Министерство образования Республики Беларусь БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра менеджмента

ПРОГРАММА, МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ

по курсу «Управление качеством» для студентов специальности Э.01.03.00 заочной формы обучения

УДК 658.56 (078.5) ББК 30.607. 73 П 78

Программа, методические указания и контрольные задания по курсу «Управление качеством» для студентов инженерно-экономических специальностей заочной формы обучения / Сост. Н.И.Новицкий — Мн.: БГУИР, 1999. - 24 с.: ил. 1.

Рабочая программа, методические указания и задания для выполнения контрольных работ составлены на основе Типовой программы курса «Управление качеством», разработанной в Российской Федерации для студентов инженерно-экономических специальностей.

Составитель: Н.И.Новицкий.

Программа разработана на кафедре менеджмента. Обсуждена и одобрена на заседании кафедры 13 октября 1999 г., протокол № 2.

ВВЕДЕНИЕ

При подготовке студентов инженерно-экономических специальностей важное место занимает курс «Управление качеством». Этот курс состоит из трех разделов: 1) организация управления и технический контроль качества продукции; 2) организационно-методические основы сертификации продукции; 3) метрология в управлении качеством продукции.

В первом разделе рассматриваются вопросы объективной необходимости повышения качества продукции; системный подход к организации управления качеством продукции; отечественный и зарубежный опыт управления качеством продукции; органы управления и технического контроля качества продукции; виды и методы технического контроля качества продукции; классификация, учет, анализ брака и рекламаций.

Во втором разделе рассматриваются организационно-методические принципы сертификации продукции; правовые основы сертификации; практические системы сертификации продукции; экономические оценки по сертификации продукции, услуг и систем качества; международная практика сертификации продукции.

В третьем разделе рассматриваются вопросы общей сущности и содержания метрологии; средств измерений; организационно-правовой основы метрологической деятельности; государственного метрологического надзора; калибровки и поверки средств измерений; сертификации средств измерений; экономической проблемы метрологии в зарубежных странах.

Главной целью преподавания данной дисциплины является получение знаний студентами по вопросам организации управления и технического контроля качества продукции, стандартизации в управлении качеством, сертификации и метрологии.

Основной задачей дисциплины является изучение теоретических и методических основ управления качеством продукции с использованием современных методов и технологий, стандартов и средств измерительной техники, современных принципов сертификации продукции, организационноправовой и законодательной основы.

Теоретической базой дисциплины «Управление качеством» являются современные экономические теории и практика организационной деятельности на предприятиях, работающих в условиях рыночных отношений, а также законы «О защите прав потребителей», «О стандартизации», «О сертификации продукции и услуг», «Об обеспечении единства измерений».

1. ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ

В соответствии с учебным планом студенты заочной формы обучения экономических специальностей изучают курс «Управление качеством» непосредственно после изучения курсов «Экономика производства», «Современные информационные технологии» и «Организация производства».

Учебным планом по данной дисциплине предусмотрено чтение курса лекций, проведение практических занятий и выполнение контрольных работ. Изучение курса заканчивается сдачей экзамена. К сдаче экзамена студенты допускаются только при условии выполненной и защищенной контрольной работы.

Рекомендуется изучать курс по темам в соответствии с рабочей программой. Сначала необходимо ознакомиться с содержанием основных вопросов тем курса, затем изучить рекомендуемую литературу, обращая внимание на вопросы, выделенные в рабочей программе.

Поскольку курс тесно связан с практикой экономических отношений в условиях рынка, при изучении теоретического материала наряду с учебной и методической литературой необходимо изучить материалы, связанные с законодательной подготовкой в сфере хозяйственной деятельности Республики Беларусь, решения законодательных и исполнительных органов власти, а также опыт работы отдельных предприятий с различной формой собственности.

Самостоятельно изученный по литературным источникам материал закрепляется студентами на установочных и обзорных лекциях во время сессий, а также на консультациях.

Знание основных теоретических положений, соответствующих тем курса, облегчает выполнение контрольной работы, позволяет избежать ошибок и хорошо сдать экзамен.

Задание на выполнение контрольной работы и методические указания по ее выполнению представлены после изложения рабочей программы курса «Управление качеством».

2. РАБОЧАЯ ПРОГРАММА КУРСА «УПРАВЛЕНИЕ КАЧЕСТВОМ»

Раздел 1. Организация управления и технический контроль качества продукции

Teма 2.1.1. Основные понятия и объективная необходимость повышения качества продукции.

Основные понятия и показатели оценки качества продукции. Повышение качества — объективная закономерность развития экономики предприятия.

Экономические проблемы повышения качества продукции. Конкурентоспособность и качество продукции.

Тема 2.1.2. Системный подход к организации управления качеством продукции.

Основные понятия о системе управления качеством продукции. Системный подход к технологии управления качеством продукции.

Тема 2.1.3. Отечественный опыт управления качеством продукции.

Зарождение элементов управления качеством продукции на отечественных предприятиях. Эволюция воплощения системного подхода к управлению качеством продукции на отечественных предприятиях.

$$[1.4, 1.5, 1.6, 1.10, 1.19, 2.2, 2.4, 2.6, 2.7]$$

Тема 2.1.4. Зарубежный опыт управления качеством продукции.

Опыт управления качеством продукции в США. Опыт управления качеством продукции в Японии. Европейский опыт управления качеством продукции.

$$[1.7, 1.12, 1.13, 1.14, 1.18, 1.19, 2.3, 2.10, 2.13]$$

Тема 2.1.5. Проблемы всеобщего управления качеством.

Разработка систем качества продукции в соответствии с требованиями стандартов ИСО серии 9000. Основные принципы всеобщего управления качеством продукции.

$$[1.2, 1.4, 1.10, 1.15, 1.18, 1.19, 2.2]$$

Тема 2.1.6. Стандартизация в управлении качеством продукции.

Организационно-правовые основы стандартизации в управлении качеством. Понятие стандарта. Законодательство о стандартизации. Нормативные документы по стандартизации. Органы государственного контроля и надзора, их права и ответственность. Источники финансирования работ по государственной стандартизации. Экономические проблемы стандартизации в управлении качеством.

$$[1.2, 1.4, 1.11, 1.15, 1.18, 1.19, 1.21, 2.3]$$

Тема 2.1.7. Организационные вопросы управления качеством продукции.

Задачи, функции и структура службы технического контроля и управления качеством продукции.

Виды и методы технического контроля качества продукции. Статистические методы контроля качества продукции.

Классификация, учет и анализ брака и рекламаций. Формирование и виды затрат на обеспечение качества продукции. Методы анализа затрат на качество продукции.

Раздел 2. Организационно-методические основы сертификации продукции и систем качества

Тема 2.2.1. Сущность и содержание сертификации.

Основные термины и понятия. Испытательные лаборатории. Сертификат и знак соответствия. Обязательная и добровольная сертификация.

$$[1.3, 1.4, 1.10, 1.11, 1.12, 1.15, 1.19, 2.9]$$

Тема 2.2.2. Правовая основа сертификации.

Закон «О защите прав потребителей» и сертификация. Закон «О сертификации продукции и услуг». Полномочия государственных органов управления по сертификации.

$$[1.3, 1.6, 1.10, 1.12, 1.15, 1.17, 1.19, 2.8]$$

Тема 2.2.3. Организационно-методические принципы сертификации.

Основные принципы по сертификации. Порядок и правила проведения сертификации продукции и услуг. Схемы сертификации. Органы по сертификации. Маркировка продукции. Сертификация отечественной и зарубежной продукции. Экономические оценки работы по сертификации продукции, услуг и систем качества.

Раздел 3. Метрология в управлении качеством продукции

Тема 2.3.1. Сущность и содержание метрологии.

Метрология – наука об измерениях. Виды измерений. Физические величины как объекты измерений. Международная система единиц.

Тема 2.3.2. Средства измерений.

Виды средств измерений. Эталоны, их классификация и виды. [1.9, 1.10, 1.11, 1.15,1.19]

[1.9, 1.10, 1.11, 1.13,1.19]

Тема 2.3.3. Организационно-правовые основы метрологической деятельности.

Закон об обеспечении единства измерений. Ответственность за нарушение законодательства по метрологии. Организационные основы Государственной метрологической службы. Государственный метрологический контроль за средствами измерений. Лицензирование деятельности юридических

и физических лиц по изготовлению, ремонту, продаже и прокату средств измерений. Сертификация средств измерений. Экономические проблемы метрологии.

[1.9, 1.10, 1.11, 1.15, 1.19]

Тема 2.3.4. Метрология в зарубежных странах.

Метрология в странах Западной Европы. Метрология в Восточной Европе и странах СНГ.

[1.9, 1.10, 1.11, 1.15, 1.19].

Тема 2.3.5. Международные организации по метрологии.

Международная организация мер и весов. Международная организация законодательной метрологии. Основные международные нормативные документы по метрологии.

[1.9, 1.10, 1.11, 1.15, 1.19]

3. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

Контрольная работа включает один теоретический вопрос по курсу «Управление качеством» и одну задачу.

Задания для выполнения контрольной работы выбираются студентами по двум последним цифрам номера своей зачетной книжки, согласно табл. 3.1. В тех случаях когда студенту в соответствии с номером своей зачетной книжки выбрать вариант по табл. 3.1. затруднительно, он должен обратиться за помощью к преподавателю-консультанту.

Номер зачетной книжки должен быть обязательно указан на титульном листе контрольной работы (образец титульного листа приведен в прил. 1).

Контрольная работа, представленная студентом без указанного номера зачетной книжки, а также выполненная не по своему варианту, не принимается преподавателем к рассмотрению.

Перечень вопросов для выполнения контрольной работы по собственному варианту выбирается из списка вопросов (прил. 2).

Ответы на контрольные вопросы необходимо давать сжато, четко и конкретно со ссылкой на используемую литературу, справочники, каталоги, нормативные и законодательные документы.

Задача к контрольной работе и методические указания по ее решению приведены в разделе 4. Варианты замеров параметров студент устанавливает самостоятельно, на свое усмотрение, относительно заданной номинальной величины (табл. 3.1), а количество выборок не должно быть менее 10.

Для решения задачи студенты пользуются как методическими указаниями, помещенными после условия задачи и приведенным примером, так и списком рекомендуемой литературы. Решение задачи должно излагаться по пунктам и сопровождаться краткими пояснениями к расчетам.

Контрольная работа должна быть написана чернилами четко, разборчиво и заканчиваться подписью студента и датой выполнения.

Все страницы контрольной работы должны быть пронумерованы и иметь стандартные поля для пометок рецензента.

Общий объем контрольной работы не должен превышать 25 страниц ученической тетради.

В конце работы обязательно приводится список используемой литературы.

Небрежно выполненная работа возвращается студенту без рецензирования.

Таблица 3.1 Варианты заданий контрольной работы

Последние	Номер	Номиналь-	Последние	Номер	Номиналь-		
две цифры	контроль-	ная ем-	две цифры	контроль-	ная ем-		
зачетной	ного во-	кость кон-	зачетной	ного во-	кость кон-		
книжки	проса	денсатора,	книжки	проса	денсатора,		
		мкФ			мкФ		
01	1	9	21	21	10,5		
02	2	9	22	22	10,5		
03	3	9	23	23	10,5		
04	4	9	24	24	10,5		
05	5	9	25	25	10,5		
06	6	9	26	26	10,5		
07	7	9	27	27	10,5		
08	8	9	28	28	10,5		
09	9	9	29	29	10,5		
10	10	9	30	30	10,5		
11	11	10	31	31	9,5		
12	12	10	32	32	9,5		
13	13	10	33	33	9,5		
14	14	10	34	34	9,5		
15	15	10	35	35	9,5		
16	16	10	36	36	9,5		
17	17	10	37	37	9,5		
18	18	10	38	38	9,5		
19	19	10	39	39	9,5		
20	20	10	40	40	9,5		

4.ЗАДАЧА И МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЕЕ РЕШЕНИЮ

4.1. Задача

Построить карту статистического контроля качества конденсаторов МБГП-2-2000-A-10-111 ГОСТ 7112-97 методом средних арифметических величин. Определить поле допуска исходя из номинальной емкости конденсатора и допустимой величины отклонения. Установить внешние границы, ограничивающие поле допуска и внутренние границы верхнего и нижнего предупредительного допуска. Определить среднеарифметическое значение емкости конденсаторов (X_j) в каждой j-й выборке и нанести точками на карту. Определить среднеарифметическое значение для всех исследуемых конденсаторов.

Определить положение контрольных линий на диаграмме размахов, рассчитать величину размаха по каждой выборке и нанести ее точками на диаграмму. Рассчитать коэффициенты точности настройки процесса производства.

Исходные данные. Фактические величины емкости (C_{ϕ}) конденсаторов МБГП-2-2000-A-10-111 приведены в табл. 4.1. Номинальная емкость конденсатора $C_{\text{ном}} = 10$ мкФ. Фактические величины емкости и номинальный размер студенты принимают по своему варианту. Допустимая относительная величина отклонения емкости конденсатора (δ^{-1}) от номинальной величины составляет $\pm 20\%$.

4.2. Методические указания

4.2.1. Допустимая абсолютная величина отклонения емкости конденсатора от номинала определяется по формуле

$$\pm \Delta C_B = \frac{\delta_x^{\prime} C_{_{HOM}}}{100} \tag{4.2.1}$$

- 4.2.2. Внешние границы, ограничивающие поле допуска T_B (верхний технический допуск) и T_H (нижний технический допуск), за пределами которых зона брака, определяются исходя из допустимой относительной величины отклонения контролируемого параметра от номинальной величины.
- 4.2.3. Внутренние границы P_B (верхний предупредительный допуск) и P_H (нижний предупредительный допуск) определяются по формулам

$$P_{e} = T_{e} - \frac{\delta}{2} \left(1 - \frac{1}{\sqrt{n}} \right),$$
 (4.2.2)

$$P_{H} = T_{H} + \frac{\delta}{2} (1 - \frac{1}{\sqrt{n}}) ,$$
 (4.2.3)

где δ — поле допуска на величину изучаемого параметра.

4.2.4. Среднеарифметическое значение емкости конденсатора X_j в j-й выборке определяется по формуле

$$X_{j} = \frac{\sum_{i=1}^{n} X_{i}}{n} , \qquad (4.2.4)$$

где X_i – значение контролируемого параметра і-го изделия в ј-й выборке, мк Φ ;

n — количество единиц изделия в выборке.

4.2.5. Среднеарифметическая величина параметра для всех исследуемых конденсаторов определяется по формуле

$$X = \frac{\sum_{i=1}^{\kappa} X_i n_i}{n_u} \tag{4.2.5}$$

где n_i – число деталей в і-й выборке, шт.;

к - число выборок;

 n_{u} — общее число исследуемых изделий, шт.

4.2.6. Размах варьирования величины контролируемого параметра по каждой выборке определяется по формуле

$$R = X_{max} - X_{min}$$
. (4.2.6)

Положение контрольных границ диаграммы размахов принимается равным полю допуска:

нижний предел допуска ($T_{\text{H.R}}$) принимается равным нулю;

верхний предел допуска ($T_{B.R}$) принимается равным размеру допуска (в рассматриваемом примере $\delta=4$).

Положение контрольных линий регулирования размахов P_{BR} и P_{HR} определяется по формулам

$$P_{BR} = V_1 \delta , \qquad (4.2.7)$$

$$P_{HR} = V_2 \delta , \qquad (4.2.8)$$

где V_1 и V_2 принимаются по таблицам, составленным на основе корреляционного анализа (при выборке, равной 10 шт. V_1 = 0,920; V_2 = 0,114).

4.2.7. Расчет точности настройки процесса (Е) производится по формуле

$$E = X - X_{cp}$$
, (4.2.9)

где $X_{cp} = \frac{X_{\max} + X_{\min}}{2}$, средний размер по ТУ.

Здесь X_{max} и X_{min} - наибольшая и наименьшая предельная величина параметра по TY.

4.2.8. Фактический коэффициент точности настройки процесса производства определяется по формуле

$$\ell_{\phi} = \frac{X - X_{cp}}{\delta} \quad . \tag{4.2.10}$$

4.2.9. Среднеквадратическая величина отклонения параметра от X рассчитывается по формуле

$$\delta = \sqrt{\frac{\sum_{i=1}^{\kappa} (X_i - X)^2 n_i}{n_u}} . \tag{4.2.11}$$

4.2.10. Коэффициент точности процесса определяется по формуле

$$\mu = \frac{6\delta}{\delta} \quad , \tag{4.2.12}$$

При μ = 1 точность процесса является удовлетворительной, при μ < 1 – хорошей, при μ > 1 – неудовлетворительной.

4.2.11.Допустимый коэффициент точности настройки определяется по формуле

$$\ell_g = \frac{1-\mu}{2} \,. \tag{4.2.13}$$

Если $\ell_{\,\varphi} < \ell_{\,g}$, то настройка хорошая, если $\ell_{\,\varphi} > \ell_{\,g}$, то настройка неудовлетворительная.

- 4.3. Решение контрольного варианта
- 4.3.1. Допустимая абсолютная величина отклонения емкости конденсатора от номинала составляет:

$$\pm \Delta C_{\phi} = \frac{\delta' C_{_{\scriptscriptstyle H}}}{100} = \frac{20*10}{100} = 2m\kappa \Phi.$$

Поле допуска (δ) на величину данного параметра составляет 4 мкФ (2 мкФ по нижнему пределу и 2 мкФ по верхнему пределу от номинала).

4.3.2. Определение внешних границ, карты статистического контроля качества (рис. 4.1a), ограничивающих поле допуска:

верхний технический допуск составляет величину

$$T_{\text{в}} = C_{\text{н}} + \Delta C_{\phi} = 10 + 2 = 12 \text{ мк}\Phi;$$

нижний технический допуск составляет величину

$$T_{H} = C_{H} - \Delta C_{\Phi} = 10 - 2 = 8 \text{ MK}\Phi.$$

4.3.3. Определение внутренних границ карты статистического контроля качества (рис. 4.1a):

верхний предупредительный допуск (формула 4.2.2) составляет величину

$$P_{\rm b}$$
 = 12 - $\frac{4}{2}$ (1- $\frac{1}{\sqrt{10}}$) = 12 - 2 * 0,684 = 10,632 мк Φ ;

нижний предупредительный допуск (формула 4.2.3.) составляет величину

$$P_{H} = 8 + \frac{4}{2} (1 - \frac{1}{\sqrt{10}}) = 8 + 2 * 0,684 = 9,368 \text{ MK}\Phi.$$

4.3.4. Определение среднеарифметического значения емкости конденсатора по первой выборке, расчет ведется по формуле (4.2.4) и составляет величину

$$X_1 = \frac{8,50 + 9,50 + 9,25 + 10,00 + 9,75 + 9,00 + 10,75 + 10,50 + 11,00 + 10,25}{10} = 9,850 \text{mkD}$$

Аналогично определяются средние арифметические значения емкостей конденсаторов по всем остальным выборкам:

 $X_2 = 9,425 \text{ мк}\Phi;$ $X_3 = 9,700 \text{ мк}\Phi;$ $X_4 = 9,775 \text{ мк}\Phi;$ $X_5 = 9,875 \text{ мк}\Phi;$ $X_6 = 9,650 \text{ мк}\Phi;$ $X_7 = 9,900 \text{ мк}\Phi;$ $X_8 = 9,875 \text{ мк}\Phi;$ $X_9 = 10,100 \text{ мк}\Phi;$ $X_{10} = 10,000 \text{ мк}\Phi.$

4.3.5. Среднеарифметическая величина емкости для всех исследованных конденсаторов определяется по формуле (4.2.5) и составляет величину

$$X = \frac{9,850 + 9,425 + 9,700 + 9,775 + 9,875 + 9,650 + 9,900 + 9,875 + 10,000 + 10,100}{10}$$
$$= 9,815 \text{mkG}$$

4.3.6. Определение положения контрольных линий на диаграмме размахов (рис.4.1б):

нижний предел допуска (T_{н.R}) принимается равным нулю;

верхний предел допуска $(T_{B,R})$ принимается равным полю допуска $(\delta = 4)$;

верхняя граница регулирования размахов $(P_{\text{в.R}})$ определяется по формуле (4.2.7.) и составляет величину

$$P_{B.R} = 0.920 * 4 = 3.69 \text{ мк}\Phi;$$

нижняя граница регулирования размахов $(P_{\rm H.R})$ определяется по формуле (4.2.8) и составляет величину

$$P_{\rm H.R}$$
 = 0,114*4 = 0,456 мк Φ .

4.3.7. Построение карты статистического контроля качества (рис. 4.1) и нанесение на карту точек среднеарифметических значений емкости конденсаторов. Из рис. 4.1а. видно, что все точки попали в зону 1, это свидетельствует о том. Что производственный процесс налажен хорошо, брак отсутствует. В зоне П, которая служит зоной предупреждения о начавшейся разладке технологического процесса, нет ни одной точки. В случае выхода точки в зону П необходимо произвести подналадку технологического процесса, а изделия данной выборки подвергнуть 100-му контролю.

Если величина размаха превысила в какой-либо выборке допустимое значение $P_{\text{в.R}}$ (рис. 4.16), то несмотря на то, что X не выходит из зоны 1 производится подналадка технологического процесса.

В рассматриваемом варианте (рис. 4.1б) по всем выборкам величина размаха не превышает допустимое значение $P_{B,R}$, что свидетельствует о хорошо отлаженном технологическом процессе.

4.3.8. Расчет точности настройки процесса производится по формуле (4.2.9) и составляет величину

$$E = 9,815 - 10000 = -0,185 \text{ мк}\Phi.$$

4.3.9. Расчет фактического коэффициента точности настройки производится по формуле (4.2.10) и составляет величину

$$\ell_{\phi} = \frac{-0.185}{4} = -0.046$$
.

4.3.10. Среднеквадратическая величина б определяется в данном случае с помощью табл. 4.2. В качестве величины α можно принять любое численное значение, но лучше всего принять α равным x_i , имеющему наибольшую частоту повторения. В примере $\alpha = 9,75$. Величина C есть величина разряда или интервала. В примере принимается C = 0,50.

Таблица 4.2 Исхолные ланные для расчета среднеквалратической величины

исходные данные для расчета среднеквадратической величины						
Емкость конденсато-	Средняя	Число кон-	$X_{\cdot \cdot} - a$			
ров, мкФ	величи-	денсаторов	$e = \frac{X_i - a}{c}$	b_{mi}	b_{mi}^2	
	на Хі,	(частота при-	C	$\nu_{\mathrm{m}_{\mathrm{l}}}$	U _{mi}	
	мкФ	знака) ті				
8,00 - 8,50	8,25	2	-3	-6	18	
8,50 - 9,00	8,75	16	-2	-32	64	
9,00 - 9,50	9,25	18	-1	-18	18	
9,50 - 10,00	9,75	35	0	0	0	
10,00 - 10,50	10,25	18	+1	+18	18	
10,50 - 11,00	10,75	10	+2	+20	40	
11,00 – 11,50	11,25	1	+3	+3	9	
11,50 – 12,00	11,75	-	+4	0	0	
Итого		100	+4	-15	167	

$$\delta = C \sqrt{\frac{\sum b^2 m_i}{\sum m_i} - (\frac{\sum b m_i}{\sum m_i})^2} = 0,50 \sqrt{\frac{167}{100} - (\frac{-15}{100})^2} = 0,64$$
мкФ.

4.3.11. Расчет коэффициента точности процесса производится по формуле (4.2.12) и составляет величину

$$\mu = \frac{6*0.64}{4} = 0.96$$
.

Так как μ < 1, то точность процесса является достаточно хорошей.

4.3.12. Расчет допустимого коэффициента точности настройки процесса производится по формуле (4.2.13) и составляет величину

$$\ell_g = \frac{1 - 0.96}{2} = 0.02.$$

Так как $\ell_{\Phi} < \ell_{\rm g}$, то настройка процесса является хорошей, вероятность появления брака низкая.

Приложение 1

Белорусский государственный университет информатики и радиоэлектроники

Кафедра менеджмента

КОНТРОЛЬНАЯ РАБОТА по курсу «Управление качеством»

 Группа
 №

 Ф.и.о. студента
 №

 № зачетной книжки
 Рецензент

Вопросы по курсу «Управление качеством» для выполнения контрольной работы студентами экономических специальностей

- 1. Основные понятия и показатели оценки качества продукции.
- 2. Повышение качества продукции объективная закономерность развития экономики предприятия.
- 3. Экономические проблемы повышения качества и конкурентоспособность продукции.
 - 4. Основные понятия о системах управления качеством продукции.
 - 5. Системный подход к технологии управления качеством продукции.
- 6. Зарождение элементов управления качеством продукции на отечественных предприятиях.
- 7. Эволюция воплощения системного подхода к управлению качеством продукции на отечественных предприятиях.
 - 8. Опыт управления качеством продукции в США.
 - 9. Опыт управления качеством продукции в Японии.
 - 10. Европейский опыт управления качеством продукции.
- 11. Разработка систем качества в соответствии с требованиями стандартов ИСО серии 9000.
 - 12. Основные принципы всеобщего управления качеством продукции.
- 13.Организационно-правовые основы стандартизации в управлении качеством.
- 14.Органы государственного контроля и надзора за соблюдением нормативных документов по стандартизации.
- 15. Источники финансирования и экономические проблемы стандартизации в управлении качеством.
- 16.Задачи, функции и структура службы технического контроля и управления качеством продукции на предприятии.
 - 17. Виды и методы технического контроля качества продукции.
 - 18. Статистические методы контроля качества продукции.
 - 19. Классификация, учет и анализ брака и рекламаций на предприятии.
 - 20. Формирование и виды затрат на обеспечение качества продукции.
 - 21. Анализ затрат на качество выпускаемой продукции.
 - 22.Основные термины и понятия сертификации продукции.
- 23.Испытательные лаборатории, сертификаты и знаки соответствия стандартам.
 - 24. Обязательная и добровольная сертификация продукции.
 - 25. Правовая основа сертификации продукции.
 - 26. Основные принципы, правила и порядок проведения сертификации.
 - 27. Схемы сертификации и система аккредитации.

- 28. Органы по сертификации продукции и услуг.
- 29. Сертификация импортируемой продукции.
- 30. Экономическая оценка работы по сертификации продукции, услуг и системы качества.
 - 31. Основные задачи по развитию сертификации.
 - 32. Метрология наука об измерениях.
- 33. Физические величины и международная система физических величин.
 - 34. Виды средств измерений, эталоны, их классификация и виды.
 - 35. Организационно-правовые основы законодательной метрологии.
- 36.Органы государственной метрологической службы и контроль за средствами измерений.
- 37. Лицензирование деятельности юридических и физических лиц по изготовлению, ремонту, продаже и прокату средств измерений.
 - 38.Сертификация средств измерений.
 - 39. Метрология в зарубежных странах.
 - 40. Международные организации по метрологии.
 - 41. Экономические проблемы метрологии.

ЛИТЕРАТУРА

1. Основная литература

- 1.1. Афанасьев Н.В., Витин В.Ф., Голубев И.С. Оценка качества машиностроительной продукции /Под ред. И.С.Голубева. М.: МАИ, 1995.
- 1.2. Антонов Г.А. Основы стандартизации и управления качеством продукции. Части 1, 2. 3. СПб.: ЧЭФ, 1995.
- 1.3. Боровой К.Н., Петрасют В.Г., Тавер Е.И. Сертификация и торговля на товарной бирже. Серия «Стандартизация и бизнес». Выпуск 1. М.: Издательство стандартов, 1992.
- 1.4. Войтоловский В.Н., Окрепинов В.В. Управление качеством и сертификация в промышленном производстве: Учеб. пособие. СПб.: УЭФ, 1992.
- 1.5. Версан В.Г. и др. Интеграция производства и управления качеством продукции. М.: Издательство стандартов, 1995.
- 1.6. Галеев В.И. Системы качества и рынок. Серия «Сертификация и бизнес». Вып. 1. М.: Колос. 1992.
- 1.7. Джуран Д. Все о качестве: зарубежный опыт. Выпуск 2. Высший уровень руководства и качество. М.: Экономика, 1993.
- 1.8. Емельянов В.А. Системы качества в микроэлектронике. Мн.: Беларуская навука, 1997.
- 1.9. Измерение качества продукции. Вопросы квалиметрии /Под ред. А.В.Гличева. М.: Издательство стандартов, 1976.
- 1.10. Ильенкова С.Д. и др. Управление качеством: Учебник /Под ред. С.Д.Ильенковой. М.: Издательское объединение ЮНИТИ, 1998.

- 1.11. Исаев Л.К., Малинский В.Д. Метрология и стандартизация в сертификации. М.: ИПК Издательство стандартов. 1996.
- 1.12. Исаева И.И. Управление качеством и сертификация продукции: Учеб. пособие. СПб,: Изд. Центр СПб ГМТУ, 1994.
- 1.13. Исикава Каору. Японские методы управления качеством. М.: Экономика, 1988.
- 1.14. Крылова Г.Д. Зарубежный опыт управления качеством. М.: Издательство стандартов, 1999.
- 1.15. Крылова Г.Д. Основы стандартизации, сертификации, метрологии: Учебник. М.: «Аудит». Издательское объединение ЮНИТИ, 1998.
- 1.16. Кузнецов В.А., Ялунина Г.В. Основы метрологии. М.: ИПК Издательство стандартов, 1995.
- 1.17. Лаштдуо В.А. Статистические методы, управление качеством, сертификация и кое-что еще / Стандарты и качество. 1996, №4.
- 1.18. Международные стандарты ИСО серии 9000 и 10000 на системы качества: версии 1994г. М.: Издательство стандартов, 1995.
 - 1.19. Окрепинов В.В. Управление качеством. М.: Экономика, 1998.
- 1.20. Правила по проведению сертификации в Российской Федерации М.: Госстандарт России, 1995.
- 1.21. Система сертификации ГОСТ Р. Основные положения и порядок сертификации услуг. М.: Госстандарт России, 1995.
- 1.22. Тарбеев Ю.В. О роли метрологии в управлении качеством. М.: Знание, 1989.
- 1.23. Фрейгенбаум А. Контроль качества продукции. М.: Экономика, 1994.

2. Дополнительная литература

- 2.1. Беленький П.Е., Козориз М.А. Технико-экономическое управление качеством продукции в объединении. Львов. Вища школа, 1980.
- 2.2. Емельянов В.А. Системы качества в микроэлектронике. Мн.: Беларуская навука, 1997.
- 2.3. Качество и стандартизация /Под ред. Х.Лилис: Сокращенный перевод с немецкого. М.: Экономика, 1982.
- 2.4. Муравьева З.А. Основные направления совершенствования управления качеством продукции. Обзорная информация. Мн.: БелНИИНТИ. 1982.
- 2.5. Передовой опыт комплексного управления качеством /Под ред. В.Н.Голубева. М.: Правда, 1979.
- 2.6. Система бездефектного изготовления и контроля качества продукции. М.: ЦНИИТЭИтракторсельмаш, 1972.
- 2.7. Томилин В.Н. Управление качеством в условиях перехода к рыночной экономике /Стандарты и качество. 1990, №10.

- 2.8. Ушаков М.А. Результаты и перспективы развития в России работ по сертификации /Стандарты и качество, 1996, №2.
- 2.9. Ушаков М.А. Сертификация сегодня /Стандарты и качество, 1994, №12.
- 2.10. Харрингтон Дж.Х. Управление качеством в американских корпорациях. М.: Экономика, 1990.
- 2.11. Хироси Танака. Годится ли японский опыт для России и Восточной Европы? /Деловая жизнь, 1993, №9.
- 2.12. Ченский В. Качество начинается с учебы (обзор лекций Шиба по управлению качеством продукции) /Стандарты и качество, 1990, №8 и 9.
- 2.13. Японская экономическая модель: возможности применения в возрождающейся России /Вопросы экономики, 1992, №9.

Учебное издание

ПРОГРАММА, МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ

по курсу «Управление качеством» для студентов специальности Э.01.03.00 заочной формы обучения

Новицкий Николай Илларионович

Редактор Н.В.Гриневич

Корректор Е.Н.Батурчик

Подписано в печать формат 60х84 1/16.

Печать Бумага

Усл.печ.л. Уч.-изд.л. 1,0 Тираж 150 экз. Заказ

Белорусский государственный университет информатики и радиоэлектроники Отпечатано в БГУИР. Лицензия ЛП №156. 220027, Минск, П.Бровки,6