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Abstract
The numerical modeling of a non-relativistic modification of dynamics

due to forehead collisions of bodies with gravitons in the model of low-
energy quantum gravity is performed. We have found too big instability of
trajectories in the central field by the anomalous deceleration w � −H0c.
Perhaps, the most probable source of that may be backhead collisions of
bodies with gravitons, not taken into account in this model up to now.

1 Introduction

An existence of dark matter in clusters of galaxies and in spiral galaxies, as
well as its need to fit observations of remote Supernovae Ia, are accepted by the
scientific community as a proven fact [1]. However, a possibility of an alternative
explanation of corresponding observations remains, mainly in the direction of
modifications of gravitational physics. This possibility has a remarkable example
of simple and partly successful (to fit flat rotation curves of spiral galaxies)
model: MOND by Mordehai Milgrom [2]. This model differs from Newton’s
gravity if the gravitational acceleration is less than some a0 ∼ 10−10 m/s2. It is
important that somewhy a0 ∼ H0c, where c is the light velocity and H0 is the
Hubble constant. MOND does not concern the problem of dark energy.

The model of low-energy quantum gravity [3, 4] predicts small additional
effects which may lead to a new approach to cosmology. As it has been shown
in [5], the model fits the observational data sets of remote objects very well
without dark energy and cosmological dark matter. It forces to think about a
chance to find some tie between this model and the missing mass problem. In
the model, every massive body with a non-zero velocity relative to the isotropic
graviton background should experience a constant deceleration of the order of
H0c. This deceleration is considered in this paper as a tentative cause of non-
classical motion of bodies by very small gravitational accelerations.
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2 Modified dynamics in the graviton background

In the model [3, 4], the deceleration of massive bodies and the redshift of remote
objects have the same nature: these effects are caused by forehead collisions with
gravitons of the low-temperature graviton background. Due to only forehead
collisions with gravitons, the deceleration of massive bodies in this model is
equal to:

w = −H0c(1 − V 2/c2), (1)

where V is a body’s velocity relative to the graviton background [4]. For small
velocities: w � −H0c. Using the theoretical value of H0 in this model: H0 =
2.14 · 10−18 s−1, we have: w � 6.42 · 10−10 m/s2. This deceleration is universal,
and the Newtonian equation of motion of a material point with a mass m should
be replaced with the following one:

mr̈ = F − mw · V
V

, (2)

where F is a classical net force acting on the point. In a gravitationally bound
system of two bodies with very different masses, if we consider a motion of
a smaller body (a material point) relative to its more massive partner with a
velocity v, it is necessary to take into account the force of inertia if the system
moves relative to the graviton background. In the Newtonian approach, if u is
a more massive body’s velocity relative to the background, M is its mass, and
V = v+u is the velocity of the small body relative to the graviton background,
we will have the following equation of motion of the small body:

r̈ = −G
M

r2
· r
r

+ w(
u
u
− v + u

| v + u | ), (3)

where r is a radius-vector of the small body, G is Newton’s constant. Here the
force of inertia is equal to: mw · u

u .
This equation should have classical (or almost classical) solutions in the

limit case: GM/r2 � w. Another limit case is realized by the conditions:
GM/r2 � w and u/u − v + u/| v + u | → 0 (when v strives to coincide in
direction with u ); then a solution is: v → const. A planar motion will take
place by the condition: three vectors r,v,u should lay in one plane at an initial
moment of time. This case is considered here.

3 A numerical solution of the equation of mo-
tion of a material point in the central field

To solve Eq.(3) numerically, we can use the following recurrent equations:

r(t + Δt) = r(t) + v(t) · Δt + a(t) · Δt2/2,

v(t + Δt) = v(t) + a(t) · Δt, (4)

a(t + Δt) = −G
M

r3(t + Δt)
· r(t + Δt) + w(

u
u
− v(t + Δt) + u

| v(t + Δt) + u | ),
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where we denote: a ≡ r̈, and Δt is the time difference. We suppose here that
u � const; it means that our two-body system is not closed.

A program in C++ realizing algorithm (4) has been written by two of us
(A.N. and P.S.) to model the planar motion in the central field. We usually
choose Δt as: Δt = 10−6T/p, where T is a period of motion in the classical case
of a circular trajectory by the given initial distance to the center, p is an integer
number. But to verify an absence of artifacts due to the discreteness, we also
have used another version with Δt → Δt · (r(t)/r(0))1.5. Parameters of 1 from
every 10000 trajectory points are written into data files to build graphics later
in MathCad.

Figure 1: A star orbit in a galaxy with M = 1010 · M� by u = 5 · 105 m/s and
r(0) = 1 kpc.

4 A motion in the central field by an initial ve-
locity v(0) = (G · M/r(0))0.5

Let us consider the initial conditions by which a material point trajectory in
the classical case is circular, i.e. v(0) = (G · M/r(0))0.5, and v(0) ⊥ r(0). To
evaluate computational errors, we have found solutions of Eq.(3) by w = 0 using
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different values of Δt. For one classical period T , the relative error Δr/r(0) is
equal to: +1.184 · 10−5 by Δt = 10−7 · T, and +1.579 · 10−7 by Δt = 10−9 · T,
while Δv/v(0) is equal to: −5.87 · 10−6 by Δt = 10−7 · T, and −7.896 · 10−8 by
Δt = 10−9 · T.

Figure 2: The graph of v(r) for the star orbit in a galaxy with M = 1010 · M�
by u = 5 · 105 m/s and r(0) = 1 kpc (solid line). For comparison, the graph of
v0(r) ≡ (G · M/r)0.5 is shown (dashed line).

Our second task was to evaluate a stability of planetary orbits in the solar
system in a presence of the anomalous deceleration w. We have chosen u = 2·105

m/s. In a case of the Earth-like circular orbit, i.e. by M = M�, r(0) = 1
AU, we get by w = H0c for the same time: Δr/r(0) = +5.645 · 10−8 and
Δv/v(0) = −2.822 · 10−8 by Δt = 10−9 · T. It means that the Earth orbit by
w = H0c would be unstable, and its radius should change on Δr/r(0) � 10−7

per year. This result contradicts to the estimated age of the solar system.
To consider a behavior of star orbits in a galaxy, we have chosen u = 5 · 105

m/s, and M = 1010 · M�. If r(0) = 1 kpc, we get an orbit shown in Fig. 1, the
graph of v(r) is shown in Fig. 2; the vector u is parallel to the horizontal axis.
A full time of motion is equal to 3.3 ·T. In this case, the ratio a(0)/w is equal to
2.17. We see that the star inspirals to the center quickly (by these conditions,
we have: T � 3 · 107 years). It should lead to the instability of galaxies, too.
It is impossible to trace the trajectory in Fig. 1 further because v → c in the
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Figure 3: A star orbit in a galaxy with M = 1010 · M� by u = 5 · 105 m/s and
r(0) = 100 kpc for the case of w = 10−4 · H0c; t = 300 Gyr, the first unclosed
external loop corresponds to 27.6 Gyr.

nearest to the center its points, and Eq. 3 is not valid here.
Taking into account the found instability, let us consider now w to be a

free parameter to evaluate an order of its magnitude leading to stable enough
trajectories on both considered scales. To have Δr/r(0) � 10−11 per year, or
Δr/r(0) � 0.045 per 4.5 billion years, we should choose: w = 10−4 · H0c. Then
on the galactic scale we will have: Δr/r(0) � ±0.005 per 6 billion years by
r(0) = 1 kpc, u = 5 · 105 m/s. For r(0) = 100 kpc, the trajectory is shown in
Fig. 3; the full time t = 300 Gyr, the first unclosed external loop corresponds
to 27.6 Gyr. On both scales, the instability is acceptable by this value of w.

5 Conclusion

Our numerical study of a modification of dynamics due to only forehead colli-
sions of bodies with gravitons has shown that on planetary and galactic scales
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trajectories of bodies are too unstable. It is necessary to do a theoretical re-
analysis of the interaction of massive bodies with gravitons in this model to
understand why this anomalous acceleration should be much smaller than the
value of H0c to be consistent with observations. The most probable source of
that, in our opinion, may be backhead collisions of bodies with gravitons which
were not taken into account earlier.

Even by much smaller values of w, trajectories of bodies stay unclosed, but
their stability become much higher. From our current results we do not see some
connection of this modification of dynamics with the problem of dark matter
on the galactic scale. In some parts of trajectories, velocities are higher than
classical ones on circular orbits, but not essentially, and the ones do not have a
definite limit by big distances to the center of the galaxy.
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