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I. INTRODUCTION 

The aim of this paper was the theoretically substantiate derivation of a complete spatial system of 
equations using deviators for one of the simplest models of creep-the Kelvin-Voigt model, for which one-
dimensional differential equation is well known [1]. In addition, it was necessary to determine the constraints 
on the physical parameters under which the constructed spatial generalization can be used to solve three-
dimensional creep problems of a rigid body. 

In modern scientific literature, it was sometimes mentioned that this spatial model was used [2, 3]. 
However, the systems of equations of state cited in these works (by means of which some spatial applied 
problems were solved) indicate that the authors incorrectly interpret this model and, accordingly, use 
incorrect equations of state in solutions. 

II. ONE-DIMENSIONAL LINEAR MODELS OF KELVIN-VOIGT VISCOELASTICITY 

By a one-dimensional linear viscoelastic Kelvin-Voigt model we mean the equation of state of an 
uniaxially loaded rod, which can be written in the form [1]: 

σ	K
=E·ε	K
+η·>¼	K
 (1) 

where � is predetermined modulus of elasticity of the rod material, ½ is predetermined viscosity of the 
material, σ	K
 is the priori given (control) average stress on the rod, ε	K
 is the required average rod 

deformation, >¼	K
 � ¾¿	�
¾� . The expression "average over the rod" explains the absence of an axial coordinate 

in the recording of the equation of state (1). Equation (1) is also called the law of deformation of a non-
relaxing body [1]. 

III. SPATIAL GENERALIZATION OF THE LINEAR KELVIN-VOIGT 
MODELS WITH HELP OF DEVIATORS 

It was considered a three-dimensional space with a Cartesian coordinate system À � 	H", H�, H&
. Let ÁÂ	À, K
 is deviator of stresses [4], Á¿	À, K
 is deviator of deformations [4], ° � ¸�·	"�Ã
 is shear modulus, Ä is 

Poisson ratio of a body material, � � ¸&·	"!�·Ã
 is bulk modulus [4]. 
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By analogy with the one-dimensional case (1), the three-dimensional linear Kelvin-Voigt model in 
terms of deviators can be written in the form: ÁÂ � 2 · ° · Á¿ P ½ · Á¼ ¿, (2) 

where Á¼ ¿ � ¾¾� Á¿ is deviator of strain rates. Equation (1) must be supplemented by an equation connecting 

the mean normal stresses with volume deformations in the form: 13 ¥ ���	À, K
� � � · ¥ >��	À, K
� P ½ · ¥ >¼��	À, K
�  
(3) 

where ���	À, K
, >��	À, K
 , >¼��	À, K
 are normal stresses, deformations, rates of normal deformations. 

IV. SEPARATION OF VARIABLES FOR THE GENERALIZED 
LINEAR KELVIN-VOIGT EQUATIONS 

It was assumed that in (2) and (3) holds: ÁÂ	À, K
 � ÁÂ�	À
 · Åº	K
 (4) 

where ÁÂ�	À
 is deviator of stress, depending only on the coordinates, the values of which are treated as an 
instantaneous solution of the elastic problem, Åº	K
 is a priori given deviator function of the external load 
variations at the boundary in time. It is used to describe variations in stresses at any point of a solid body due 
to the fact that the problem is quasistatic. 

Further Á¿	À, K
 � Á¿�	À
 · Oº	K
, (5) 

where Oº	K
 is the desired deviator creep function, Á¿�	À
 is deviator of deformations, depending only on the 
coordinates, whose values are also the solution of the instantaneous elastic problem: ÁÂ�	À
 � 2 · ° · Á¿�	À
  

It should be noted that similar assumptions must obviously be satisfied for all stress and strain 
components: ��Æ	À, K
 � ��Æ� 	À
 · Åº	K
, >�Æ	À, K
 � >�Æ� 	À
 · Oº	K
, (6) 

The equations (2) and (3) should be rewritten taking into account (4) – (6): 

ÁÂ�	À
 · Åº	K
 � 2 · ° · Á¿�	À
 · xOº	K
 P #�·� · O¼ º	K
y, "& ∑ ��Æ� 	À
 · Åº	K
� � � · ∑ >���	À
� · xOº	K
 P #Ç · O¼ º	K
y. 

(7) 

It is obvious from (7) that the desired function Oº	K
 should approximately satisfy two different 
equations: #�·� · O¼ º	K
 P Oº	K
 � Åº	K
, 

#Ç · O¼ º	K
 P Oº	K
 � Åº	K
. (8) 

Adding the equations (8) it can be obtained that the equation with the average coefficients is 
necessary to solve: � · O¼ º	K
 P Oº	K
 � Åº	K
, (9) 

where � � "� � #�·� P #Ç� � T!U·Ã� · #̧
, and with help of subtraction of the equations (8) the theoretical relative 

accuracy » of the generalized Kelvin-Voigt model can be expressed as: 

» � È2 · ° � �2 · ° P �È � �	1 P Ä
 � 3 · 	1 � 2 · Ä
	1 P Ä
 P 3 · 	1 � 2 · Ä
� � È7 · Ä � 24 � 5 · ÄÈ (10) 
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V. ON THE QUESTION OF THE INFLUENCE OF INITIAL CONDITIONS 
ON THE BEHAVIOR OF THE CREEP FUNCTION 

The necessity of considering this question arises from the fact that, with the initial condition Oº	0
 � 0 the initial or unsteady creep of the material is considered and, accordingly, the deviators ÁÂ�	À
 
and Á¿�	À
 in (7) have the physical meaning of a finite stress-strain state after the unsteady creep is 
completed. 

Under the initial condition Oº	0
 � �� Ê 0 the steady-state creep of the material is considered and 
the constant �� · Á¿�	À
 (where 0 ª �� dimensionless coefficient) has a physical meaning in how many times 
the deformation of the material, from which begins the process of steady creep �� · Á¿�	À
 less than the final 
instant value Á¿�	À
 corresponding to stresses ÁÂ�	À
. 

VI. DETERMINATION OF THE CREEP FUNCTION IN THE GENERALIZED 
LINEAR KELVIN-VOIGT VISCOELASTICITY MODEL FOR A CONSTANT LOAD 

Note that for a constant load (Åº	K
 � 1) from (9), for that the unsteady (Oº,Ë) and steady-state 
(Oº,_) deviator creep functions (5) it can be obtained: 

Oº,Ë	K
 � 1 � ¡!� Ì·Í	ÎÏÐÑ
·Ò�·�
, Oº,_	K
 � 1 � 	1 � ��
¡!� Ì·Í	ÎÏÐÑ
·Ò�·�

. 
 

VII. AN EXAMPLE OF A SOLUTION OF THE CONTACT PROBLEM FOR A PLANAR 
ROUND IN THE PLAN AND ABSOLUTELY RIGID STAMP ACTING ON THE BOUNDARY 

OF A WEIGHTLESS LINEAR VISCOELASTIC HALF-SPACE 

In the case of a constant vertical load defined by value Ó acting along 0J axis on an axisymmetric 
stamp with a flat base, the solution of the instantaneous elastic problem for stresses has the form [5]: 

�R	E, 0
 � � Ó2 · q Ô1 � E�g� , (11) 

where g is a constant, the radius of the axisymmetric round stamp. 
 

On the other hand, the displacements in the contact region in the instantaneous elastic problem for 
the distribution of contact stress (11) are determined by the expression [5]: 

LR	E, 0
 � � 	1 � Ä�
� Ó2 · q.  

Then, the contact displacement in the problem of unsteady creep (LR,Ë) or for steady creep (LR,_) of 
linear viscoelasticity (2) for a constant distribution of contact stresses (11) can be determined as: 

LR,Ë	E, 0, K
 � � 	1 � Ä�
� Ó2 · q p1 � ¡!x �·¸	T!UÃ
·#y·�r, 
LR,_	E, 0, K
 � � 	1 � Ä�
� Ó2 · q p1 � 	1 � ��
¡!x �·¸	T!UÃ
·#y·�r. 

 

It should be noted that this problem can be applied, for example, in ophthalmology, because 
describes the creep of the eyeball when determining the value of eye pressure. 

VIII. GENERALIZATION OF THE MODEL FOR COMPOSITE BODY 

The generalized Kelvin-Voigt viscoelasticity model for in average isotropic composite body was 
obtained in the form: ÕÁÂÖ � 2 · Õ°Ö · ÕÁ¿Ö P Õ½Ö · ÕÁ¼ ¿Ö, 13 ¥Õ���	À, K
Ö� � Õ�Ö · ¥Õ>��	À, K
Ö� P Õ½Ö · ¥Õ>¼��	À, K
Ö,�  
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where ÕÁÂ	À, K
Ö, ÕÁ¿	À, K
Ö, ÕÁ¼ ¿Ö � ¾¾� ÕÁ¿Ö are average deviators of stresses, deformations and strain rates; Õ°Ö � Õ¸Ö�·	"�ÕÃÖ
, ÕÄÖ, Õ�Ö � Õ¸Ö&·	"!�·ÕÃÖ
 are average shear modulus, Poisson ratio and bulk modulus of a 

composite material; Õ���	À, K
Ö, Õ>��	À, K
Ö , Õ>¼��	À, K
Ö are average normal stresses, deformations, rates of 
normal deformations for composite body. 

IX. CONCLUSIONS 

For the first time, in the generalization of the one-dimensional Kelvin-Voigt model to the spatial 
case, deviators of stresses, deformations, and strain rates were used.  

The equation (10) indicates a rigid dependence of the theoretical relative accuracy of the generalized 
three-dimensional linear Kelvin-Voigt model on the Poisson ratio of material. Using the expression obtained 
in the article, it is easy to establish that the spatial model is practically exact in the case when Poisson ratio is 
equal to 0.3. However, the error of the model sharply increases to 40% when a Poisson ratio turns to 0.4 (for 
example, for polymers and clay).  

In the spatial case of creep deformation, in accordance with the Kelvin-Foig model, are finite. 
The main hypothesis in the construction of steady-state creep is the determination how many times 

the finite creep deformations exceed the initial values.  
A significant mistake in the Kelvin-Voigt model of steady linear viscoelasticity is that an instant 

elastic solution of the boundary value problem for a solid is the final state of the system, but in all other 
creep theories this is only the initial state of the system. Thus, the Kelvin-Voigt model repeatedly understates 
the real creep deformations of the system. 

The comments on the Kelivin-Voigt model explain the conclusion for steady creep: this model is 
suitable only for a qualitative but not quantitative analysis of the change in the deformation of solids in time. 
Generalization of linear Kelvin-Voigt viscoelasticity model for composite body was created. 
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