
126

DESIGN AND IMPLEMENTATION OF THE GRAFFITI

RDB2RDF DATA ACCESS SOLUTION

1Vishniakov V.A.; 2Borodaenko D.S.; 3Borodaenko J.V.
1Management department

Minsk Management Institute,
2EPAM,

3Economic department
Belorussian State University of Informatics and Radioelectronics

Minsk, The Republic of Belarus
e-mail: vish2002@list.ru, angdraug@gmail.com, jborodaenko@mail.ru

Abstract —The paper explores in detail the architecture and
implementation considerations of the Graffiti relational
RDF storage system. Requirements that are specific to
systems interfacing with legacy relational databases are
analysed along with those common to all RDF storage
systems.

Keywords: Graffiti; RDF storage system; Web applications

I. INTRODUCTION

The primary purpose of the RDF technology to
present data available on the Web in a manner that
facilitates automated processing [1]. This purpose defines
the first requirement for an RDF store: compatibility with
operating systems and programming languages that are
widely used for deployment and development of Web
applications.

Another universal requirement is absence of limitations
on distribution and code reuse, particularly dependencies
on proprietary commercially-licensed software. The most
direct approach to satisfying this requirement is to use free
and open source software (FOSS) exclusively.

II. OS AND DB

Times Roman According to the 2011 survey by
W3Techs [2], Linux is used by more active web sites than
any other OS, and dominates other open source systems
by at least an order of magnitude. Ruby has not gained
similar level of prominence among other programming
languages on the Web, but it has other benefits over
competing platforms, such as clear and easy to read
syntax and a very high level of abstraction, which is an
important factor in reducing the development effort.
Ruby's credibility is also strengthened by its use by high
profile sites such as Twitter.

The most popular open source relational databases are
PostgreSQL, MySQL, and SQLite. Since one of the
biggest use cases for relational to RDF query translation is
to provide semantic access to legacy data, where the
choice of DBMS has already been made, support for all
three choices is required. While PostgreSQL allows to
implement stored procedures in a variety of programming
languages, MySQL and SQLite are limited to PL/SQL.

III. GRAFFITI RDF

 The above requirements allowed to define the
following development platform for Graffiti RDF store:
Linux operating system; Ruby programming language;
PostgreSQL, MySQL, and SQLite relational database

management systems; PL/SQL stored procedures.
Graffiti RDF store is implemented in the form of a

Ruby library providing an API for performing RDF
queries in Squish query language. Following code
fragment demonstrates the use of Graffiti in a Ruby
application:

db = Sequel.connect(:adapter => 'pg', :database =>
dbname)

config = File.open('rdf.yaml') {|f| YAML.load(f.read)
}

store = Graffiti::Store.new(db, config)
data = store.fetch(%{
SELECT ?date, ?title
WHERE (dc::date ?r ?date FILTER ?date >= :start)
(dc::title ?r ?title)
ORDER BY ?date DESC}, 10, 0, :start => Time.now

- 24*3600)
A full deployment of an RDF application based on

Graffiti typically includes one or more application servers
hosting the application itself, Graffiti library, and Sequel
library used for interfacing with relational databases;
single cache server running an instance of a distributed
synchronous cache system SynCache; one or more
database servers hosting the relational database and
Graffiti-specific stored procedures.

Graffiti library is implemented in the following
classes, presented on diagram 1: Store provides the RDF
store API; RdfConfig implements configuration for
mapping relational schema to RDF model; SquishQuery
and its subclasses SquishSelect and SquishAssert are
responsible for parsing and executing queries and
assertions written in Squish query language; SqlMapper
and helper classes SqlExpression and SqlNodeBinding
implement translation of Squish queries into SQL in line
with the configuration provided by RdfConfig.

<<graffiti-classes.png>>
Diagram 1. Class diagram of the Graffiti library
Query translation performed by SqlMapper class relies

heavily on logical inference implemented on the database
level in form of stored procedures. Graffiti RDF store
supports entailment rules for the following properties
from the RDFS and OWL vocabularies: rdfs:subClassOf,
rdfs:subPropertyOf, owl:TransitiveProperty.

Stored procedures implementing entailment rules for
rdfs:subClassOf are triggered on every insert and delete
for the subclass table. When a tuple is inserted with
primary key not specified, a template tuple is inserted into

Би
бл
ио
те
ка

 БГ
УИ
Р

127

the superclass table, and primary key value is copied from
superclass table to subclass table. Delete operations are
cascaded to all linked subclass and superclass tables.

Inference for rdfs:subPropertyOf is done at the query
translation stage and relies on a stored procedure that
returns value of an attribute when special sub property
mapping attribute is set, and NULL when it's unset. This
allows a translated query to select only tupelos that have
sub property attribute values matching the sub property
specified in the RDF query.

Inference for owl:TransitiveProperty relies on a
separate transitive closure table for every attribute mapped
to a transitive property. A set of stored procedures are
triggered on insert, update, and delete operation to keep
the transitive closure up to date with the base table.

IV. SOFTWARE ARCHITECTURE

The software architecture outlined above provides
Graffiti with the following unique advantages. Using
Ruby API allows the application and Graffiti to exchange
data within a single process, avoiding the latencies and
overhead involved in communicating over a network
protocol. It also
allows to use parameterised queries which improves the
hit rate on the cache of translated queries. In the same
time, query translation within the application shifts part of
the load away from the database, and in distributed
deployments application usually scales much better than
the database [4, 5].

Implementation of logical inference on the database
level minimizes the number of interactions between
Graffiti and RDBMS that are required to complete a
single RDF query or assertion, which has positive impact
both on performance and ACID compliance of the whole
system.

The above in combination with the high level of
abstraction provided by the Ruby programming language
has allowed to implement the whole RDF store in only
1000 lines of Ruby code and 200 lines of PL/SQL. The
small size of the code base makes the ongoing
maintenance and development require less effort than the
existing systems counting hundreds of thousands of lines
of code in lower-level Java and C++ programming
languages. More details about this solution can find in
monographic [4].

V. REALISATION

The open publication messages system based on the
RDF semantic data model and used RDF storage Graffiti
as main data accesses tool has been realised. The use of
model RDF has simplified the data change with other
applications. It has allowed to realize full decentralise
process of site content structure.

The investigation of RDF Graffiti functional

characteristics and productivity are shown that this system
surpasses on their possibilities the majority of such
existing systems reflecting relation data to RDF.

The Graffiti system advantage before the best analogy
system Virtuoso RDF Views includes the more high
flexibility (supporting reunification of RDF ratification
and compact module architecture) and scalability
(supporting for the use of logical inference procedures
keeping and the possibility of distribution calculation on
RDF requests processing).

The storage system RDF-data Graffiti and system
open publication Samizdat ware used in electronic
publication process of newspaper “Computer vesti”. It
allows to high of material moderation efficiently
publishing by site users. Among this to high the
efficiently of electronic newspaper version for short the
working time of informatics support in number click
calculation.

The semantic search and analyzing of corporative
information module has been realized and introduced in
the decision making system of one Byelorussian IT
company on the base of RDF storage Graffiti. This
module has been provided the company chief
management operational accesses to various application
data without the staff working time expenditure on
information sanding from uncoordinated programs.

The investigation results have been used in the Minsk
Management Institute management department study
process. It has allowed the study process on discipline
“Artificial management systems” make more quality
owing to the forming by students the study material
system understanding and the receiving practical habit in
area semantic structure RDF simulation [6].

[1] Ermolayev, V. Towards a Framework for Agent-Enabled Semantic

Web Service Composition / V. Ermolayev, N. Keberle, S. Plaksin
// International Journal of Web Services Research. – 2004. – Vol.
1, No. 3. – P. 63-87.

[2] 2. Usage of operating systems for websites [Electronic resource] /
W3Techs, August 2011. - Mode of access:
http://w3techs.com/technologies/overview/operating_system/all.
Date of access: 14.05.2012.

[3] 3. Graffiti RDF Store [Electronic resource] / D. Borodaenko –
Semantic Future, December 2011. - Mode of
access:http://semanticfuture.net/index.php/Graffiti. Date of access:
14.05.2012.

[4] 4. Vishniakov V.A., Borodaenko D.S., Borodaenko J.V.. Models
and Tools of Integration of Applications, Marketing, Outsourcing,
Knowledge Processing in Computer Nets. Minsk. MIM, 2011. –
350pp.

[5] 5. Borodaenko D.S Functional particularities and productivity of
the storage RDF data system in relational DBMS // BSUIR
Reports.-.2010. - № 4(50). - P. 95-99

[6] Borodaenko D.S., Vishniakov V.A. The perspectives of RDF
technologies use in the net of universities // Informatization of
Education. – 2010. - № 4. – P. 44-53.

Би
бл
ио
те
ка

 БГ
УИ
Р

