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Abstract: The subject of the article are the spatial electromechanical multi-coordinate systems. These systems
are intended to determine complex motions on several axes simultaneously without mechanical elements of the
transformation of a motion by means of ample opportunities of planar linear stepping motors (PLSM) with air
bearing. Such PLSM allows the disscusion of the concept of the multi-coordinate electric drives which consists
in constructive integration of mobile parts of several coordinates in one execution multi-coordinate system
controlled by a digital computer. The method of construction of the motion equations based on the solution of
the inverse dynamics problems was proposed.
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Introduction

Let us consider spatial electromechanical systems which
cause complex motions along several axes simultaneously
without mechanical elements of transformation of a mo-
tion. Kinematic units are completely excluded due to the
use of electromechanical modules with air bearing. These
modules have unlimited opportunities of electrical splitting
of motion step and allow the scaling of motion characte-
ristics. Mechanical connections are replaced by controlled
electromagnetic constraints; it provides for achieving the
highest parameters of accuracy, repeatability, velocity and
has the constant metrological characteristics of a motion at
long operating.

The electrical splitting of motion step by means of digital-
to-analog control synthesizes a general motion from arbitra-
rily small segments, and the length of the segment is not
dependent of the design of an electromechanical converter
or kind of motion. In the case of a rotary motion this prin-
ciple leads to the exclusion of mechanical reducing units by
replacing its electrical conjunctions with an opportunity of
motions at a wide range of speeds.

For complex motions with several degrees of freedom
this principle of construction of coordinate systems allows
the proposition of the concept of the construction of multi-
coordinate drives [1–3]. The basic idea of the concept con-
sists in the constructive integration of mobile parts of seve-
ral coordinates in one execution multi-coordinate system.
The integration of constructive elements assumes a divi-
sion of channels of management by a complex motion and
modular fulfillment of active elements of the electromecha-

nical coordinate device. Using this approach it is possible
to replace mechanical constraints by electromagnets, which
are controlled by means of electronic management from a
digital computer. The increase of functional opportunities
of a drive can be achieved by means of number and the
combination of typical electromechanical modules with the
unification of control of a complex motion on all axes si-
multaneously.

The base module constructions of linear, rotary and pla-
nar types are primary elements for the building of a coor-
dinate system. Combining them into complex modules we
can get a spatial motion system which recognizes complex
movements with given properties. In the paper we’ll consi-
der some types of positioning systems and construction of
program motions.

Planar linear stepping motor and multi-planar
positioning system

A planar linear stepping motor (PLSM) with separated
coordinates and air-magnetic bearings is shown in Fig. 1;
it provides motions along ortogonal X and Y axes.

The motionless stator 1 has three ortogonal to each
others’ teeth zones. Inductor 2 consists of three groups of
electromagnets (marked with dashed lines) which are se-
parated in space and united by one frame. The inductor’s
teeth structures are formed on block poles according to the
three teeth zones of the stator. The gap between induc-
tor and stator is made by pressed air transferred through
capillary holes.
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Fig. 1. Planar linear stepping motor with separated coordinates:  

1 – stator; 2 – inductor 

 

The motionless stator 1 has three ortogonal to each others’ teeth zones. 

Inductor 2 consists of three groups of electromagnets (marked with dashed lines) 

which are separated in space and united by one frame. The inductor’s teeth 

structures are formed on  block poles according to the three teeth zones of  the 

stator. The gap between inductor and stator is made by pressed air transferred 

through capillary holes. 

A planar linear stepping motor (PLSM) with combined coordinates is shown 

on Fig. 2. 

 

 

Fig. 2. Planar linear stepping motor with combined coordinates:  

1 – stator; 2 – inductor 

 

Using the elementary modules recognizing one-coordinate and two-

coordinate motions, flexible industrial systems can be created; their motion 

systems are the base of robotics for technological equipment and result in the 

realization  of any motions in 3D space. 

Fig. 1: Planar linear stepping motor with separated coordinates: 1 – stator;
2 – inductor.

A planar linear stepping motor (PLSM) with combined
coordinates is shown in Fig. 2.
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Fig. 2: Planar linear stepping motor with combined coordinates: 1 – stator;
2 – inductor.

Using the elementary modules recognizing one-coordinate
and two-coordinate motions, flexible industrial systems can
be created; their motion systems are the base of robotics
for technological equipment and result in the realization of
any motions in 3D space.

The robotic complex for the forming of wire interconnec-
tions is shown in Fig. 3; it is intended for the automation of
one of the basic and the most complex operation within the
technological process of assembly of the integrated circuits
in microelectronics.

The multi-robot system (Fig. 3) is built on the basis of
one-coordinate and two-coordinate PLSM, which have high
accuracy and high speed. The system can perform most as-
sembly operations in a common workspace: loading compo-
nents, the forming of wire interconnections, the controlling
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Fig. 3. Multi-robot system for the forming of wire interconnections  

in the assembly of integrated circuits: 1,2,3,4 – x, y planar robots 

 

The multi-robot system (Fig. 3) is built on the basis of one-coordinate and 

two-coordinate PLSM, which have high accuracy and high speed. The system can 

perform  most assembly operations in a common workspace: loading components, 

the forming of wire interconnections, the controlling of parameters with a contact 

method, removals of ready products,  etc. This complex permits  not only program 

installation of all wire interconnections of a particular circuit but also programmed 

transition to other types of products. 

 

Mathematical description of planar linear stepping motor 

The basic problem of mathematical modelling of multi-coordinate systems is 

the  problem of the construction of the required program motions by the definition 

of control actions. This problem in mathematical formulation is reduced to the 

choosing of parameters of differential equations of a motion or to  defining   

unknown parts of the differential equations using the condition of the existence of 

the given particular solutions. In more general formulation the problem of 

construction of required program motions is reduced to the constructiion of the 

Fig. 3: Multi-robot system for the forming of wire interconnections in the
assembly of integrated circuits: 1,2,3,4 – x, y planar robots.

of parameters with a contact method, removals of ready
products, etc. This complex permits not only program in-
stallation of all wire interconnections of a particular circuit
but also programmed transition to other types of products.

Mathematical description of planar linear stepping
motor

The basic problem of mathematical modelling of multi-
coordinate systems is the problem of the construction of the
required program motions by the definition of control ac-
tions. This problem in mathematical formulation is reduced
to the choosing of parameters of differential equations of a
motion or to defining unknown parts of the differential equ-
ations using the condition of the existence of the given par-
ticular solutions. In more general formulation the problem
of construction of required program motions is reduced to
the construction of the differential equation system using
a priori knowledge of the properties of required motions,
which are described by this system. Generally speaking, the
solution to this problem is not unequivocal, and that results
in the constructing of the required motions using additional
conditions for electromechanical coordinate system.

To get the basic laws for electromechanical coordinate
systems on a basis PLSM, we can use various mathematical
models, which describe stability, quality of motion, velocity
and range of working speeds, and the dynamics of a system
[4,5].

The mathematical model of the two-coordinate stepping
electric drive presented in Fig. 1 and Fig. 2 with bi-phase
excitation and three degrees of freedom (ortogonal linear
x, y and angular ϕ – rotation of inductor in a plane of a
stator) can be written as following system [6,7]:
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m
d2x

dt2
+ βx

dx

dt
+ Fcx = F (i1x, i2x, ϕ, t) + Fx(t),

m
d2y

dt2
+ βy

dx

dt
+ Fcy = F (i1y, i2y, ϕ, t) + Fy(t),

I
d2ϕ

dt2
+ βϕ

dϕ

dt
+ Fcϕ = M(t),

r1xi1x +
dψ1x

dt
= U1x(x, ϕ, t),

r2xi2x +
dψ2x

dt
= U2x(x, ϕ, t),

r1yi1y +
dψ1y

dt
= U1y(y, ϕ, t),

r2yi2y +
dψ2y

dt
= U2y(y, ϕ, t),

(1)

where:

m – distributed mass (the load and the inductor);
x, y – linear coordinates in the plane of a motion;
βx, βy, βϕ – factors describing viscous friction;
Fcx, Fcy, Fϕ – resistance forces on x, y, ϕ accordingly;
ϕ – coordinate describing angular displacement of inductor

in the plane of a motion;
F (i1x, i2x, ϕ, t), F (i1y, i2y, ϕ, t),M(t) – the force characte-

ristics of a drive accordingly on coordinates x, y, ϕ;
r, i, ψ – resistance, current and inter-linkage of phase win-

dings correspondingly;
Fx(t), Fy(t) – external mechanical influence on coordinates

x and y;
I – moment of inertia of distributed mass relatively to or-

togonal axis to the plane of motion;
U1x, U2x, U1y, U2y – laws of voltage in phase windings (func-

tions of control action).

The systems with similar structure of the equations
can be written for any multi-coordinate drive based on
a PLSM [8]. The combined equations (1), which describe
the physical processes within stepping electric drive, are
a complete mathematical model of the considered device.
The various representations of this model are used for ma-
thematical research depending on the particular purpose.
In our case for researching the dynamics of a coordinate
system and for the constructing of program motions it is
convenient to use the complete mathematical model (1) in
the form

ẍi = fi(x, ẋ, t), i = 1, . . . , n; (2)

where:

x(x1, ..., xn) – vector of generalized coordinates of system;
ẋ(ẋ1, ..., ẋn) – vector of generalized velocities of system.

Construction of the motion equations based on the
solution of the inverse dynamics problems

The inverse problems of dynamics are the definition of
active forces applied to the mechanical system, parameters
of system and in addition imposed on them. They constrain,
refer to as, at which the motion with given properties is one
of possible motions of considered mechanical system. Thus,
the properties of a motion can be given in different ways,
for example as quantitative and qualitative restrictions for
coordinates and speeds of a motion as invariant parities.

The works of the different authors are devoted to the so-
lution of inverse dynamics problems [9–11]. Here we stop at
the basic theoretical preconditions, which are necessary for
the solution of problems of constructing program motions.

We assume that properties of a motion of a mechanical
system, which are defined by a vector x(x1, ..., xn) of gene-
ralized coordinates and vector ẋ(ẋ1, ..., ẋn) of generalized
velocities, are given as variety

ωµ(x, ẋ, t) = cµ, µ = 1, ...,m ¬ n. (3)

Concerning functions ωµ we assume, that the equality
ωµ(x, ẋ, t) = cµ are joint and are independent in some part
of a phase space G{x, ẋ} at t  t0.

The given variety of properties of a motion is in essence
the integrated variety of the appropriate equations of a mo-
tion of considered mechanical system. Naturally, therefore,
for the solution of inverse problems of dynamics it is neces-
sary to construct the equations of a motion of considered
mechanical system on given integrated variety, so that the
expressions ωµ(x, ẋ, t) = cµ are the integrals of these equ-
ations. Furthermore, from the constructed equations it is
necessary to determine the required generalized forces, pa-
rameters and connections exhibiting a motion with given
properties (3).

In special cases, when the structure of equations of a
motion is known but required additional forces and para-
meters of considered mechanical system for recognizing a
motion with given properties are unknown, it is necessary
to determine the equations of a motion on a given integra-
ted variety and to find required unknown equations [12].

When a part of the equations of a motion of considered
mechanical system is a priori, it is necessary for the solution
of the inverse problems of dynamics to build the missing
equations on the given integrated variety and to determine
the required generalized forces, parameters and interrela-
tions, which allow the realization of a motion with the given
properties. Thus, the solution of the inverse problem of dy-
namics in sufficiently general mathematical interpretation
is reduced to the construction of the motion equations of
mechanical system on a given integrated variety as proper-
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ties of required motion. In addition, the motion equations
are necessary to be defined in the form

ẍ = X(x, ẋ, t). (4)

The construction of differential equations can be carried
out using the Erugin’s method [13]. According to this me-
thod, at first the necessary and sufficient conditions must
be satisfied that the given integrals form the integrated va-
riety of the differential equation system. These conditions
can be obtained by comparing the time derivatives of given
integrals in the form of the required equations of arbitrary
functions, which are equal to zero on a given integrated
variety.

In our formulation the conditions for feasible motion
with given properties (3) can be written as

(gradẋωµ ·X) = Rµ(ω, x, ẋ, t)− ϕµ; µ = 1, ...,m, (5)

where

ϕµ = (gradxωµ · ẋ) + ∂ωµ
∂t , Rµ(ω, x, ẋ, t) – functions, which

are identically equal to zero at cµ 6= 0 and any at
cµ = 0, and equal to zero on integrated variety Ω,
for example, they can be holomorfic functions of va-
riables ω1, ..., ωn in area Ωε at t  t0 , which have
members not less than first order in the decomposi-
tion on degrees of these variable.

The received equations (5) are the equations for the
defining the right hand side of equations (2).

In the case of m = n , we can find the required equations
directly solving the equations (5):

ẍν =
n∑
i=1

∆iν

∆
(Ri − ϕi), (6)

where

∆ =
∣∣∂ω
∂x

∣∣m
m
6= 0 ;

∆iν – algebraic adjunct for element i of the determinant ∆.

If m < n, it is more convenient to find the vector-
function X of the right parts of the equations as a sum,

X = Xν +Xτ , (7)

where vectorXν is ortogonal to variety Ωẋ{ω(x, ẋ, t)x=inν =
0}, and it can be found up to the Lagrange multipliers:

Xν =
m∑
i=1

λigradẋωi,

and the vector Xτ is a component of vector-function along
variety Ωẋ , it is determined by a condition

(gradẋωµ ·Xτ ) = 0;µ = 1, ...,m. (8)

By substituting vector-function X in the form (7) into
conditions of feasible motion (5), we get

(gradẋωµ ·Xν) = Rµ − ϕµ, (9)

and taking Xτ into account we get

λi =
1
Γ

m∑
j=0

Γij(Rj − ϕj); i = 1, ...,m,

where

Γ = |gradẋωi · gradẋωj |
m
m 6= 0,Γij – algebraic adjunct of ele-

ment i, j of the determinant Γ.

Thus, we finally get

Xν =
1
Γ

1,m∑
i,j

Γi,j(Rj − ϕj)gradẋωj .

The components of vector-functions Xτ are determined
by solving a system of the linear equations (8) and can be
written as

Xτ
r = −

n∑
s=m+1

DrsQs, r = 1, ...,m,

where

Xτ
s = DQs ;

Drs – the determinant, which is received by replacing its

column i to column s of a matrix
(
∂ω
∂ẋ

)m
n

;
Qs = Qs(x, ẋ, t) – any functions.

So, the required equation system (1) can be written in
the following form:



ẍr =
1
Γ

1,m∑
i,j

Γi,j(Rj − ϕj)
∂ωi
∂ẋr
−

n∑
s=m+1

DrsQs,

r = 1, ...,m,

ẍs =
1
Γ

1,m∑
i,j

Γi,j(Rj − ϕj)
∂ωi
∂ẋs

+DQs,

s = (m+ 1), ..., n.

(10)

As we see, the solution of a general problem of construc-
tion of the motion equations contains unknown functions
Rj(ω, x, ẋ, t) and Qs(x, ẋ, t) , which are not considered in
this paper. Surely, these functions must be chosen so that
conditions of existence and uniqueness of the solution of
combined equations (10) in area Ωε are satisfied.

The constructed system of the equations (10), which
allows the realization of a motion with given properties (5),
can be presented in the form of a vector equation
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ẍ =
1
Γ

1,m∑
i,j

Γi,j(Rj − ϕj)gradẋωi +Xτ , (11)

where vector Xτ is determined by conditions (8).
We obtained the solution in a broad statement of the

problem using the universality of method, and the received
solution can be used for construction of the equations of a
motion in many inverse problems of dynamics.

We notice, when we solve of inverse problems of dy-
namics in some special cases, it is expedient to construct
equations of a motion using only some of given integrals at
first, and then to build missing equations using the rema-
ining given integrals.

Conclusions

1. The modular approach for designing and creating po-
sitioning systems, the development of the concept of
constructive integration of mobile parts of several co-
ordinates in one execution multi-coordinate electro-
mechanical converter, which include the mathemati-
cal description of processes in the multi-coordinate
drive, method for synthesis of parameters and me-
chatronic systems are proposed.

2. In received expressions for control action there are
some functions, equal to zero at the motion program if
the motion occurs without deviations from the given.
If there is the deviation from the program, control
action is necessary to be found in view of stability.

3. A development of the common theory of construction
of multilevel multi-coordinate robot systems devices
by dynamic criteria based on solution of inverse dy-
namics problems is described.
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