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Abstract—When a homogeneous space admits an invariant affine connection? If there exists at
least one invariant connection then the space is isotropy-faithful, but the isotropy-faithfulness is not
sufficient for the space in order to have invariant connections. If a homogeneous space is reductive,
then the space admits an invariant connection. The purpose of the work is the classification of
three-dimensional non-reductive homogeneous spaces, admitting invariant affine connections. We
concerned only case, when Lie group is solvable. The local classification of homogeneous spaces is
equivalent to the description of effective pairs of Lie algebras. The peculiarity of techniques presented
in the work is the application of purely algebraic approach, the compound of different methods of
differential geometry, theory of Lie groups, Lie algebras and homogeneous spaces.
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1. INTRODUCTION

Let (G,M) be a three-dimensional homogeneous space, where G is a solvable Lie group on the
manifold M . We fix an arbitrary point o ∈ M and denote by G = Go the stationary subgroup of o.
It is known that the problem of classification of homogeneous spaces (G,M) is equivalent to the
classification (up to equivalence) of pairs of Lie groups (G,G) such that G ⊂ G. A large class of
homogeneous spaces is spaces with solvable transformation group. In the study of homogeneous
spaces, it is important to consider not the group G itself, but its image in Diff(M). In other words,
it is sufficient to consider only effective actions of G on M . Since we are interested in only the local
equivalence problem, we can assume without loss of generality that both G and G are connected.
Then we can correspond the pair (g, g) of Lie algebras to (G,M), where g is the Lie algebra of G
and g is the subalgebra of g corresponding to the subgroup G. This pair uniquely determines the local
structure of (G,M), two homogeneous spaces are locally isomorphic if and only if the corresponding
pairs of Lie algebras are equivalent. A pair (g, g) is effective if g contains no non-zero ideals of g,
a homogeneous space (G,M) is locally effective if and only if the corresponding pair of Lie algebras
is effective. An isotropic g-module m is the g-module g/g such that x.(y + g) = [x, y] + g. The
corresponding representation λ : g → gl(m) is called an isotropic representation of (g, g). The pair
(g, g) is said to be isotropy-faithful if its isotropic representation is injective. We divide the solution
of the problem of classification all three-dimensional isotropically–faithful pairs (g, g) into the following
parts. We classify (up to isomorphism) faithful three-dimensional g-modules U . This is equivalent to
classifying all subalgebras of gl(3,R) viewed up to conjugation. For each obtained g-module U we
classify (up to equivalence) all pairs (g, g) such that the g-modules g/g and U are isomorphic. All there
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pairs are described in [1]. Invariant affine connections on (G,M) are in one-to-one correspondence [2]
with linear mappings Λ: g → gl(m) such that Λ|g = λ and Λ is g-invariant. We call this mappings
(invariant) affine connections on the pair (g, g). If there exists at least one invariant connection on
(g, g) then this pair is isotropy-faithful [3].

It appears that the isotropy-faithfulness is not sufficient for the pair in order to have invariant
connections. The simplest example can be given for codimgg = 2. The Lie algebra g has the following
commutation table:

e1 e2 u1 u2

e1 0 e2 2u1 e2 + u2

e2 −e2 0 0 u1

u1 −2u1 0 0 0

u2 −e2 − u2 −u1 0 0

,

and g is spanned by e1 and e2. Then direct calculations show that there are no affine connections on this
pair. Moreover, the complete one-by-one analysis of all isotropy-faithful effective pairs in codimension 2
(pairs can be found in [4]) shows that this is the only example for this codimension. Classification of such
pairs in codimension 3 can be found in [5].

We say that a homogeneous space G/G is reductive if the Lie algebra g may be decomposed into a
vector space direct sum of the Lie algebra g and an ad(G)-invariant subspace m, that is, if g = g+m,
g ∩m = 0 and ad(G)m ⊂ m. Last condition implies [g,m] ⊂ m and, conversely, if G is connected. If a
homogeneous space is reductive, then the space always admits an invariant connection. In any of the
following cases a homogeneous space G/G is reductive [3]: (a) G is compact; (b) G is connected and
g is reductive in g in the sense that ad(g) is completely reducible (this is the case if G is connected and
semi-simple); (c) G is a discrete subgroup of G.

Let’s find all three-dimensional non-reductive homogeneous spaces G/G, admitting invariant affine
connections. We define (g, g) by the commutation table of the Lie algebra g. Here by {e1, ..., en} we
denote a basis of g (n = dim g). We assume that the Lie algebra g is generated by e1, ..., en−3. Let
{u1 = en−2, u2 = en−1, u3 = en} be a basis of m. We describe affine connection by Λ(en−2), Λ(en−1),
Λ(en). To refer to the pair we use the notation d.n.m, where d is the dimension of the subalgebra, n is
the number of the subalgebra of gl(3,R), m is the number of (g, g) in [1].

2. THE CLASSIFICATION OF PAIRS

Find non-reductive pairs, such that the pair (g, g) has invariant affine connections. The information
about the non-reductive pairs and the affine connections is contained in the proof of the theorem.

Theorem 1. If the non-reductive pair (g, g) has affine connections and g is solvable then
g ⊂ gl(3,R) is equivalent to one of the subalgebras:
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