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Introduction. Let us consider the problem of motion 
planning for multicoordinate mechanical system with moving 
parts on the base of linear stepping motors (LSM). Approach 
to control of this system is presented using a solution of 
inverse dynamic problem with possible optimization on 
different criteria. Control functions satisfied the dynamic 
conditions are obtained using developed algorithms as 
analytical functions expressed through kinematic parameters 
of motion program.

Motions of multicoordinate drive based on LSM can be 
described by the second order system of differential equations 
obtained from Lagrange principle. Generally, this system is 
defined as

where x = (x
1
, …, x

n
) is vector of phase coordinates of device; 

u = (u
1
, …, u

r
) is vector of control fucntions. System (1) may 

be rewritten in vector notation as

where f = (f
1
, …, f

n
).

The problem of program motion synthesis for multi-
coordinate drive consists in forming of controls u = u(t, x) sati-
sfied some technical requirements

where  is given set in Rr, and a so lution x = x(t) of system (1) 
corresponding to this  satisfies the additional conditions

The motion is performed along curve or surface described 
by equations (2). The system (2) is called program system, 
which includes holonomic and nonholonomic constrains.

As the problem of program motion synthesis is generally 
solved without uniqueness, the problem of optimal program 
motion synthesis can be considered. Controls u = u(t, x) 

(1)

(2)

realizing the program motion and minimizing a functional 
must be obtained.

Therefore, the problem of optimal program motion 
synthesis can be considered as a problem of minimization 
of criterion function J = t

1
 → min on the set of solutions of 

system (1) with phase constraints

The problem of motion with minimal spending of 
control resources can be considered in the same way.

These problems deal with optimal control with phase 
constraints on segment [0; t

1
]. Necessary optimal conditions in 

form of maximum principle are known for such problems, i.e. 
these problems can be principally solved. However, a practical 
solution is quite difficult because the phase constraints are 
imposed on whole segment [0; t

1
], and the optimal conditions 

in general and coupled system in particular contain a regular 
degree. The last objection makes it necessary to consider 
different approaches to solution of the problem, in particular 
the approach to solution of inverse dynamic problem.

Differential equations of motions of multicoordinate 
mechanical systems based on LSM can be represented as

where x = (x
1
, …, x

n
) are generalized device coordinates; u = 

(u
1
, …, u

r
) is control vector.

System (3) may be rewritten in vector form

The problem consists in forming of control functions 
u = u(t, x) which belong to Rr, and corresponding solution 
of the system (3) satisfies the additional conditions

However, if x = x(t) is a solution satisfied the program 
(4) then

(3)

(4)
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Whence

when x = x(t) satisfies (4).
The last expression is equivalent to the condition

where R
k
 is arbitrary function with 

Therefore, the condition (5) is necessary and sufficient 
for implementing the program (4) along solution x = x(t) of 
the system (3). It can be used for calculating the necessary 
controls u

i
 = u

i
(t, x), i = 1, …, r.

As r < n, the system (5) defines the controls ambiguously, 
and a functional must be minimized on free controls additionally. 
E.g. the control optimization problem with constraints

may be considered for each time moment.
Different problems solving of program motions planning 

for multicoordinate systems based on LSM is described next. 
As example we use a 3-coordinate system, realizing parabola 
motion.

Program motion with constant speed. Three-coordinate 
mechanical system with LSM (figure 1) and coordinate 
alternation ϕ–x–x moves along a parabola with constant 
speed V. Masses m

1
, m

2
, m

3
 and moments of inertia J

1
, J

2
, J

3
 

of movable parts are given. Optimal controls u
1
, u

2
, u

3
 have to 

be obtained.
Using Lagrange method, motion equations can be derived 

as follows

(5)

where J
z
 = J

1
 + J

2
 + J

3
.

This system may be defined in standard form. We denote

whence

We assume that the motion needs to be performed along 
parabola (figure 2):

with constant speed , where ϕ1 ≡ 0.
Therefore, the motion program is defined by combined 

equations

Holonomic constrain is determined by the first equation 
of (7), nonholonomic constrain is determined by the second 
equation.

As ϕ = 0 the motion equations are simplified and can be 
written in the form

where

According to the condition x
2
 = 0 and (6), control u

2
 is 

defined unambiguously:

In the sequel, we will assume that set of controls  is 
considerably large.

(6)

(7)

(8)

Figure 1 — Three-coordinate LSM: 
1 — inductor; 2 — electromagnetic blocks; 3 — field windings; 

4 — anchor; 5 — stator; 6 — permanent magnets Figure 2 — Geometric condition of parabola program motion
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By virtue of (5), in order to a solution x = x(t) of 
the system (8) would satisfy the equation ω

1
(x) = 0 it is 

sufficient that

where f
i
 are the right parts of (1).

However, for the condition (9) would be satisfied, it is 
necessary and sufficient that

where R
1
(t, x, 0) ≡ 0.

For fulfillment of ω
2
(x) = 0 along trajectory x = x(t), it is 

necessary and sufficient that

where R
2
(t, x, 0) ≡ 0.

Therefore, the fulfillment of conditions (10) and (11) is 
sufficient to implement the program (7)

where

Solving the system (12) for u
4
 and u

6
 we obtain

Presented approach allows solving a number of 
problems in realizing optimal program motions in aspects of 
maximal speed and minimal spending of motion resources. 
Required control functions satisfied the given conditions 
were obtained. Other program motion problems can be 
solved analogously for various schemes of multicoordinate 
mechanical systems based on LSM and requirements for 
contour motion of actuator.

Program motion with constant acceleration and constant 
speed. We shall consider system (6), for which it is required to 
realize a motion on a parabola

with speed, varied on the law of a trapeze (figure 3)

where V
1
 — constant speed; a — constant acceleration at 

a motion along parabola; t — time, for which the point runs 
along parabola with parameters

Thus the program of a motion is set by the equations

(9)

(10)

(11)

(12)

(13)

(14)

It’s easy to see, that  is determined by value of 

given speed V
1
. We shall find length of a site run by a point of 

a parabola:

Length of a site, on which a motion occurs to acceleration a

From reasons of symmetry the site of delay will be equal:

Thus, basic site of a parabola, on which the motion 
occurs to constant speed, has length

In a result it is possible to find motion time along 
parabola:

We shall find managing influence at meanings given for 
a considered case of speed V

1
 and acceleration a. Obviously, 

the first equation (11) remains without changes. In too time, 
as

in the equation (12) to the right part it is necessary to add  
 
composed, equal 

(15)

(16)

Figure 3 — Kinematic conditions of program motions with variable 
speed on trapezium rule
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As result the combined equations for definition u
4
 and u

6
 

takes the form

where

From here we shall receive required control functions:

Thus, motion on a parabola x
3
 = h – k(x

5
 – b), x

1
 = 0 

with speed (13) from point x
1
 = x

2
 = x

3 
= x

4
 = x

5
 = x

6
 = 0 to 

point x
1
 = x

2
 = x

3 
= x

4
 = x

6
 = 0, x

5
 = 2b is realized by control  

 
functions (18), and  

As the parameters b and a get out arbitrarily, indefinitely 
many control functions, realizing the given program turn 
out. Thus, it is possible to consider a problem of optimum 
speed concerning parameters V and a, which has the 
following form:

Speed optimum of a program motion. We shall consider 
the mechanical system with three degrees of freedom. It is 
necessary to determine managing influence of drives, which 
are realizing speed optimum on a parabola.

The problem is reduced to realization of a motion given 
by the combined equations

at fulfillment of the program

Control functions u
4
 and u

6
 for realizing the program are 

possible to find from a condition

where R
1
 = R

1
(t, x, ω

1
) — any function with R

1
(t, x, 0) = 0.

(17)

(18)

(19)

(20)

(21)

As the equation (21) insolubly is unequivocal, we shall 
consider it under an additional condition

The last problem is equal to

where

From here it is possible to receive

where P and Q are determined in (22).
Further we shall finally get

We shall present function R
1
 as  where

 — piecewise continuous function.
Substituting meaning u

4
, u

6
 and R

1
 in (19), we shall 

receive system of equations

In view of this problem of optimum speed (OS) we 
shall generate as follows: on trajectories of system (23) to 
proceed from a point (0; 0; 0; 0) in a point (0; 0; 2; 0) for 
the minimum time.

This problem is a typical problem of the theory of 
optimum processes and can be solved using any available 
computing methods, based on a principle of Pontryagin 
maximum. The case of a problem of optimum speed for 
a motion on a parabola with sites of acceleration, constant 
speed and deceleration is decided below.

Speed optimization of a program motion with sites of 
acceleration and constant speed. Is considered same, as 
manipulator with three degrees of freedom is higher. It 
is necessary to determine managing influence of drives, 
at which motion on a parabola with sites of acceleration, 
constant speed and braking is realized. As follows from 
previous, the problem is reduced to realization of a motion, 
given by the equations

(22)

(23)
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where α1, α2, b1, b2
 are constant under additional conditions, 

determined by the program of a motion

with speed, varied on the trapeze law (13).
To determine the control functions u

4
, u

6
 for realizing 

a required motion, we use the system of equation

where

R
1
 =R

1
(t, x, ω

1
), R

2
 = R

2
(t, x, ω

2
) — any functions with R

1
(t, x, 0) ≡ 

≡ 0, R
2
(t, x, 0) ≡ 0.

For example,

where  — piecewise continuous functions, for 
simplicity we accept R

1
(t, x, 0) ≡ 0, R

2
(t, x, 0) ≡ 0.

From system (26) following meanings of control 
functions u

4
, u

6
 turn out

Substituting in (24) we receive system of equations

(24)

(25)

(26)

(27)

As the initial conditions are determined at t = 0, x
1
 = 

= x
2
 = x

3 
= x

4
 = x

5
 = x

6
 = 0; t = T, x

1
 = x

2
 = x

3 
= x

4
 = x

5
 = 

= x
6
 = 0, x

5
 = 2b

Thus, it is possible to formulate the following problem 
of optimum speed (OS) for system (27) to choose control 
functions , where k = 1, 2, …, m, and parameters 
a and V such to proceed from point (0; 0; 0; 0; 0; 0) to point 
(0; 0; 0; 0; 2; 0) for minimum time T.

On the other hand it was shown, that in considered task

It is obvious values of parameters V, a are limited:

From (28) follows, that min T is reached at a = a
1

Thus  — function of one variable on [0; V
1
] 

and we have

The minimum is reached in a point

From here the minimum time T is calculated as follows

If , then 

Thus, two optimal solutions are possible in dependence 
from whether a condition to  is carried out.

When we have  and the motion 

consists of two equal segments: acceleration and braking 
(figure 4).

When  we have  and the motion 

consists of three segments: acceleration, motion with 
constant speed and braking (figure 5).

(28)

(29)

Figure 4 — Optimal program motion with acceleration 
and deceleration
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Using optimal values of parameters a and V we can solve 
OS problem independently of vector of control functions

. Thus, we can accept

The last expression includes two cases of the law of speed 
for solving of OS problem.

List of symbols

OS — optimal speed
LSM — linear stepping motor
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Рассмотрен вопрос построения движения многокоординатной механической системы на основе линейных шаговых двига-
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движения с участками ускорения и постоянной скорости.
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Figure 5 — Optimal program motion with acceleration, constant 
speed and deceleration
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