
CERMET: A LIGHTWEIGHT MULTITHREADING BASED
ON THE COMPLETELY EXPLICIT RESOURCE
MANAGEMENT FOR REAL-TIME SYSTEMS

Yauhen Klimiankou
Department of Software for Information Technologies, BSUIR

Minsk, Belarus
E-mail: klimenkov@bsuir.by

Design and development of embedded and real-time applications are challenging. Multithreading allows to split
of the sophisticated applications into multiple tasks with clearly defined priorities of execution. We design a new
subsystem of multithreading for microkernels, that is targeted to the embedded, real-time and mission-critical
operating systems – CERMet. CERMet is based on the ideas of completely explicit resource management.

I. Introduction

The experience accumulated during decades
of production and usage of embedded and real-
time applications tells that their design and
development are challenging. Reasons for this
are a stringent resource constraints coupled
with demanding requirements imposed to such
systems. Real-time systems require high level
of determinism, predictability and robustness
provided in the hardware environment with low-
power processor and small amounts of memory.
Complexity of embedded and real-time applications
grows continuously forcing developers rely more and
more on the operating system support.

Multithreading allows to split of the
sophisticated application into multiple tasks
with clearly defined priorities of execution. In
conjunction with real-time scheduling policies
multithreading constitute a main tool for
management of the system temporal behavior.
While dynamical multithreading is beneficial,
creation and destruction of threads in run time
is still the one of the sources of unpredictability in
the system and introduces performance penalty.

We design a new subsystem of multithreading
for microkernels, the CERMet, targeted to the
embedded, real-time and mission-critical operating
systems. It is based on the idea of the
completely explicit management and control on the
system resources. The multithreading subsystem of
microkernel performs only transformation of system
resources and provides a guarantee of their strict
isolation. Full control on the system resources using
during thread creation and destruction on the
level of user applications leads to the higher level
of efficiency, determinism and predictability with
shortening and simplification of kernel code.

In this paper, we introduce the lightweight
multithreading based on completely explicit
resource management – CERMet. Specifically, we
describe the underlying ideas of the CERMet to
show its ability to support design and development
of more deterministic, predictable and efficient
applications in the context of limited resources of
embedded, real-time and mission-critical systems.

II. Typical model of multithreading

In this section, we give an overview of the
classical thread management model which is typical
for the modern operating systems.

Multithreading is a well-known concept which
has matured and popularized more than two
decades ago in the world of *NIX family of OSes
[1]. Its popularity was recently significantly boosted
by wide spreading of multicore microprocessors and
microcontrollers. Models of multithreading with
explicit support from the OS kernel (1:1 and 1:M)
are dominant nowadays. Due to this, kernels with
multithreading support are de facto standard in the
world of modern operating systems. This rule affects
not only well-known desktop OSes [2], but also a
populous world of embedded and real-time OSes [3].

Concept of threads is especially beneficial for
the real-time systems [4], because such systems
take special care about predictability, which they
reach, in high degree, through careful scheduling
of all activities going in the system and special
interrupt handling techniques. Multithreading
allows to perform different activities concurrently
and execute each of them with its own priority.
Thus, multithreading, with using special scheduling
policies and careful prioritization of activities,
allows to achieve more predictable timing behavior.
At the same time, concept of threads reduces
performance penalty and latency of task switching,
which are inherent to the classical multiprocessing
model. Combination of both advantages gives
system developers enough design space to build
advanced real-time architectures like threaded
interrupt handling.

Classical thread management model inherited
by POSIX from early UNIX implementations
is built around three operations: creation of
a thread, waiting a thread termination and
termination of a thread [1]. Creation of a thread
is a synchronous operation, during which kernel
implicitly transforms basic system resources into
new high-level system resource – child thread.
Destruction of a thread, including its disassembling
into basic system resources, is performed in two
steps: termination (performed by child thread)

162

Би
бл
ио
те
ка

 БГ
УИ
Р



and disassembling (performed by parent thread),
and requires rendezvous between parent and child
threads. Parent thread states to the kernel its
intention to block itself and wait child termination
using Wait Thread operation. On the opposite
side, child thread invokes Exit Thread operation to
terminate itself execution. Once parent is in waiting
state and child in the exit state, the rendezvous
is established. Reaching the rendezvous leads to
unblocking of the parent thread and disassembling
of the child thread into basic system resources. This
disassembling performed by kernel implicitly.

III. Approach used by the CERMet

Thread is a high-level system resource which
is built from physical memory, virtual memory (slot
in scheduler table of threads) and CPU time share.
CERMet exploits the ideas of explicit resource
management introduced by seL4 for management
of all three kinds of system resources.

Determinism. Management of system
resources that is hidden in the kernel creates
a lack of determinism on the application side.
Indeterminacy is a result of lack of visibility of
kernel state from the application and lack of
the strict inter-process (inter-thread) resources
isolation. Applications in such systems run with
a permanent risk of failure due to the exhaustion
of system resources (Deny of Service attack).

Predictability. Actual number of processor
ticks spending in creation and destruction of the
thread strongly depend on the actual state of
shared resources in the moment, when operation
is performed, and from the adopted by kernel
resource allocation/deallocation policies. Due to
this, it is hard to provide guarantees about
maximum number of processor cycles required
for each call of the operation in the dynamical
system, as well as, maintain such guarantees in
long-term perspective with constantly evolving OS
kernel. Lack of performance isolation of thread
management operations between processes of the
system and complex nature of its dependency from
the OS kernel creates significant challenge for real-
time applications.

Thread construction and termination. In
CERMet all three kinds of basic system resources
involved into thread management are explicitly
managed by user space applications. Due to this,
application is able to allocate and to reserve all
required system resources before start of actual
functioning or die explicitly.

Construction of the thread consumes
computer resources of all three kinds which are
owned by parent. Destruction of the thread releases
them back to the parent allowing their reuse in
future. CERMet moves lookup and accounting
of the thread table slot and physical memory
from the scope of the kernel responsibilities into
scope of application responsibilities. Thus, kernel

path of the thread management operations become
straightforward and strictly bounded in time. On
the another hand, CERMet allows application
which have full info about resource management
policies to make entire Thread Create operation
strictly bounded in time and thus completely
predictable and deterministic.

CERMet splits the wait() operation into
two independent operations: waiting of thread
termination notification and disassembling of the
thread into basic system resources. Such splitting
provides to the application full control on the time
of disassembling and released resources.

Kernel designed with CERMet performs only
resource ownership control and functions of resource
transformations and does not contain any resource
allocation policies. Explicit identification of the
resources which are converting into the thread
allows eliminate generally unbounded lookup
operations. As a result, real-time application
becomes able to high level of resource and
performance isolations between threads, and thus
high level of determinism and predictability, and full
control on the owned resources. Finally dependency
of the application time behavior from the kernel
becomes straightforward, thus maintaining of the
application in the context of the constantly evolving
OS kernel becomes simple.

IV. Conclusion

CERMet multithreading subsystem based
on the ideas of explicit resource management,
significantly improves control of application on the
resources, temporal behavior and determinism of
the system. Furthermore, it simplifies design and
implementation of the multithreading subsystem
of the operating system kernel. Embedded and
real-time systems can gain especial benefits from
the improved level of determinism, predictability,
resource isolation, performance and minimalist
footprint of the CERMet. At the same time
CERMet can find its application in the domain
of general purpose microkernels. We are currently
working on improving the application level API and
runtime library for our experimental kernel which
will support CERMet on applications side.

1. D. Marshall. Programming in C.
https://users.cs.cf.ac.uk/Dave.Marshall/ C/, March
1999. [Online; accessed 09-October-2016].

2. R. Love. Linux System Programming: Talking Directly
to the Kernel and C Library. O’Reilly Media, Inc., 2007.

3. eCos Reference Manual, 1.3.1 edition, 2008.
4. D. Beal. Linux As a Real-Time Operating System.

Freescale Semiconductor White Paper, 2005.
5. G. Klein, K. Elphinstone, G. Heiser, J. Andronick,

D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. sel4: Formal verification of an os kernel.
In Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles, SOSP ’09, pages 207–
220, New York, NY, USA, 2009. ACM.

163

Би
бл
ио
те
ка

 БГ
УИ
Р




