, 2000. 344 с.
- 23. Брайс Р. Справочник по цифровому телевидению. Жуковский: «ЭРА», 2001. –230 с.
- 24. Брайс Р. Руководство по цифровому телевидению: Пер. с англ. М. ДМК Пресс, 2002. 288 с.
- 25. Кривошеев М.И. Основы телевизионных измерений. 3-е изд., перераб. и доп. М.: Радио и связь, 1989. 608 с.
- 26. Зубарев Ю.Б., Глориозов Г.Л. Передача изображений: Учебник для вузов. 2-е изд., перераб. и доп. М.: Радио и связь, 1989. 336 с.
- 27. Капуро П.А., Ткаченко А.П., Азиз Т. Принципы построения устройств отображения стереоизображений. //Радиотехника и электроника: республ. межвед. сб. науч. трудов. Мн.: БГУИР, 1999. –Вып.24. С. 11-28.
- 28. Ткаченко А.П., Капуро П.А., Хоминич А.Л. Лабораторный практикум по дисциплинам «Телевидение», «Телевизионные системы», Телевидение и отображение информации» для студентов специальностей «МСТК»,

- «СРРиТ», «РТ», «РТС», «РИ» всех форм обучения. В 2 ч. Ч.2. Мн.: БГУИР, 2005. 99 с.
- 29. ГОСТ 21879-88. Телевидение вещательное. Термины и определения. М.: Изд-во стандартов, 1988. 22 с.
- 30. ГОСТ 7845-92. Система вещательного телевидения. Основные параметры. Методы измерений. М.: Изд-во стандартов, 1992. 36 с.
- 31. Птачек М. Цифровое телевидение. Теория и техника /Пер. с чешск. М.: Радио и связь, 1990. 528 с.
- 32. Прэтт У. Цифровая обработка изображения. В 2 кн. М.: Мир, 1982. 312 с. (Кн. 1); 480 с. (Кн. 2).
- 33. Игнатьев Н.К. Дискретизация и ее приложения. М.: Связь, 1980. 264 с.
- 34. Скляр Б. Цифровая связь. Теоретические основы и практическое применение. Изд. 2-е, испр.: Пер. с англ. М.: Издательский дом "Вильямс", 2003. 1104 с.
- 35. Зима З.А., Колпаков И.А., Романов А.А., Тюхтин М.Ф. Системы кабельного телевидения /Под ред. М.Ф.Тюхтина. М.: Изд-во МГТУ им. Н.Э.Баумана, 2004. 600 с.
- 36. СТБ 1662-2006 (ГОСТ Р 52023-2003). Сети распределительные систем кабельного телевидения. Основные параметры, технические требования, методы измерений и испытаний. – Мн.:
- 37. Липкович Э.Б., Кисель Д.В. Проектирование и расчет систем цифрового спутникового вещания: Учеб.-метод. пособие по дисц. «Проектирование спутниковых систем телекоммуникаций» и «Проектирование систем радиосвязи, радиовещания и телевидения». Мн.: БГУИР, 2006. 135 с.

При изучении курса необходимо знакомиться с последними достижениями в области телевидения и телевизионной техники, которые публикуются в журналах: Электросвязь; Технология и средства связи; Телеспутник; Техника кино и телевидения; 625- Научно-технический журнал; Мультимедиа; Радиотехника; Цифровая обработка сигналов; Схемотехника; Зарубежная радиоэлектроника; Broadcasting. Телевидение и радиовещание; Stereo & Video; Салон Аиdio-Video; Радио; РадиоАматор; Радиолюбитель; Радиомир и др., а также по материалам, представленным в сети Интернет (сайты перечисленных и многих других журналов, фирм-разработчиков телевизионной аппаратуры, учебнообразовательные порталы и т.п.).

Учебное издание

ТЕЛЕВИДЕНИЕ, ТЕЛЕВИЗИОННЫЕ СИСТЕМЫ

Методические указания и контрольные задания для студентов заочной формы обучения специальностей «Радиотехника» и «Многоканальные системы телекоммуникаций»

Авторы: Капуро Павел Александрович

Ткаченко Анатолий Пантелеевич,

Хоминич Александр Леонидович

Редактор Т.Н.Крюкова

Подписано в печать		Формат 60х84 1/16.
Бумага	Печать офсетная. Гарнитура	Усл. печ. л.
Учизд. л. 2,0.	Тираж 150 экз.	Заказ 372

Издатель и полиграфическое исполнение:

Учреждение образования

«Белорусский Государственный университет информатики и радиоэлектроники» Лицензия ЛП №156 от 05.02.2001. Лицензия ЛП №509 от 03.08.2001. 220013, Минск, П.Бровки, 6