
Symbolic Tensor Differentiation
for Applications in Machine Learning

Andrei Zhabinski
Belarussian State University

of Informatics and Radioelectronics
Minsk, Belarus

Email: andrei.zhabinski@gmail.com

Sergey Zhabinskii
Belarussian State University

of Informatics and Radioelectronics
Minsk, Belarus

Email: sergey.zhabinskii@gmail.com

Dzmitry Adzinets
Belarussian State University

of Informatics and Radioelectronics
Minsk, Belarus

Email: adzinets@bsuir.by

Abstract—Automated methods for computing derivatives of
cost functions are essential to many modern applications of ma-
chine learning. Reverse-mode automatic differentiation provides
relatively cheap means for it but generated code often requires a
lot of memory and is hardly amenable to later optimizations.
Symbolic differentiation, on the other hand, generates much
more flexible code, yet applying it to multidimensional tensors
is a poorly studied topic. In this paper, we present a method
for symbolic tensor differentiation based on extended Einstein
indexing notation, which allows to overcome many limitations
of both - automatic and classic symbolic differentiation, and
generate efficient code for CPU and GPU.

Keywords: symbolic differentiation, Einstein notation, ma-
chine learning.

I. INTRODUCTION

A significant portion of machine learning (ML) algorithms
directly relies on gradient-based optimization methods. As
their name states, these methods require computing a gradient
of a loss function on each step of optimization. Simple models
like logistic regression have well-known formulas for comput-
ing partial derivatives. However, recent progress in machine
learning and especially deep neural networks has given a rise
to much more complicated models and loss functions.

Manually computing gradients of such functions is time-
consuming and error-prone, so often computer-based methods
are used instead. Such methods fall into several categories,
and each category has their advantages and disadvantages. In
this paper, we present a method that combines parts of 2 of
these categories and is specifically designed with a focus on
machine learning applications. One important difference from
other approaches is that our method also supports efficient
calculation of derivatives of functions from Rm to Rn where
both m and n are large, whereas other methods either require
one of them to be small (e.g. [1], [2]), or can’t handle vector
functions at all (e.g. [3], [4]).

The rest of this paper is structured as follow. In the next
section, we revisit major families of computer-based differ-
entiation algorithms and explain where our method falls in.
In section 3 we describe actual method as applied to scalars
(numbers), while in section 4 we extend it to higher-order
tensors using Einstein notation.

II. OVERVIEW OF COMPUTER-BASED DIFFERENTIATION
METHODS

To the best of our knowledge, most computer-based differ-
entiation methods are divided into 3 main categories:

1) Numeric (also known as finite difference methods)
2) Symbolic
3) Automatic
Numeric differentiation (ND) methods are the simplest

ones and directly rely on the definition of derivative. We say
that df

dx is a derivative of a function f(x) with respect to x if:

df

dx
= lim

∆x→0

f(x + ∆x)− f(x)

∆x

Given this definition, we can calculate derivative of any
function by computing it at x and x+ ∆x where ∆x is some
little constant, and then dividing the result by that constant.

The major advantage of this method is that it’s able to
compute derivatives of any function differentiable at both -
x and ∆x. The main disadvantage comes from complexity of
choosing good ∆x: too small values may lead to round-off
errors during floating point operations, while too large values
lead to weak approximation of the real value of a derivative.
Attempts have been done to improve precision using multiple
differences (e.g. [5]), but in general case accuracy of numeric
differentiation stays unstable.

Symbolic differentiation (SD) takes a different approach
- instead of evaluating a function, it constructs a symbolic
expression representing its derivative. Technically, symbolic
differentiaton relies on a fact that algebraic expressions are
either primitive (e.g. summation, product, exponent, etc.) or
a combination of the above. For primitive expressions there’s
already a well-known set of rules, i.e. d

dxcos(x) = sin(x).
Combined expressions are handled using the chain rule, i.e.
if z = z(y) is a function of y which in turn is a function
y = y(x) of x, then the derivative dz

dx may be expressed as:

dz

dx
=

dz

dy

dy

dx

Or, in case of several intermediate functions yi:

dz

dx
=

∑
i

dz

dyi

dyi
dx

1338 MIPRO 2017/CIS

Би
бл
ио
те
ка

 БГ
УИ
Р

The chain rule and differentiation rules for primitive expres-
sions make it possible to divide any algebraic expression into
primitive parts, differentiate each part and then combine the
results. Here we demonstrate this method by example.

Let’s say we want to differentiate expression f(x) =
sin(x2). Since there are only 2 calls, we can introduce one
intermediate function g(x) so that f(x) = sin(g(x)). Using
the chain rule from above we get:

df

dx
=

df

dg

dg

dx
=

d(sin(g))

dg

d(x2)

dx

From primitive rules we know that d
dg sin(g) = cos(g)

and d
dxx

2 = 2x. Replacing g with its original value and
multiplying two derivatives we get:

df

dx
= cos(x2)× 2x

Which is the correct derivative of the specified function.
Unlike numeric approach, symbolic differentiation produces

code for exact calculation of derivatives. Also, in many cases
this code is as efficient as possible and close to what a human
expert would derive. Moreover, produced symbolic expression
may then be further optimized (e.g. to fit memory requirements
or improve numeric stability) or even translated to GPU or
any other computation engine, which is extremely valuable
property in the context of neural networks and related models.

On the other hand, symbolic differentiation has much more
limited applicability. First of all, since the goal of this family
of methods is to produce symbolic expression of a derivative, it
is limited to functions continuously differentiable in all points.
In computer program, however, most conditions and loops
introduce discontinuity, so they are normally not allowed.
Another restriction of symbolic differentiation is that most
practical implementations (including highly adopted [3] and
[4]), are essentially univariate, i.e. they don’t support vector
inputs and are thus inapplicable to most machine learning
functions.

Automatic differentiation (AD) is a set of techniques to
numerically evaluate the derivative of a function. Similarly to
symbolic differentiation, it decomposes algebraic expressions
into a set of primitive subexpressions and then uses the
chain rule to combine the results. Unlike symbolic approach,
however, AD doesn’t produce a new expression, but only
computes a derivative at a point, so it can easily handle
conditions and loops. AD has 2 main modes: forward and
reverse.

Forward-mode AD consists of a single pass from input
arguments to the value of a function, during which both - value
of the function and its derivative - are calculated. Typically,
this mode is implemented using dual numbers - a special
extension of real numbers with additional part that holds the
derivative of a variable in question. However, this method has
pretty bad complexity for function Rm → Rn where m� n
such as most loss functions in machine learning. Thus we
don’t dive deeper in the description of this method and guide
interested reader to [2].

Reverse-mode AD consists of 2 passes. On the forward pass
it computes values of all primitive expressions and records
them into intermediate variables on a so-called ”tape”. On
the reverse pass, the method starts with the derivative of
output variable by itself (i.e. always 1) and traverses expression
tree backward to calculate derivatives of the output w.r.t.
each of intermediate variables. Here’s an example of such
computation.

Let’s say we want to differentiate function z = sin(x2) at
point x = 2. This complex expression contains 2 primitive
expressions, which we compute and immediately write the
results onto the tape:

1) y = x2 = 4
2) z = sin(y) ≈ −0.756

By convention, we also replace input and output variables
by new indexed names to make all variables look similar. This
way we get:

1) w1 = x = 2
2) w2 = w2

1 = 4
3) w3 = sin(w2) ≈ −0.756

We seek to find derivative dz
dx = dw3

dw1
. We start with the

fact that the derivative of the output variable w.r.t. itself is
dw3

dw3
= 1 (the proof is trivially inferred from the definition of

derivative).
From the chain rule we know that dw3

dw2
= dw3

dw3
× dw3

dw2
. We

already know that dw3

dw3
= 1 and from primitive rules we also

know that d(sin(w2))
dw2

= cos(w2) = cos(4) ≈ −0.654, so
multiplying these parts we get dw3

dw2
= 1×0.654 = 0.654. Note,

that AD doesn’t ever create or transform symbolic expressions,
but just calculates actual values of intermediate variables and
their derivatives.

Reverse-mode AD has gained particular popularity in the
field of machine learning and is implemented in such frame-
works as Theano [6] and TensorFlow [7], as well as in dedi-
cated libraries such as AutoGrad [8]. Strengths of this method
include efficient (in terms of processing time) calculation
of derivative of functions Rm → Rn where m � n and
transparent handling of multivariate vectors. Downsides of AD
include high memory usage (because of the need to keep all
variables on a tape during both - forward and reverse pass) and
lack of symbolic representation that could be used for further
optimizations and code generation.

There’s also a few methods that try to combine strengths of
symbolic and automatic differentiation. One notable example
is D* algorithm from [9]. In their paper, Guenter et al.
describe a library in C++ that overloads common algebraic
operations for their V(ariable) class to produce expression
graph, and then aggressively optimize this graph to eliminate
repeating blocks. D* allows for vector-valued functions where
each output component may represent an independent function
of input arguments. This gives flexibility in defining vector-
valued functions, but in the worst case (i.e. when there are no
repeating blocks to be eliminated) may result in a run time
proportional to the number of output values.

MIPRO 2017/CIS 1339

Би
бл
ио
те
ка

 БГ
УИ
Р

Our method is similar in spirit to D*, but instead of
supporting independent functions, we limit output components
to functions of the same basic structure and only different
indices (e.g. zi = f(xj , yk)). This is much more common in
machine learning and enables generating more compact code
with much smaller run time. Moreover, our method works with
functions that output not only vectors, but also matrices and,
in general, tensors of any rank.

In the next section we describe our method in a way that
works for scalars, and in section 4 we extend this framework
to support higher-order tensors.

III. SYMBOLIC METHOD FOR SCALARS

The ultimate goal of our method is to be able to produce
symbolic derivatives for algebraic functions commonly used
in machine learning. Since we seek for a symbolic represen-
tation, we limit our framework to continuously differentiable
function, i.e. we don’t support conditional operators and loops
as they may, in general case, introduce points of discontinuity.
To our mind, this is not a hard limitation in the context
of ML since most loss functions that use loops can be
transformed into a form with summation. We do, however,
support operators like min, max, sign and similar that may
be thought of as conditional, but don’t create discontinuity
points.

In general, our method is based on approach used in reverse-
mode AD, but instead of computing values of variables and
derivatives, we compose their symbolic expressions to build
a computational graph suitable for further optimization. For
demonstration purposes, let’s consider expression z = x1x2 +
sin(x1) and find derivatives dz

dx1
and dz

dx2
.

Forward pass in our case consists of 2 stages: recording
all primitive operations onto a tape and evaluating ”example
values” (which we explain later in this section). Recording
operations includes parsing subexpressions into intermediate
variables and constructing a list of primitive expressions, e.g.
for expression above such a list would look like this:

1) w1 = x1

2) w2 = x2

3) w3 = w1 × w2

4) w4 = sin(w1)
5) z = w5 = w3 + w4

This expression list, however, lacks type information needed
to distinguish between scalars and higher-rank tensors. To
obtain this information, we introduce a notion of ”example
values” - values attached to each variable and having the same
type as real values could have. E.g. we can use value 1 for
x1 and x2 to indicate that input parameters are scalars, or
random 2x2 matrices to indicate that they are instances of
tensor-2. Note, that real values passed to generated expression
later don’t need to have the same value or size (for tensors),
but only the same type and number of dimensions.

After we have obtained example values of input parameters
we can evaluate each primitive expression and infer example
values for all intermediate and final variables.

Reverse pass, just as in the case of AD, starts with the
derivative of an output variable w.r.t. to itself and propagates
derivatives back to input variables. However, instead of propa-
gating concrete values we aggregate symbolic expressions, i.e.
build a formula describing how to calculate it from input and
intermediate variables. We demonstrate it by example:

1) dz
dw5

= dw5

dw5
= 1

2) dz
dw4

= 1× 1 = 1

3) dz
dw3

= 1× 1 = 1

4) dz
dw1

= 1× cos(w1) = cos(w1)

5) dz
dw2

= 1× w1

6) dz
dw1

= cos(w1) + 1× w2 = cos(w1) + w2

Note that in our calculations we encounter dz
dw1

twice - at
lines 4 and 6. First time we calculate derivative of dz

dw1
via w4

only, while second time we also include the derivative via w3.
Also note, that we simplify expressions where possible, e.g.
use 1 instead of 1× 1 - although it’s not strictly necessary, it
simplifies reading and reduces run time of implementation.

So we finish with 2 formulas:

dz

dx1
=

dz

dw1
= cos(w1) + w2

dz

dx 2
=

dz

dw2
= w1

These formulas may then be applied to any (scalar) input
values x1 and x2 to immediately obtain the result.

IV. SYMBOLIC METHOD FOR HIGHER-ORDER TENSORS

It’s tempting to apply the same approach to differentiation
of higher-order derivatives such as vectors and matrices. For
example, for dot product of two vectors z = xxx·yyy we can easily
show that dz

dxxx = yyy. However, this approach doesn’t work for
more complex operations because not all such derivatives have
symbolic representation. One such example is the matrix-by-
vector product:

WWWxxx

In this case derivative ∂yyy
∂WWW is a tensor with 3 dimensions

that cannot be straightforwardly expressed as a combination
of input vectors and matrices.

Although we cannot infer symbolic rules for tensors them-
selves, we still can do it for tensor components. We note here
that for any function on tensors each component of an output
tensor is a function of zero or more components of input
tensors. For example, matrix-by-vector product above can be
rewritten as: ∑

k

Wikxk, ∀i

Now instead of a tensor expression, we have a set of scalar
expressions over indexed variables Wik and xk, which is much
easier target. However, before we move to differentiation of
these indexed expression, we need to make one more change
to out notation.

1340 MIPRO 2017/CIS

Би
бл
ио
те
ка

 БГ
УИ
Р

Since we want to use symbolic differentiation from a
programming language, we need a way to represent such
expressions in programming notation, and symbols like

∑
and ∀ don’t have straightforward counterpart in programming.
Even if we find appropriate representation, tensor expressions
in index notation very quickly become bulky. Fortunately,
these issues have already been addressed previously and have
a solution in so-called Einstein indexing notation or just
Einstein notation.

According to classic Einstein notation [10], unless otherwise
stated:

1) a summation is assumed over all indices that appear
twice in a product

2) no summation is assumed over indices that appear only
once

Given these rules, we can rewrite matrix-by-vector product
in a shorter form:

Wikxk

which also plays well with array indexing notation in many
programming languages, e.g. in Python or Julia:

W[i , k] ∗ x [k]

Note, that for an index to be a ”sum” index it should
appear exactly in the same product term. For example, in the
following expression index i, although appearing twice, is still
”for all” index:

xi + yi

The ”unless otherwise stated” part is also important. In
particular, when an expression is an equation, the common
approach is to consider all indices appearing on the left-hand
side (LHS) to be ”for all” and all the others - ”sum” indices.
E.g. we may write:

y = xi

to indicate summation over components of vector xxx.
Although Einstein notation is quite powerful by itself, it was

designed for humans and doesn’t cover a few important cases
that may arise during automatic expression processing. Below
we describe these cases and introduce several extensions to
classic Einstein notation that help to overcome them.

First of all, since summation is a special operation that
requires either product term or an equation with LHS, how
do we represent it when none of these conditions is available?
For example, how do we express:∑

i

xi

To deal with such cases we introduce a notion of pseudo-
one - a special object similar to a tensor of all ones, but
with undefined size. For example, we write one-dimensional
pseudo-one as:

1i

This object is only valid when it’s being multiplied by other
variables, and in this case it simply results in summation over
pseudo-one indices. Now, having a notion of pseudo-one, we
can represent a sum of vector components as:∑

i

xi → xi1i

Another corner case is conditional expressions. For exam-
ple, as we will show later, in expression yi = Wikxk derivative
∂yi

∂Wmn
is a 3 dimensional tensor with components defined as:

∂yi
∂Wmn

=

{
xn, if i = m,

0, otherwise.

Again, this expression is pretty inconvenient to work with,
especially when we have to multiply it by other expressions
of the same kind. To tackle with it, we introduce guards -
conditional subexpressions on indices that either pass the main
expression as is (if the condition is true) or turn it into zero
(otherwise). For example, derivative ∂yi

∂Wmn
can now be written

as:

∂yi
∂Wmn

= xn |i = m

where everything after a bar is a guard.
One may argue that this notation is limited because it

assumes one of conditional branches to be zero and it’s not
possible to represent, for example, such expression:

Zimn =

{
xn, if i = m,

yn, otherwise.

Indeed, notation with guards is optimized for conditions
with zero branch, but one can still represent other conditions as
a sum of separate branches multiplied by postitive or negative
condition. E.g.:

Zimn = (xn|i = m) + (yn|i 6= m)

Now, having this extended Einstein notation in mind, we
can eventually describe our method for symbolic tensor dif-
ferentiation.

Our method consists of 5 principal steps:
1) parse expression into a list of primitive expressions
2) convert each primitive expression to Einstein notation
3) apply known differentiation rules to primitive expres-

sions
4) combine resulting derivatives using the chain rule
5) convert derivative expression from Einstein notation to

vectorized one
We do expression parsing exactly the same way as we did

previously: each function call is transformed into a separate
primitive expression. For example, linear transformation:

MIPRO 2017/CIS 1341

Би
бл
ио
те
ка

 БГ
УИ
Р

yyy = WxWxWx + bbb

is parsed into two simpler expressions:

ttt = WxWxWx

yyy = ttt + bbb

We convert from vectorized into Einstein notation using a
set of predefined rules. Each rule simply describes how compo-
nents of output tensor depend on components of input tensors.
Since at this step we deal only with primitive expressions, we
only need to define one rule for each operation and operand
types plus one special rule for elementwise operations (e.g.
Hadamard product, which we denote here with ◦). The rules
are easy to infer, so we provide here only a few examples for
demonstration purposes:

yyy = WxWxWx → yi = Wikxk

ZZZ = XXX ◦ YYY → Zij = Xij × Yij

y = sum(xxx) → y = xi × 1i

Rules for finding derivatives of primitive expressions in
Einstein notation are similar to those of scalar expressions,
but with two exceptions:

1) all variables are indexed, and
2) where derivative turns zero, guards are used
We designate tensor derivatives in Einstein notation as:

∂YI

∂XJ

where Y is the dependent variable, X is the variable
we differentiate with respect to, and I and J are sets of
unique indices of appropriate length. For example, given an
expression:

yi = Wikxk

derivative ∂yi

∂Wmn
describes how ith component of output

vector yyy depends on (m,n)th component of input matrix WWW .
It’s easy to show that yi depends only on ith row of matrix
WWW , i.e. derivative is non-zero only when i = m, and when this
condition holds, changing Wmn by 1 leads to corresponding
change in yi by xn. We write both these statements as:

∂yi
∂Wmn

= xn |i = m

Other rules are inferred in a similar way, so we show only
a couple of them for reference:

yi = Wikxk → ∂yi
∂xm

= Wim

Zij = Xij × Yij → ∂Zij

∂Xmn
= 1 |i = m, j = n

y = xi × 1i → ∂y

∂xm
= 1

We combine derivatives of primitive expressions using
the standard chain rule. If guards are present in one or
both expressions, they are combined together. For example,
if we have derivatives of 2 primitive expressions in the same
operator chain:

∂Zij

∂Ymn
= Unj |i = m

∂Ymn

∂Xst
= Wtn |m = s

then after applying the chain rule we get:

∂Zij

∂Xst
= UnjWtn |i = m,m = s

which is naturally simplified to:

∂Zij

∂Xst
= UnjWtn |i = s

It’s also worth to note that despite automatic construction
the resulting expression is still valid in Einstein notation: we
indeed sum out n index and leave all the others.

Finally, we convert expressions in Einstein notation back
to vectorized one using predefined rules. Note, that conversion
between vectorized and Einstein notation doesn’t make one-
to-one relation, but rather many-to-one (in both directions).
For example, both of the following rules are used if different
contexts:

y = xi1i → y = sum(xxx)

y = xi → y = sum(xxx)

Both expressions are valid and both designate sum over
components of vector xxx.

V. CODE GENERATION FOR GPU

Conversion to vectorized notation may be seen as code
generation for executing on CPU (central processing unit).
But it’s not the only possible backend - we can equally
generate code for alternative runtime systems. One popular
choice of such systems is GPU (graphics processing unit)
which provides means for executing code with very high level
of parallelism.

In a typical GPGPU (general-purpose GPU) program, data
is copied into device’s memory, and then a number of so-
called kernels is run over them. Each kernel consists of a
set of relatively simple instructions executed on each datum
in parallel (up to the number of available GPU threads).
This plays especially well with our Einstein notation which
essentially is a way to describe how to calculate each output
variable.

Below we describe several techniques for code generation
for GPU that we used in our work.

One of the major bottlenecks in GPU computing is data
transfer between main and device’s memory, so we try to
avoid it as much as possible. Fortunately, in our expressions,

1342 MIPRO 2017/CIS

Би
бл
ио
те
ка

 БГ
УИ
Р

we always know input and output variables, so we load them to
and from a device exactly once for each function we analyze.

Another advantage of upfront expression analysis is that we
can reuse data buffers. To do this, we keep track of:

1) type and size of each variable’s buffer
2) variable’s lifetime
Each time we need to create a new temporary variable

we first look for a suitable buffer in a cache of existing
variables. If there’s one and the corresponding variable isn’t
used later than current expression, this buffer is reused. One
very frequent example is elementwise operations. E.g. the
following expression (in mathematical notation):

ci := ai + bi

is actually translated into

bi := ai + bi

(Here we use := to denote assignment in order not to abuse
equality sign =)

Another useful property of elementwise operations is that
they may be grouped into a single kernel. Enqueuing a kernel
has its own overhead, running several instructions in a single
kernel helps to fix it. For example, in our tests running a
logistic function 1/(1 + exp(−xi)) in single kernel turned
to be 1.4 times faster than running 3 separate kernels for
exponent, summation and division (0.057 ms vs 0.08 ms for
50000-element 32-bit vectors using OpenCL).

Finally, for matrix multiplication and other aggregation
functions we use a library implementing BLAS specification
[11].

VI. IMPLEMENTATION IN JULIA

We provide a reference implementation in XDiff.jl [12]
package in the Julia programming language. Below we provide
the rationale for choosing the language and some other design
decisions.

We chose Julia for several main reasons:
1) Julia supports literals for vectors and matrices and a

large number of built-in mathematical functions
2) it also supports symbolic programming, i.e. variables

and expressions may be represented as first-class citizens
in Julia

3) operator overloading allows extendng semantics of ex-
pressions to support, for example, symbolic product and
summation

For comparison, in Python/C++ TensorFlow the whole new
language with its own abstract syntax tree and a set of standard
functions had to be designed for the same purposes.

Below we describe how we transfer some concepts from
mathematical to programming notation.

As we’ve already described in the text, we represent variable
indices using standard array indexing, e.g.:

y [i] = W[i , k] ∗ x [k]

Since Julia doesn’t support indexing of number literals, we
replace pseudo-one notation 1n with symbol I[n].

Finally, to represent guards we use index comparison (e.g.
(i == m)) and add it as an additional product term to the main
expression. E.g.

∂yi
∂Wmn

= xn |i = m

is translated into

dy dW [i ,m, n] = x [n] ∗ (i == m)

When being multiplied by a number, boolean expression
(i == m) is converted into either 1 (true) or 0 (false). Thus
when the condition holds, guard simply disappears, otherwise
the whole expression turns into zero.

We generate code for GPU in OpenCL’s format. This choice
is due to OpenCL’s widespread and portability, however,
described techniques can be equally applied to other GPGPU
systems (notably, CUDA).

VII. CONCLUSION

We have introduced a method for symbolic tensor differen-
tiation using extended Einstein notation. The proposed method
can be efficiently applied to functions where both - input
and output - are tensors. We have also described techniques
for code generation for CPU and GPU. The correctness of
approach is proved by our reference implementation.

REFERENCES

[1] J. Revels, M. Lubin, and T. Papamarkou, “Forward-mode automatic
differentiation in julia,” arXiv:1607.07892 [cs.MS], 2016.

[2] B. Carpenter, M. D. Hoffman, M. Brubaker, D. Lee, P. Li, and M. Betan-
court, “The stan math library: Reverse-mode automatic differentiation
in C++,” CoRR, vol. abs/1509.07164, 2015.

[3] Wolfram Research, Inc., “Mathematica 8.0,” 2010.
[4] SymPy Development Team, SymPy: Python library for symbolic math-

ematics, 2016.
[5] B. Fornberg, “Generation of finite difference formulas on arbitrarily

spaced grids,” Mathematics of Computation, vol. 51, no. 184, pp. 699–
706, 1988.

[6] Theano Development Team, “Theano: A Python framework for
fast computation of mathematical expressions,” arXiv e-prints,
vol. abs/1605.02688, May 2016.

[7] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015. Software available
from tensorflow.org.

[8] D. Maclaurin, D. Duvenaud, M. Johnson, and R. P. Adams, “Autograd:
Reverse-mode differentiation of native Python,” 2015.

[9] B. Guenter, “Efficient symbolic differentiation for graphics applications,”
ACM Trans. Graph., vol. 26, July 2007.

[10] K. Dullemond and K. Peeters, “Introduction to tensor calculus,” 1991.
[11] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic

linear algebra subprograms for fortran usage,” ACM Trans. Math. Softw.,
vol. 5, pp. 308–323, Sept. 1979.

[12] A. Zhabinski, “Xdiff.jl,” 2017.

MIPRO 2017/CIS 1343

Би
бл
ио
те
ка

 БГ
УИ
Р

