МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ГЕНЕРАЦИИ ОПОРНЫХ ТОЧЕК ПРИ КОНТУРНОМ УПРАВЛЕНИИ

А.Ю. Войтов*, В.В. Кузнецов**, И.В. Дайняк***

- * Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь, Минск, savoitov@yandex.ru
- ** Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь, Минск, vitaly.kuznetsov2014@icloud.com
- ** Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь, Минск, dainiak@bsuir.by

Аннотация. Представлены математическая модель и алгоритм генерации опорных точек на пространственной траектории, реализуемой системой перемещений с шестью степенями свободы. Проведено компьютерное моделирование в среде MATLAB.

Ключевые слова: система перемещений, сплайновая интерполяция, компьютерное моделирование.

MATHEMATICAL MODEL FOR GENERATION OF REFERENCE POINTS FOR PATH CONTROL

A.Y. Voytov*, V.V. Kuznetsov**, I.V. Dainiak***

**Belarusian State University of Informatics and Radioelectronics,
Republic of Belarus, Minsk, savoitov@yandex.ru

***Belarusian State University of Informatics and Radioelectronics,
Republic of Belarus, Minsk, vitaly.kuznetsov2014@icloud.com

***Belarusian State University of Informatics and Radioelectronics,
Republic of Belarus, Minsk, dainiak@bsuir.by

Abstract. This paper presents a mathematical model and algorithm for generating reference points on a spatial path, realized by displacement system with six degrees of freedom. The computer modelling was in MATLAB.

Keywords: displacement system, spline interpolation, computer modelling.

В докладе представлены некоторые результаты, полученные в рамках исследований по алгоритмизации математических моделей формирования траекторий с заданной ориентацией перемещаемого объекта в трёхмерном пространстве, реализуемого многокоординатной мехатронной системой перемещений на основе рассматриваемого механизма параллельной кинематики с шестью степенями свободы [1].

При этом необходимо учитывать, что рассматриваемая в докладе система перемещений с шестью степенями свободы обеспечивает управляемые перемещения рабочей платформы по шести независимым координатам в неподвижной системе координат $S_0(x_0,y_0,z_0)$: трём линейным (x,y,z) и трём угловым (φ,θ,ψ) , которые являются углами Эйлера [2], при этом являются независимыми параметрами при программировании траектории.

Для рассматриваемого манипулятора нами разработана математическая модель, построенная на сегментированных алгоритмах кинематики параллельных кинематических цепей рассматриваемого исполнительного механизма, а также выполнена алгоритмизация, необходимая для имитационного моделирования функций положения, определяющих положение и ориентацию платформы в зависимости от положения ведущих элементов, управляемых сегментов кольцевого привода. В качестве расчётной математической модели в работе была получена система трёх нелинейных уравнений, связывающих координаты вершин управляемой треугольной платформы и переменные параметры рассматриваемого механизма. Система имеет следующий вид:

Генерацию параметров траектории в работе предлагается осуществлять путём интерполяции траектории по каждой координате вектора \vec{R} отдельно, таким образом, чтобы при переходе от одного положения к следующему все шесть координат изме-

нились синхронно и одновременно достигали своих конечных значений. При этом для формируемой траектории генерируется необходимые промежуточные и последующие точки путём соответствующей интерполяции. Начальное число точек, расстояние между ними, точность интерполяции являются исходными и задаются пользователем, осуществляющим обработку параметров траектории.

Пусть на траектории, подлежащей реализации, задано n последовательных точек $M_i(i=1,2,...,n)$ по которым необходимо сформировать траекторию для рассматриваемой многокоординатной системы перемещений. Выберем на траектории две любые последовательные точки M_k и M_{k+1} , в соответствии с которыми необходимо изменить положение платформы, характеризуемое вектором $\vec{R}_k = (x_k, y_k, z_k, \varphi_k, \theta_k, \psi_k)$, на положение, характеризуемое вектором $\vec{R}_{k+1} = (x_{k+1}, y_{k+1}, z_{k+1}, \varphi_{k+1}, \theta_{k+1}, \psi_{k+1})$.

Для описания перемещения по заданным координатам векторов \vec{R}_k и \vec{R}_{k+1} находится величина линейного перемещения между соответствующими точками M_k и M_{k+1} : $d_k = \sqrt{(x_{k+1} + x_k)^2 + (y_{k+1} + y_k)^2 + (z_{k+1} + z_k)^2}$.

Полученное значение d_k сравнивается с заданным максимально допустимым расстоянием d_{\max} между соседними точками, допускаемым из условия желаемой точности интерполяции. Если $d_k > d_{\max}$, то необходимое полное число точек на интервале рассчитывать как большее целое значение из выражения: $n_{ek} = d_k/d_{\max}$.

Выбором d_{\max} можно изменить число опорных точек, используемых при интерполяции.

Для описания поворота вводится обобщённых угол поворота ω , таким образом, чтобы угловой поворот платформы из положения M_k , характеризуемого заданными углами Эйлера $(\varphi_k, \theta_k, \psi_k)$, в положении M_{k+1} , характеризуемое углами Эйлера $(\varphi_{k+1}, \theta_{k+1}, \psi_{k+1})$, выполнялся бы вокруг соответствующей оси Ω . Пусть суммарный вектор углового положения платформы в точке M_k равен $\vec{v}_k = (v_x^k, v_y^k, v_z^k)$, а суммарный вектор углового положения в точке M_{k+1} равен $\vec{v}_{k+1} = (v_x^{k+1}, v_y^{k+1}, v_z^{k+1})$. То исходя из этих векторов по их скалярному произведению, может быть найден обобщённый угол ω углового перевода из положения M_k в положение M_{k+1} .

При задании максимального значения ω_{\max} для угла ω , по этим величинам находится число опорных точек: $n_{\omega}=\omega/\omega_{\max}$.

Для каждой пары соседних точек рассчитывается n_{ek} и n_{ok} , и по наибольшему из них определяются опорные точки для последующей интерполяции.

Предложенный в работе алгоритм полностью реализован в программе интерполяции со сплайнами до третей степени в среде MATLAB, которая позволяет в конечном итоге генерировать из среды разработки непосредственно в контроллер системы управления программный код.

Библиографический список

- 1. Системы многокоординатных перемещений и исполнительные механизмы для прецизионного технологического оборудования / С. Е. Карпович, [и др.] Минск: Бестпринт, 2013. 208 с.
- 2. Виттенбург, Й. Динамика систем твёрдых тел / Й. Виттенбург. М.: Мир, 1980. 292 с.