плазменного состояния, росте давления, последующем остывании и конденсации в виде метастабильного стеклообразного состояния. После снятия электрического импульса и остывания вещества в канале (после окончания электроформовки) испаренное вещество оседает на стенках канала, аморфизуется под давлением в области анода и превращается в стеклообразную неравновесную неупорядоченную систему. Между катодом и стеклообразным участком формируется область, в которой вещество отсутствует, т.е. вакуумная полость.

Проведено моделирование электронных свойств метастабильных атомарных структур, которые возникают в диоксиде гафния, содержащем кислород и кислородные вакансии, при формовке в электрических полях. Показано, что в зависимости от значений конфигурационных параметров ангармонический бистабильный потенциал ловушечных центров изменяет свою симметрию, а также глубину и ширину потенциальных ям.

Наличие периодического воздействия и шума приводит к переключению ловушечного состояния в диоксиде гафния из одного метастабильного состояния в другое. С увеличением амплитуды периодического воздействия частота переключений из одного состояния в другое растет. С ростом частоты периодического воздействия увеличивается частота переключений, а с ростом фазы увеличивается время нахождения ловушечного центра в одном из метастабильных состояний. Время переключения составляет порядка единиц наносекунд, а его величина снижается с ростом амплитуды периодического воздействия и интенсивности шума.

ЭКРАНИРУЮЩИЕ ХАРАКТЕРИСТИКИ ПОРОШКОВ КРИСТАЛЛОВ $AgIn_5S_8$ В CBЧ-ДИАПАЗОНЕ

Г.А. Пухир, Т.Г. Баругу

Соединение $AgIn_5S_8$ образуется в разрезе $Ag_2S-In_2S_3$ и относится к дефектным полупроводникам с концентрацией вакансий в катионной подрешетке ~ 25 %. В связи с наличием значительного количества дефектов электрические свойства этого соединения практически не изменяются при различных радиационных воздействиях, что позволяет выделить соединение AgIn₅S₈ в класс перспективных для создания ряда новых высокоэффективных радиационноприборов [1], [2]. Определенный интерес представляют стойких оптоэлектронных электромагнитные свойства новых высокотехнологичных кристаллов в радиочастотном диапазоне и возможность их использования для создания экранов электромагнитного излучения (ЭМИ) и экранирующих покрытий. В работе проведены исследования экранирующих характеристик порошка монокристаллов $AgIn_5S_8$ в диапазоне $8...12\ \Gamma\Gamma$ ц. Монокристаллы выращивали методом Бриджмена. Измерение характеристик ослабления и отражения проводилось с помощью панорамного измерителя КСВН и ослабления Я2Р-67 с использованием генератора ГКЧ-61 в диапазоне 8...12 ГГц. Ослабление ЭМИ образцами толщиной порядка 0,5 мм составляет порядка 6 дБ с равномерной дисперсией. Коэффициент отражения для исследуемых образцов на основе порошка $AgIn_5S_8$ составляет -3...-4 дБ в диапазоне 8...12 ГГц. Полученные результаты можно учитывать при необходимости электромагнитной совместимости компонентов при проектировании радио- и оптоэлектронных приборов и устройств. Применение порошков монокристаллов $AgIn_5S_8$ перспективно также для создания тонкопленочных экранирующих покрытий, эффективных в СВЧ-диапазоне.

Литература

- 1. Боднарь, И.В. Выращивание и свойства монокристаллов $AgIn_5S_8$ / И.В. Боднарь, X.Т.М. Альрекаби, Т.Г. Баругу // Доклады БГУИР. – 2016. – №5(99). – С. 67–72.
- 2. Paorici, C. Crystal growth and properties of the $AgIn_5S_8$ compound / C. Paorici, L. Zanotti, N. Romeo, G. Sberveglieri, L. Tarricone // Materials Research Bulletin. 1977. Vol.12, Iss. 12. P. 1207–1211.

СЛОЖНОКОМПОЗИТНЫЕ МАТЕРИАЛЫ ДЛЯ РАДИОПОГЛОТИТЕЛЕЙ ДИАПАЗОНА ЧАСТОТ 8–12 ГГЦ

Г.А. Пухир, Т.А. Пулко, В.С. Колбун, Н.В. Насонова

Для известных типов конструкций радиопоглотителей (резонансных, градиентных, многослойных, с геометрически неоднородной поверхностью) применяются различные