ИНЖЕНЕРНОЕ ТВОРЧЕСТВО В СИСТЕМЕ МНОГОУРОВНЕВОГО УНИВЕРСИТЕТСКОГО ОБРАЗОВАНИЯ

Алексеев В.Ф., Лихачевский Д.В., Пискун Г.А.

Белорусский государственный университет информатики и радиоэлектроники, г. Минск, Беларусь, alexvikt.minsk@gmail.com, likhachevskyd@bsuir.by, piskunbsuir@gmail.com

Abstract. Approaches to teaching engineering creativity in the system of multi-level university education are considered.

При разработке государственных стандартов высшего образования первой и второй ступеней высшего образования следует особое внимание уделять вопросам, решаемым при реализации в учебном процессе обучающе-исследовательского подхода [1, 2]. Установлено, что одним из требований квалификационных характеристик выпускников должно являться умение проводить исследования в своей профессиональной области, обрабатывать и анализировать результаты исследований. Важнейшими формами подготовки студентов в условиях многоуровневого университетского образования в области научных исследований являются [1-5]:

- учебные занятия по дисциплинам типовых учебных планов разных ступеней образования;
- участие в выполнении научных работ, проводимых кафедрами и научно-исследовательскими лабораториями;
- возможность изучения основ организации и проведения научно-исследовательских работ (НИР) в рамках специальной дисциплины «Основы научных исследований», а по некоторым специальностям по дисциплине «Основы инженерного творчества».

Данные курсы отличаются от традиционных учебных курсов. Почти все учебные курсы, начиная от математики и физики, и заканчивая специальными дисциплинами, дают знания и навыки решения четко определенных инженерных задач (например, оценка теплового режима конструкции радиоэлектронного средства, расчет параметров надежности, выбор технологического оборудования и т. п.). Предлагаемые для изучения дисциплины призваны дать знания и привить навыки в постановке и решении творческих инженерных задач. Эти два класса задач имеют принципиальные отличия, которые отражены в таблице.

Таблица 1 — Различия четко определенных и творческих инженерных задач

Показатели сравнения задач	Инженерные задачи	
	четко определенные	творческие
Постановка задачи	Имеется	Как правило отсутствует
Метод (способ) решения	Как правило, указан	Не указан
Обучающий пример	Имеется	Отсутствует
Результат ре- шения	Как правило, однозначен и известен преподавателю	Как правило, многозначен и неизвестен препо- давателю

Из таблицы видно, что творческие инженерные задачи несоизмеримо труднее и сложнее четко определенных задач. Отличия между этими типами задач требуют принципиально по-новому ставить обучение инженерному творчеству (ИТ).

Обучая(-ясь) умению ставить и решать творческие задачи, необходимо всегда помнить, что умение быстро и правильно решать четко определенные инженерные задачи является не менее важным, поскольку без него инженерное творчество превращается в беспочвенную фантазию, а результат ИТ, как правило, не может быть доведен до практической реализации.

Обучение нельзя ставить только на повторяющихся из года в год учебных задачах, как это делается в большинстве традиционных дисциплин. Вслед за рассмотрением учебных задач обучающийся должен обязательно выполнить курсовую работу по решению реальной задачи. Реальная задача, в отличие от абстрактной, имеет конкретного заказчика (например, завод, КБ, НИИ, само учебное заведение и т. д.), т. е. имеются заинтересованные коллективы, с кем можно обсудить постановку задачи, на месте познакомиться с проблемной ситуацией, показать полученные решения, а удачные решения реализовать практически.

Только такие реальные задачи вызывают большой интерес и высокую активность у обучающихся, прочно закрепляют знания и навыки и одновременно дают значительную практическую пользу. Освоение методов ИТ только на учебных задачах аналогично обучению плаванию в бассейне без воды.

Можно предложить некоторые рекомендации преподавателям, которые будут вести указанные дисциплины. Так, например, задача курса по «Основам научных исследований» («Основам инженерному творчеству») заключается не в подготовке специалистов для выполнения стандартных операций, а в воспитании творческих личностей. Поэтому здесь обязателен индивидуальный подход к обучающемуся. В связи с этим преподаватель сам должен быть творческой личностью.

Главная цель курса заключается не в том, чтобы «натаскать» обучающихся применять отдельные методы. Во-первых, механическое применение методов без эмоционального творческого подъема, без большого внутреннего желания решить задачу мало что дает. Во-вторых, изучаемые методы выделяют только отдельные стороны и моменты в очень сложном и весьма отличающемся у отдельных людей творческом процессе. Поэтому главной целью является подготовка и формирование специалистов со своей индивидуальной системой творческого мышления. При этом изучаемые

методы ИТ ускоряют формирование творческой личности и расширяют ее потенциальные возможности.

В нашей стране и за рубежом имеется достаточно большой опыт обучения эвристическим методам. Наряду с этим в последние годы велись разработки и апробация новой методологии обучения основам ИТ, отличающейся большей научной и педагогической обоснованностью. Данная методология может быть охарактеризована следующими особенностями:

- все методы ИТ должны иметь единую научно обоснованную терминологию, согласованную с понятийной основой инженерных, математических и других дисциплин, изучаемых в многоуровневом университетском образовании;
- во все эвристические методы целесообразно заложить возможность использования обучающих программных средств;
- наряду с эвристическими методами представляется целесообразным и необходимым использование специальных методов поискового конструирования, которые не могут быть реализованы без специальных прикладных программных средств. Это направление позволяет использовать уже имеющиеся теоретические и методические результаты в области искусственного интеллекта;
- методы технического творчества и поискового конструирования должны быть реализованы в виде комплекта документации, обеспечивающей и облегчающей их широкое внедрение в учебную и проектно-конструкторскую работу на достаточно высоком научно-методическом уровне. Такой комплект, называемый, например, обучающе-рабочим модулем, основывается на методах ИТ, ориентированных на конкретную инженерную специальность (группу специальностей) и включает: четко описанную методику постановки и решения задачи; необходимое информационное обеспечение; наборы учебных задач и заданий, имеющих предметную или объектную ориентацию; программное обеспечение с инструкциями по использованию и развитию и др.

После разбора учебных задач обучаемые должны обязательно решить реальные задачи.

При изучении курса рекомендуется наряду с общими давать специализированные методы поискового конструирования, ориентированные на соответствующие классы изделий и технологий. Рекомендуется рассматривать более сложные примеры, относящиеся к инженерной специальности обучаемых.

Необходимо соблюдать преемственность позиций, изложенных в ранее изучаемых дисциплинах. В первую очередь, следует отметить специальные инженерные дисциплины по изучению отдельных радиоэлектронных средств (РЭС), приборов, электронных систем, технологий и технологических процессов. В каждой из этих дисциплин нужно давать не статику сегодняшнего или вчерашнего дня, как это часто бывает, а диалектику прогрессивного развития техники. Необходимо показать, почему и благодаря каким творческим решениям прошлое поколение конструкций РЭС или систем было заменено настоящим. Показать какие сегодня стоят задачи совершенствования техни-

ки и технологии, каким требованиям должно удовлетворять следующее поколение техники. Решению этих задач должно уделяться повышенное внимание при выполнении курсовых и дипломных проектов, в том числе с использованием методов ИТ. В этом и состоит углубленное проблемное изучение специальных дисциплин, которое со студенческой скамьи мобилизует и подключает большой творческий потенциал к работе по ускорению технического прогресса.

После решения творческой инженерной задачи, как правило, приходится рассматривать серию четко определенных рутинных инженерных задач, однако часто для новых конструкторско-технологических решений нет готовых или подходящих методов расчета и оценки нужных показателей и характеристик. В этих случаях возникают задачи научного творчества, которые чаще всего связаны с разработкой математической модели или проведением экспериментальных исследований нового устройства или технологии. Необходимо выделить возникающие в таких случаях типичные ситуации и подробно их рассмотреть, чтобы будущий инженер знал, как проверить и обосновать жизнеспособность новой технической идеи.

Литература

- 1. Алексеев В. Ф. Проект программы курса «Основы научных исследований и инженерного творчества» / В. Ф. Алексеев, С. В. Бодусов // Реалізацыя навучальна-даследчага прынцыпа ў сістэме универсітэцкай адукацыі: Зб. навук.-метад. матэрыялаў / Пад рэд. Ю. А. Быкадорава. Мн.: БДПУ імя М. Танка, 2000. С.139-150.
- 2. Алексеев В. Ф. Подходы к формированию университетской концепции развития научно-исследовательской работы аспирантов, магистрантов и студентов в современных условиях / В. Ф. Алексеев, Л. С. Алексеева // Перспективы развития системы научно-исследовательской работы студентов в Республике Беларусь: сб. материалов науч.-практ. конф. / редкол. : А. И. Жук (пред.) [и др.]. Минск: Изд. центр БГУ, 2011. С. 29-38.
- 3. Алексеев В. Ф. Реальное курсовое и дипломное проектирование в системе многоуровневого университетского образования / В. Ф. Алексеев, Л. С. Алексеева, С. В. Бордусов, А. П. Достанко // Навучальна-даследчы прынцып у арганізацыі універсітэцкай адукацыі: 36. навук. прац. Мн.: БДПУ імя М. Танка, 1998. С. 97-103.
- 4. Алексеев В. Ф. Сущность инновационной направленности педагогической деятельности образования по дистанционному обучению / В. Ф. Алексеев, Л. С. Алексеева // Дистанционное обучение образовательная среда XXI века: материалы VII Междунар. науч.-метод. конференции (Минск, 1-2 декабря 2011 г.) Минск: БГУИР, 2011. С. 221-222.
- 5. Алексеев В. Ф. Специализированные программные пакеты в профессиональной подготовке инженеров-конструкторов / В. Ф. Алексеев, А. П. Достанко, С. В. Бордусов, В. А. Валуев // Тр. Третьей междунар. конф. «Новые информационные технологии в образовании», 12-3 ноября 1998 г. Мн.: NITE '98, 1998. С. 141-144.